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Abstract

Augmented reality devices have the potential to enhance
human perception and enable other assistive functionalities
in complex conversational environments. Effectively cap-
turing the audio-visual context necessary for understanding
these social interactions first requires detecting and local-
izing the voice activities of the device wearer and the sur-
rounding people. These tasks are challenging due to their
egocentric nature: the wearer’s head motion may cause mo-
tion blur, surrounding people may appear in difficult view-
ing angles, and there may be occlusions, visual clutter, au-
dio noise, and bad lighting. Under these conditions, pre-
vious state-of-the-art active speaker detection methods do
not give satisfactory results. Instead, we tackle the prob-
lem from a new setting using both video and multi-channel
microphone array audio. We propose a novel end-to-end
deep learning approach that is able to give robust voice ac-
tivity detection and localization results. In contrast to pre-
vious methods, our method localizes active speakers from
all possible directions on the sphere, even outside the cam-
era’s field of view, while simultaneously detecting the de-
vice wearer’s own voice activity. Our experiments show that
the proposed method gives superior results, can run in real
time, and is robust against noise and clutter.

1. Introduction
Understanding conversational context and dynamics

from an egocentric perspective is vital for creating realis-
tic and useful augmented reality (AR) experiences. These
attributes characterize the interactions of multiple speakers
in a given scene with the AR device wearer (i.e., ego). An
example such device may consist of glasses with outward
looking cameras and microphones so that audio-visual data
is captured from the wearer’s point of view. Modeling these
attributes involves not only detecting and tracking people
within a scene, but also localizing the voice activity within
a conversation. In this work, we focus on the task of active
speaker localization (ASL) with the goal of detecting the
spatio-temporal location of all active speakers both within
and outside the camera’s field of view (FOV). Closely re-

Figure 1. Our novel multi-channel audio-visual deep network lo-
calizes active speakers from any direction on the sphere, even be-
yond the camera’s field of view. Here, predicted active speaker
probability heat maps are shown in the red channels of both the
images (rows 1,3) and voice maps (rows 2,4). These voice maps
are 360×180 cylindrical 2D projections of the sphere, where each
pixel corresponds to a direction in the device wearer’s local 3D co-
ordinate system and the camera’s limited field of view is approxi-
mated by the central blue rectangle. Ground truth active speakers
are shown as purple bars below head bounding boxes and as blue
dots in the voice maps, while our method’s thresholded predictions
are shown as yellow bars. The overlaid text indicates ground truth
(purple) and predicted (yellow) wearer voice activity detections.

lated to the problem of active speaker detection (ASD), ASL
involves estimating the relative direction of arrival of speech
from an egocentric perspective. In this paper, active speak-
ers typically correspond to the people who are speaking and
‘driving’ the conversations. The elements of our proposed
egocentric ASL problem are illustrated in Fig. 1.

A good ASL system needs to account for the changing
orientations of speakers from an egocentric point of view
and be robust to speakers moving in and out of the visual
field of view. In particular, natural conversations entail sig-
nificant overlap between different speakers’ voice activity
and involve one or more speakers interrupting each other —
a classical attribute in conversational ecology called turn-



taking. Such a system should also ideally be agnostic to
the number of microphone channels, thereby allowing for
generalization to different AR devices with varying num-
bers of audio and/or visual channels. Note that the device
wearer may also be an active speaker during the conversa-
tion whose voice is naturally amplified due to their close-
ness to the device microphones. An ASL system must ac-
count for this false amplification that may nullify competing
active speakers in the scene. In this work, we propose a real-
time audio-visual ASL system that addresses these aspects
to effectively localize active speakers potentially outside of
the visual FOV by leveraging audio recorded from a device-
mounted microphone array.

We propose a new end-to-end deep neural network
trained to tackle this problem. Our network is partitioned
into two branches: an audio network and an audio-visual
network. The audio network builds useful representations
for constructing a low-resolution sound source localization
map with a full 360◦ FOV by utilizing spatio-temporal cor-
relations across different channels. The audio-visual net-
work then combines the extracted audio features with the
corresponding video frames, resulting in a higher resolu-
tion activity map for the camera’s FOV. Visual cues such as
the person’s mouth movement, facial expressions, and body
pose are extracted here and combined with audio features
for computing a joint representation. The final 360◦ active
speaker map is a combination of the low-resolution audio-
only map and the high-resolution audio-visual map. In ad-
dition, the device wearer voice activity detector shares the
features from the audio network, and our model estimates
the relative 3D orientations of the speakers in the scene from
an egocentric perspective. The proposed network is also
aimed at real-time applications in the immersion-driven do-
main of AR, enabling systems for the spatialization and lo-
calization of audio-visual activity in a world-locked frame
of reference. Lastly, the lack of reliable multi-channel con-
versational datasets is another limiting factor for building
in-the-wild ASL systems. To that end, we build and eval-
uate our approach using a very recent egocentric conversa-
tions dataset called EasyCom [18].

Our contributions are:

1. We propose the new problem of active speaker local-
ization (ASL), predicting the relative locations of all
active speakers in the auditory scene using egocentric
multi-channel audio and video.

2. To solve this problem, we propose a real-time egocen-
tric audio-visual system with a full 360◦ field of view.
Our novel multi-channel audio-visual deep network
can effectively learn from different audio features and
microphone arrays without structure changes.

3. We evaluate our method on the EasyCom dataset and
demonstrate significantly improved results in compar-
ison to previous audio-visual ASD approaches.

1.1. Related Work

Single and multi-channel sound source detection and lo-
calization problems have classically been studied by speech
and audio signal processing communities [11,20,21]. Most
of these works are based on source separation and voice
activity detection, and they mainly assume that there is
one speaker in the audio stream who dominates the oth-
ers (i.e., a high signal-to-noise ratio). The primary char-
acteristic of these methods is to build auto-correlation and
cross-correlation functions across different channels to ac-
count for timing and level differences caused by micro-
phone placement. However, these approaches are sensi-
tive to room acoustics and noisy backgrounds and may be
unreliable when multiple sources are present. More re-
cently, machine learning has been used for direction of ar-
rival estimation with some success [12,13,19,29]. Although
these methods improve upon the traditional approaches,
the lack of visual information limits the efficacy of these
systems in real-word settings. Furthermore, most multi-
channel approaches assume fixed, stationary microphone
arrays, which may lead to poor performance with moving
arrays in egocentric settings.

The computer vision community has seen a surge in
audio-visual learning research, in particular due to datasets
like the AVA Speech and Activity corpus [22], Voxconverse
[23], and Voxceleb [24]. These approaches are driven by
building correspondences between audio and visual modal-
ities, thereby resulting in robust joint representations that
improve upon their audio-only or image-only counterparts.
For action and activity recognition, several studies have
shown evidence that audio disambiguates certain visually
ambiguous cues [27, 28]. Audio-visual models have been
explored for speech recognition [25], sound source detec-
tion [8–10], multiple source separation [5–7, 17], localiza-
tion of sounds in a 2D image [1,4,30], 3D scene navigation
guided by audio [26], and others.

A bulk of the audio-visual learning models follow a sim-
ple recipe: audio inputs are converted to spectrogram im-
ages which are then jointly processed with video frames.
In addition to traditional network architectures, transformer
networks have also been proposed for single-channel ac-
tive speaker detection [14]. More recently, turn-taking has
also been studied as a means to improve detection perfor-
mance [16]. A related problem is that of speech sepa-
ration, which singles out a speaker’s voice by using both
audio and cropped facial images [5, 7, 17]. The voice en-
ergy of the enhanced speech can then be used to detect ac-
tive speakers. Although extensively studied, single-channel
speaker detection from an egocentric perspective is still a
challenging problem due to substantial device motion, oc-
clusions, reduced visibility of speakers’ faces, and noise in-
duced by overlapping and interrupting speakers. Most cur-
rent methods also induce significant latency in detection,
which would be ineffective for real-time AR experiences.



Single-channel audio-visual localization in exocentric
settings has received much attention lately [3, 8–10, 15].
Due to the lack of multiple channels, localization is re-
stricted to the image frame in a manner similar to tradi-
tional visual object localization. These methods either uti-
lize audio-visual joint embeddings similar to those in active
speaker detection, or they train audio-visual joint classifica-
tion modules as the backbone for modality fusion. To train
multi-channel AV features, a self-supervised method was
proposed for face localization using audio around a target
frame with a reference frame from another part of the same
video as input [31]. However, a 360-degree version of this
requires panoramic images and aligned audio spherical har-
monics. Both of these are restrictive and not available in our
AR problem setting. In [2] the authors propose an audio-
visual model that can process binaural (two-channel) audio
for sound source localization. However, the system cannot
be extended to multi-channel settings, and is restricted to
localizing targets within the visual field of view.

2. Egocentric Active Speaker Localization
Given multi-channel audio-visual data captured using

AR glasses with a microphone array and RGB camera, we
define the egocentric ASL problem as the detection and
spatio-temporal localization of all the active speakers in the
scene including the voice activity of the device wearer. Let
Ai with (i = 1..N ) denote the audio signals captured via
N -channel microphone array and I denote the video from
the RGB camera. The audio signals are normalized to the
range [-1,1] based on the maximum bit length of audio
samples. At each time instant t, given a segment of au-
dio At

i and the corresponding video frame It, we estimate
two outputs: a heat map Vt

α,β of activity in the scene and
the device wearer activity W. Vt

α,β is a 2D matrix where
each element gives the probability of a sound source being
present at particular relative angles (α, β) at the time instant
t, where α ∈ [−180, 180] and β ∈ [−90, 90] correspond to
azimuthal (horizontal) elevation (vertical) respectively. Al-
though we focus on human speech in this work, the pro-
posed framework is applicable to any sounds of interest.

Fig. 2 illustrates the proposed egocentric ASL frame-
work. Our method is an end-to-end deep learning model
which takes the raw audio and video as input and estimates
the active speaker activity heat map (V) and wearer’s voice
activity (W) directly. The framework has two networks:
an audio network cascade (A) and an audio-visual network
cascade (AV). A converts raw multi-channel audio and
compacts a 2D representation aligned to each video frame,
which is then used to extract relevant features using a con-
volutional neural network to estimate a direction of arrival
estimate for the sources in the scene. AV then utilizes the
outputs from A and incorporates visual information using
another network. The resulting outputs from both A and
AV are then combined to compute V and W.

2.1. Audio Representation

In this paper, we consider three audio representations
and design our deep network so that it can take these differ-
ent representations together with video as input in the same
fashion. Our experiments show these audio representations
are stronger than the raw audio. These different audio rep-
resentations have different properties that are suitable for
different use cases.

Our first audio representation is adapted from the com-
plex spectrogram representation [2]. For audio with sam-
pling rate of 48kHz and video frame rate at 20Hz, we
compute the short-time Fourier transform (STFT) and ex-
tract 100 discrete Fourier transforms (DFTs) of length 200
to align with each video frame. The real and imaginary parts
of the DFTs from all the channels are stacked together along
the depth axis to form the multi-channel 2D tensor.

In addition, we further propose a 2D audio representation
that captures the cross correlation between all pairs of the
audio channels. Unlike spectrograms, this representation
is mostly speaker invariant. Assuming the audio sample n
matches the time stamp of video frame at time t, the cross
correlation between channels p and q is defined as

Cp,q(n,m) =

∑K
k=0[Ap(n− k)Aq(n− k +m)]√∑K

k=0 Ap(n− k)2)
√∑K

k=0 Aq(n− k +m)2)
,

where m ∈ [−L,L], and K and L are hyperparameters. In
our experiments, audio signals have sampling rate 48kHz,
K = 1200 and L = 50. In a discrete format, Cp,q(n,m)
is a vector of length 2L + 1 at each time n that character-
izes the time shifts of different audio channels due to differ-
ent paths of the sound transmission along with other fine-
grained channel couplings. From this, we construct a 2D
audio representation at each time n, which is a stack of all
the vectors Cp,q(n,m) for each (p, q) pair.

The short-time energy of audio is a feature that is invari-
ant to sound sources and easy to compute. Therefore, we
also include a separate measure of the energies from each
audio channel, Ep(n) = (

∑K
k=0 Ap(n − k)2)0.5. Using this,

we stack ep(n) for each p, where ep(n) is a vector that
duplicates the Ep(n) by 2L + 1 times, to form a 2D en-
ergy map. These features can also be combined to form
richer representations. Fig. 3 illustrates how the combined
cross correlation and energy feature correspond to the au-
dio events in videos. The cross-correlation, energy and the
combined 2D feature are further resized. In this paper, the
width and height are resized to 128.

2.2. Audio Activity Network

The audio activity network predicts a rough 360◦ audio
activity map and the voice activity of the device wearer. Its
structure is shown in Fig. 4. The feature extraction net-
work is adapted from the first several layers of a ResNet18
network whose coefficients are pre-trained on ImageNet.
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Figure 2. Egocentric multi-channel audio-visual localization. Our end-to-end deep network detects a 360◦ voice activity map and the
wearer’s voice activity at the same time.

Figure 3. Odd columns: video frames overlaid with voice activity
labels. Even columns: vertical stack of the audio cross correlation
and energy feature maps.

The first convolutional layer is modified to match the chan-
nel number of different audio representations. The feature
extraction network maps the audio 2D representation to a
compact feature that quantifies the spatial and voice char-
acteristics of audio signals in the scene. The extracted fea-
tures are flattened and passed to two fully connected lay-
ers, which are further reshaped to two 90 × 45 maps. The
two maps are stacked and resized to a 180 × 90 one-hot
representation half the size of the full 360◦ audio activity
map. This network thus predicts the voice activity probabil-
ity from each direction with an angular resolution of 2◦.

One key design here is to generate the one-hot represen-
tation of the heat map and train using cross-entropy loss.
This gives more stable results than directly regressing a sin-
gle heat map of the audio activity using L1 or L2 losses. A
pixel-level regression network would have a larger search
space due to increased degrees-of-freedom leading to train-
ing instability.

The audio activity map is also used to simultaneously
estimate the wearer’s voice activity. Due to the spatial posi-
tion of the wearer’s mouth relative to the microphones and
the loudness of the wearer’s voice, the 2D feature represen-
tation learned by the audio localization network also pro-
vides useful information for detecting whether the device
wearer is speaking. To accomplish this, the audio feature
extraction is shared with the 360◦ audio map prediction, and
wearer voice activity detection is performed by a separate
head that consists of two fully-connected layers trained to
predict probability with a cross-entropy loss.
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Figure 4. The audio activity network.

2.3. Audio-Visual Network

With only multi-channel audio available for speaker lo-
calization, the spatial resolution is low. This is due to the
inherent physics of sound propagation and the limitations
of compact microphone arrays. We therefore also take ad-
vantage of video frames to further improve the estimation
result. Images not only increase spatial resolution, but also
provide extra informative cues related to voice activity, such
as mouth movement, facial expression, and hand gestures.

In this paper, we propose a different approach to fus-
ing audio and visual information from previous audio-visual
methods: we directly stack the video frames with the esti-
mated voice activity map from the audio network. Since the
rough 360◦ voice map from the audio network is defined
on the unit sphere and the grids are horizontal and vertical
angles, we need a procedure to align the audio map to the
corresponding video frames. Even though we can map each
grid in the voice map to the image, we find a simpler crop-
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Figure 5. Audio-visual network. The blocks B(p) and C(p, q) are
defined in Fig. 6. For 2D convolution layers, the parameters are
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Figure 6. Residual blocks in the audio-visual network.

ping and scaling method is sufficient due to the low resolu-
tion of the audio map. More specifically, we crop the region
from the audio map within the horizontal and vertical angles
corresponding to the four corners of the image. The scaling
procedure then upsamples the region so that the audio map
in the FOV is aligned with the input video. These opera-
tions are integrated in the audio-visual network. As shown
in Fig. 5, the fused audio map and the corresponding color

video frame form a tensor with depth of 4, which is sent to
a fully-convolutional network to estimate the refined voice
activity map in the camera’s field of view. In this paper, the
video resolution is 640× 360.

With such a design, if the faces are visible, the audio-
visual network is able to take advantage of image features
such as the appearance of the mouth and facial expression
to localize audio activity. Due to its wide effective receptive
field, the proposed network can also learn to extract other
visual features such as body pose. Unlike previous methods,
if the faces are not visible, our proposed method can still
function because the audio activity map gives the locations
of the potential speakers in the scene.

We combine the rough 360◦ heat map and the more de-
tailed heat map in the FOV. In this paper, we simply double
the rough 360◦ heat map outside of the FOV and average
the refined heat map and the rough 360◦ heat map inside
the FOV to generate the final estimation.

2.4. Model Training
We train the network in two stages. In the first stage,

we train the audio-only and audio-visual network together
without the wearer’s voice activity classification network.
In the second stage, we fix the audio feature layer’s weights
and train the fully connected network to predict the wearer’s
voice activity.

The 360◦ voice map and the voice map in the FOV are
represented differently in the ground truth. The 360◦ voice
map is a 180×90 2D map. If there is a speaker located at
(α, β), the ground truth voice map has a solid disk with ra-
dius 5 centered at the point. Such labeling is uniform for
regions inside and outside of the field of view. In contrast,
the voice map in the FOV has the same size as the video
frames, and the active speaker in the field of view is labeled
as a solid rectangle that covers the speaker’s head. There-
fore inside the FOV, the detection also has an attribute of
size which is related to the depth of the target. The training
losses are defined as follows.

The first and second stage loss functions are defined as

La = H(ya, ŷ360) +H(yav, ŷfov), Lb = H(yw, ŷw)

where H is the mean cross entropy, ya and yav are the
one-hot output representations of the audio-only and audio-
visual networks, ŷ360 and ŷfov are their corresponding
ground truth audio maps, yw is the wearer speech activity
prediction, and ŷw is its ground truth label. The training
procedure generally converges quickly within 5 epochs.

3. Experiment Results
In this section, we evaluate the proposed method on

real videos and compare it with different audio-visual ap-
proaches for active speaker detection and wearer voice ac-
tivity detection. Since we consider a novel egocentric prob-
lem setting, there are no previous audio-visual methods that



are directly applicable. For comparison, we adapt our multi-
channel audio and video inputs to other approaches to sim-
ilar problems. We also compare variations of the proposed
method to justify our design choice.

3.1. Evaluation Dataset

We evaluate our method using the EasyCom [18] dataset,
a multi-channel audio-visual dataset that includes around 6
hours of egocentric videos of conversations within a sim-
ulated noisy environment. The dataset is recorded using a
microphone array and a RGB camera mounted on a pair of
glasses. EasyCom is a challenging dataset with significant
background noise, fast head motion, and motion blur. Par-
ticipants may sit or walk around in the scene, and their faces
and mouths are not always visible due to occlusions.

There are six microphones used for recording: four fixed
to the glasses and two placed within the ears of the par-
ticipants. In this paper, we use the RGB egocentric video
together with the multi-channel audio from the four fixed
microphones in our experiments. The dataset has 12 video
sessions, each of which is about 30 minutes long with 4-6
participants including the camera wearer. We use sessions
1-3 for testing and the remaining 9 sessions for training. For
fair comparison, we report the best numbers for all com-
peting models trained until convergence after a sufficiently
large number of epochs.

3.2. Evaluation Methods

We compare the proposed method in different varia-
tions against other active speaker detection and localization
methods. The methods in the evaluation include:

Ours AV(·): Variations of our method including dif-
ferent combinations of feature representations (cor: cross
correlation, eng: energy, spec: spectrogram, and box:
head bounding boxes). In the variation that uses head
bounding boxes, we set the background color outside of the
detected head regions to black. We also evaluate the audio-
only and video-only versions of our method in which the
video or audio branches are removed from our full model.

DOA+headbox: A state-of-the-art signal processing
method [20] for extracting spherical direction-of-arrival
(DOA) energy maps from the 4 microphones on the glasses
combined with head detection bounding boxes for active
speaker detection. This DOA estimation method was de-
signed to achieve more robust results in highly reverberant
settings compared to previous signal processing audio lo-
calization methods. To detect active speakers in the field
of view, we pool regions of the DOA map correspond-
ing to directions within the detected head bounding boxes.
If the DOA map accurately estimates sound arrival direc-
tions, then the head bounding boxes corresponding to active
speakers will include higher energy values.

DOA+image: A deep neural network trained to local-
ize active speakers using both traditional signal processing

DOA maps [20] and video frames as inputs. The network is
fully convolutional and has the same structure as the audio-
visual network in our method.
AV-rawaudio: A deep neural network trained using

multi-channel raw audio and video as the input. Aside from
extracting audio features with 1D convolution layers, the
overall network architecture is the same as our approach.
Mouth region classifier (MRC): A visual-only method for
classifying active speech from cropped images of mouth re-
gions extracted from a 68-point facial key point detector.
Such a scheme has been commonly used in active speaker
detection. A ResNet18 network is trained to classify the
cropped mouth images. We test two cases: MRC(AVA)
trained using the AVA active speaker detection dataset [22],
and MRC(EasyCom) only trained on EasyCom.

TalkNet [14]: A transformer-based single-channel
audio-visual active speaker detection method that
gave state-of-the-art results in the AVA active speaker
detection challenge. We use the method in two
modes: TalkNet(AVA) trained on the AVA dataset
and TalkNet(EasyCom) trained on EasyCom.
BinauralAVLocation [2]: A two-channel audio-
visual method for sound source localization. Since this
method cannot be easily extended to settings with more
than two asymmetric microphones, we use only the
audio channels from the two frontal microphones in our
comparisons.

3.3. Within-View Active Speaker Detection (ASD)

We first evaluate the mean average precision (mAP)
of active speaker localization detections within the cam-
era’s field of view. We compare against multi-channel as
well as one- and two-channel audio-visual methods and
visual-only method. The mAP is computed based on the
scores within the ground truth head bounding boxes in
each video frame. For our methods and the competing
methods DOA+headbox, DOA+image, AV-rawaudio,
and BinauralAVLocation we extract the voice heat
map’s maximum value in each ground truth head bound-
ing box and use it as the detection score. The MRC and the
TalkNet methods use the classification probability of the
corresponding head box as the detection score. Both MRC
and TalkNet use the ground truth head bounding boxes
for testing.

As shown in Table 1, our methods give much higher
mAP than all of the competing methods. Fig. 7 shows
qualitative comparison results. Due to the difficulty in
learning useful features from raw audio, AV-rawaudio
gives inferior results in comparison to spectrogram and
cross-correlation audio features. Background noise also
causes traditional audio-only signal processing approaches
to give blurry DOA maps and inaccurate target localiza-
tion results. The DOA+image deep learning method that
combines this DOA map with video frames improves per-



Figure 7. Qualitative comparison results. The purple bar indicates when a person is predicted to be talking while the yellow bar is the corre-
sponding ground truth. Rows 2, 4: the predicted 360◦ voice map compared against the the ground truth in blue channel. Rows 1, 2: The re-
sult of Ours AV(corr). Rows 3, 4: DOA+headbox, Row 5: DOA+image, Row 6: MRC(EasyCom), Row 7: TalkNet(EasyCom).
In Row 7, green boxes indicate active speech while red boxes are inactive.

formance, but still gives lower mAP than our proposed
method. This emphasizes the benefit of learning spatial
audio-visual representations end-to-end. Our method also
gives much higher mAP than the previous video-only MRC
and single-channel audio-visual active speaker detection
method TalkNet trained on both the AVA dataset [22]
and the EasyCom dataset. Our method greatly outperforms
the BinauralAVLocation in both the 4-channel and 2-
channel audio settings.

For different variations of the proposed method, as
shown in Table 1, the energy feature is significantly worse
than the other two features, while spectrogram features give
slightly better mAP. The cross correlation and energy fea-
tures are still attractive due to their speaker-invariant prop-
erties and thus have potential to generalize better in real ap-
plications and preserve privacy. The cross correlation fea-
ture is also invariant to the microphone gain settings; this
makes it useful when the gains need to change dynamically
for best signal-noise ratio.

We also compare our audio-only and video-only varia-
tions with the full audio-visual model. In comparison to

our full audio-visual method Ours AV(cor+mag+box)
with a mAP of 86.32%, the video-only variation gave a
much lower mAP of 58.44% and the audio-only version
also gave a lower mAP of 78.08%. The results of Ours
AV(corr+box) and Ours AV(corr+eng+box) also
show that our proposed method can generalize to differ-
ent environments by removing background visual infor-
mation outside of head detections, which can potentially
improve the result. Even with only two audio channels,
our network still gave strong results that outperformed the
BinauralAVLoc network architecture designed to lever-
age the symmetry of binaural audio.

3.4. Spherical Active Speaker Localization (ASL)
One unique property of our proposed method is that it

gives a full 360◦ spherical speaker localization result. Since
there is no head bounding box outside of the field of view,
we use the angular error to measure the localization quality.

The metric is defined as follows: We first extract the de-
tected target locations in the predicted voice heat map us-
ing non-maximum suppression. Every peak in the heat map



ASL mAP
Ours AV(cor) 84.14

Ours AV(cor+eng) 83.32
Ours AV(cor+box) 86.25

Ours AV(cor+eng+box) 86.32
Ours AV(spec) 85.49
Ours AV (eng) 62.68

Ours AV(cor)-2ch 80.00
Ours AV(spec)-2ch 83.30

AV-rawaudio 72.32
DOA+headbox 52.62
DOA+image 54.27
MRC (AVA) 46.60

MRC(EasyCom) 64.24
TalkNet (AVA) 69.13

TalkNet (EasyCom) 44.24
BinauralAVLoc 60.75

Table 1. Comparison of mAPs in the visual field of view.
Most of these tests use 4-channel audio, except for Ours
AV(cor)-2ch, Ours AV(spec)-2ch, BinauralAVLoc,
which use 2-channel audio, TalkNet which uses single-channel
audio, and video-only MRC.

with value greater than a threshold is a potential target. In
the experiments, we set the threshold to 0. The positions
in the heat map indicate the angles of directions. We com-
pute the minimum distances from the detected points to the
ground truth points in the voice heat map, whose mean is
denoted as E1. We compute mean E1 and its standard de-
viation Std1. The corresponding metrics from the ground
truth point set to the detected point set are mean E2 and
Std2. We compute the distance metric in two directions to
take into account both missing detections and false alarms.

Since not all the competing methods can give full 360◦

spherical localization results, we compare our method with
methods that use traditional DOA maps and the audio-visual
variation with raw audio input. As shown in Table 2, our
method gives the lowest angular errors.

Mean E1 Std1 Mean E2 Std2
Ours AV (cor) 16.77 12.63 6.56 8.77
Ours AV (spec) 8.81 9.63 6.21 6.89

DOA 129.82 18.26 46.45 21.50
DOA+image 66.81 7.89 36.48 8.97
AV-rawaudio 40.14 10.55 140.75 19.58

Table 2. Comparison of full 360◦ spherical voice activity localiza-
tion errors measured in degrees.

3.5. Wearer Voice Activity Detection (VAD)

Another unique property of the proposed method is that
it can simultaneously detect the voice activity of the per-
son wearing the recording glasses. Our method shares the
learned audio features for both tasks. During the training

Wearer Audio activity mAP
Ours(cor) 90.20

Ours(cor+eng) 90.13
Ours(eng) 88.89
Ours(spec) 91.69

Ours(cor)-2ch 87.66
Ours(spec)-2ch 90.14

Eng(single channel) 76.71
AV-rawaudio 87.29

Table 3. Camera wearer voice activity detection. Eng(single
channel) is the naive approach of using short-time energy for
wearer voice classification.

of the camera wearer voice networks, the shared feature de-
sign freezes the network feature extraction parameters while
only training the last two fully connected layers.

Camera wearer audio activity detection is a new task.
We construct different natural solutions in the comparison.
Table 3 summarizes the comparison result. As shown in
Table 3, our proposed method gives better results than the
competing methods. The shared feature design in fact also
gives better result than training a separate wearer voice clas-
sification model. For instance, our method using cross cor-
relation input features gives 90.2% mAP, but if we retrain a
separate wearer classifier the mAP is 88.01%. This is likely
because of the additional supervision in training the local-
ization task to explicitly suppress the wearer’s speech.

Comparing to traditional signal processing approaches,
our method requires more computationally expensive GPU
operations. However, the proposed method is still efficient.
It runs in real time at over 180 frames per second using a
single GTX2080Ti GPU with about 50% utilization. More
optimization could also further improve the efficiency of the
network. The proposed method also has a smaller latency
compared to traditional signal processing methods, which
require estimating signal statistic over longer windows of
time. While we only use 4 microphones in our experiments,
the proposed method could be easily extended to devices
with any number of microphones in any array configuration.
With a larger microphone array, the proposed method has
the potential to achieve even better results.

4. Conclusion

We proposed a novel multi-channel audio-visual method
to tackle the 360◦ spherical active speaker detection prob-
lem for localizing active speakers both within and beyond
an egocentric camera’s visual field of view while also si-
multaneously predicting the wearer’s voice activity. Our
experiments showed that the proposed method gives supe-
rior results to competing methods and runs in real time with
short latency. It can enable many useful AR functions.
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