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1 ADDITIONAL REGISTRATION DATA
In addition to the shirt registration data, we captured dynamics of
a skirt under varying legs motion and hand-cloth interaction. The
registered mesh sequence contains 2k frames. The pattern comprises
123k cells, with a resolution of 2.6mm. We used 73 cameras for the
triangulation. Figure 1 presents the skirt registrations.

2 PATTERN REGISTRATION

2.1 Image Pattern Detector
The image pattern detector has to address several challenges such
as the non-rigid deformation, projective transformation invariance,
low-resolution observations, variable illumination and blur. In addi-
tion, the detector must have reasonable computation time to allow
processing of the multi-view sequence and support training from
sparse annotations to reduce the annotation time. To this end we
propose PatterNet, an image pattern detector designed with the
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above requirements in mind. PatterNet is composed of two separate
networks SquareLatticeNet which detects the corners and centers
and ColorBitNet classifies the pixel color. We elaborate on each in
detail in the following sections.

2.1.1 Corner and Centers Detector. We detect the centers and cor-
ners in the square lattice by the network SquareLatticeNet. This
network is a 3-way pixel classifier, operating on the gray version of
the image and assigning the labels 1 and 2 to corners and centers,
respectively, and 0 to background pixels. The architecture of Square-
LatticeNet is based on UNet; see the supplementary for the structure.
We trained the pixel classifier using sparse annotations, containing
the centers and corners pixel location in every annotated patch. In
addition, the annotation included a color label in the range 0-6 for
every annotated center, see FIGURE. We trained the network with
categorical cross-entropy (CCE) loss, measured between the net-
work predictions over the image and a dense ground-truth signal we
constructed by assigning the labels 1 and 2 to the annotated pixels,
and 0 for the other pixels. To balance the inherent bias towards the
background class, which occurs with much higher frequency than
the keypoint annotations, we used another cross-entropy loss term
evaluated exclusively in the annotated pixels and hence doesn’t
contain background labels in the ground-truth signal. We used the
dense loss term and the sparse one with a fixed ratio 1:1 between
their weights. Our training set consisted of 2000 annotated patches
in varying sizes 322-1502, cropped from our capture frames for a
few selected cameras. The typical keypoint density was 0.02-0.1
keypoints per pixel. We augmented the training set by rotation,
reflection, resizing, gaussian blur, and brightness variation for ro-
bustness. The inference time per 2668x4096 image was <1 sec on an
A100 GPU. The predictions of SquareLatticeNet appear in FIGURE.

2.1.2 Color Detector. As explained in the paper, with the predicted
square centers and corners pixel location, we reconstruct the graph
structure of the pattern in the image domain in regions where the
cloth pattern is visible. To determine the hash code of every 3 × 3
local grid subgraph, we need to detect the color labels at the graph
nodes. To this end, we propose ColorBitNet, an 8-way pixel classifier,
operating on the color image and assigning the labels 1-7 identifying
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Fig. 1. We registered a dynamic skirt under diverse motion and hand-cloth interaction. We show two example frames, zooming on the original frame’s wrinkles
and rendered registration, respectively.

the different colors and 0 to background pixels, such as the square
grid wireframe. In this case, we aimed for a piecewise constant color
segmentation rather than a narrow pulse like in SquareLatticeNet,
to accommodate correct color prediction even when the centers are
sampled slightly around the exact location. Therefore, we couldn’t
assume that all the unannotated pixels belong to the background
class, as we did in SquareLatticeNet. Instead, we had to train the
network in a semi-supervised setting and regularize the predictions
at the unconstrained pixels. Our solution is a UNet-based architec-
ture with a single downsampling-upsampling operation while the
other layers are purely convolutional to encourage color inference
based on local image features. Indeed, while we didn’t explicitly
provide background annotations except at the corner pixels, the
network’s inductive bias led to the correct prediction of background
labels along the square edges and piecewise constant prediction of
the color labels outside the square centers. Specifically, we trained
the network with categorical cross-entropy (CCE) loss, evaluated
exclusively at the sparsely annotated pixels; The center pixels were
labeled according to the color annotation 1-7, and the corners were
labeled as background with the label 0. We used similar augmenta-
tion to SquareLatticeNet, except for the color variation, leaving the
critical feature for classification uninterfered. ColorBitNet exhibited
computation time similar to SquareLatticeNet, <1 sec per 2668x4096
image on an A100 GPU. The predictions of ColorBitNet appear in
FIGURE X. ColorBitNet’s network architecture can be found in the
supplementary.

3 GRAPH PROCESSING ALGORITHMS
The heterogeneous graph To generate the heterogeneous graph,
we apply Algorithm 1. As a final step, we handle the boundary de-
tections. At the boundary keypoints, the number of the mutually
opposite-type nearest neighbor is <4. Thus the neighbors cannot
form a valid parallelogram around the detected keypoint. To com-
plete the heterogeneous graph, we extend it with edges between
mutually opposite type neighbors, updating the cyclically sorted
neighbor list upon incidence with a node. We designate the newly
added edges by 𝐸𝑛𝑒𝑤 . Then, we calculate the set of cycles in the
extended graph generated according to the following procedure:
1) Choose a starting node 𝑣0, an edge exiting this node 𝑒0, and
an orientation - clockwise or anti-clockwise 2) Walk four steps
on the graph, start along the initial edge and determine the next
direction by turning from the last edge according to the chosen
orientation. The result is a sequence of nodes and oriented edges
(𝑣0, 𝑒0, 𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4, 𝑒4). Next, we validate the generated cy-
cle. A cycle is said to be valid if the nodes (𝑣1, 𝑣2, 𝑣3, 𝑣4) are four
unique nodes AND 𝑣4 = 𝑣0, 𝑒4 = 𝑒0. Finally, if an edge 𝑒 ∈ 𝐸𝑛𝑒𝑤
participates in a valid cycle, we keep it as a permanent edge in the
heterogeneous graph. The results are shown in Figure ??.

The homogeneous graph After the last stage, every pattern
square potentially maps to four cyclically oriented edges around
a center-type node in the heterogeneous graph. We apply the fol-
lowing scheme to reconstruct the grid graph in the visible image
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regions. For each center-type node, we iterate its corner-type neigh-
bors in the heterogeneous graph, picking a pair of cyclically adjacent
neighbors each time. We get each pair’s mutual center neighbors
and subtract the original center from the resulting set. Next, if the
result is a singleton, we create a directed edge between the former
center and the resulting center. When we finish iterating all the
center-type nodes, we have a set of directed edges. Finally, we cre-
ate an undirected edge for every pair of opposite edges found in
the directed edge set. This final set of undirected edges defines the
homogeneous graph’s edges. The homogeneous graph’s nodes are
center-type nodes with at least two edges in the last edge set. Nodes
with less than two edges don’t participate in any 3×3 grid subgraph
of the homogeneous graph, even as boundary nodes - when the
subgraph lies on the complete graph boundary; therefore, we can
safely ignore them.

The homogeneous graph attributes To allow the hash code
extraction, we assign every node in the homogeneous graph a color
attribute and a 3 × 3 matrix containing the vertex IDs participat-
ing in the local 3 × 3 grid graph around that node. For the color
attribute, we query the precalculated heterogeneous graph with the
corresponding center-type node ID to get its corner-type neighbors.
We fetch all the non-background color labels in the parallelogram
area defined by the corners and assign this color set as the color
attribute for every node in the homogeneous graph. The following
section explains how we handle potentially ambiguous codes result-
ing from a non-singleton color set. Next, try to assign a local 3x3
grid to every node with a graph degree equal to four. Nodes with a
lesser degree cannot serve as the center of a 3x3 grid. Additionally,
nodes containing a neighbor with a degree less than three also fall
in the same category. Therefore, we set the grid attribute with an
empty value for these nodes. To get the 3x3 vertex ID matrix in the
4-degree nodes, we define a local coordinate system, determined by
an arbitrary edge that serves as the local positive x-direction, induc-
ing the local +x, +y, -x, -y directions on the other edges, in a cyclical
order. The neighboring vertices along those edges fill the (1, 0), (0,
1), (-1, 0), (0, -1) entries of the 3x3 matrix, respectively, while the
central node ID fills the (0,0) entry. To complete the four remaining
diagonal entries, we cyclically iterate the off-diagonal entry pairs,
successively fetching the corresponding vertices’ mutual neighbors
and subtracting the central vertex from the resulting set. If the final
set is a singleton, we set the vertex ID in the corresponding diagonal
entry; otherwise, we assign an empty value for the grid attribute.
When this process terminates, each node contains a 3 × 3 grid or an
empty value as a grid attribute and a color attribute.

3.1 Hash Code inference
The hash code is calculated from the homogeneous graph can the
color classification of its nodes via the Neighbor-Voting Algorithm 2

4 MULTI-VIEW SURFACE ALIGNMENT

4.1 Triangulation
The RANSAC triangulation is a two-step algorithm that takes cam-
era parameters and pixel coordinates of a grid point in each camera
as input, and produces the 3D world coordinate of the grid point. In

ALGORITHM 1: Heterogeneous graph generation
Input :Set of nodes𝑉

Type attribute𝑇 : 𝑉 → [0, 1]
Image coordinates attribute 𝐹 : 𝑉 → R2

Output :The undirected heterogeneous graph𝐺 = (𝑉 , 𝐸) ,
admitting ∀(𝑢, 𝑣) ∈ 𝐸 : 𝑇 (𝑢) ≠ 𝑇 (𝑣) .
Neighbor cyclic ordering ∀𝑣 ∈ 𝑉 : 𝑐 (𝑣) = (𝑣1, 𝑣2, ...) ,
where (𝑣1, 𝑣2, ...) is 𝑣’s neighbor sequence 𝑁𝐺 (𝑣) ,
ordered cyclically by the angle of the vector
𝐹 (𝑣𝑖 ) − 𝐹 (𝑣) ∈ R2.

Complexity :O(𝑉 )
// Note: We use a numerical threshold in practice to evaluate

geometric conditions, but we present them abstractly here for

conciseness.

initiallize cycNbr // Represents the output function 𝑐 () - a

dictionary with keys = vertex IDs and values = cyclically

ordered opposite neighbors

initialize geomValid // array of size |𝑉 |
for vertex 𝑣 ∈ 𝑉 do

/* Get the 4 non-co-directed opposite type nearest

neighbors, as induced by 𝐹 : 𝑉 → R2 */

counter = 0
i = 1
N = ∅
while counter < 4 do

𝑢 ← 𝑣’s i’th nearest-neighbor in {𝑢 | 𝑇 (𝑢) ≠ 𝑇 (𝑣) }
i++
if {𝑤 ∈ N | 𝑃 (𝑢) − 𝑃 (𝑣) ↑↑ 𝑃 (𝑤) − 𝑃 (𝑣) } ≠ ∅ then

continue
else
N = N⌢ (𝑢)

// append 𝑢 at the end of the sequence

counter++
end

end
sort N by the vector’s angle ⟨𝑃 (N) − 𝑃 (𝑣), 𝑥 ⟩ // the reference

axis can be chosen arbitrarily

if 𝑃 (N) is a geometrically valid parallelogram AND∑
𝑣𝑖 ∈N 𝑃 (𝑣𝑖 ) = 𝑣 then
geomValid[𝑣] = True
cycNbr[𝑣] = N

else
geomValid[𝑣] = False
cycNbr[𝑣] = ()

end
end
/* Connect the edges */

𝐸 = ∅
for vertex 𝑣 ∈ 𝑉 do

for neighbor 𝑢 ∈ cycNbr[𝑣] do
if geomValid[𝑢] AND 𝑣 ∈ cycNbr[𝑢] then

𝐸 = 𝐸 ∪ {(𝑢, 𝑣) }
else

Remove 𝑢 from cycNbr[𝑣]
end

end
end
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ALGORITHM 2: Neighbor-Voting Algorithm: Registering board
location to the homogeneous graph nodes

Input :The homogeneous graph𝐺 = (𝑉 , 𝐸)
Output :board location over the vertices

𝐵 (𝑉 ) = (𝐵𝑣 = (𝑖𝑣, 𝑗𝑣))𝑣∈𝑉
Complexity :O(𝑉 )
initialize boardLocationOverVertices // a dictionary with keys =

vertex IDs and values = registered board location

for vertex 𝑣 ∈ 𝑉 do
votes = {}
// visit the vertices containing 𝑣 in their 3× 3 grid-graph

for vertex 𝑢 | 𝑣 ∈ 𝑁𝑏𝑟3×3 (𝑢) do
store all 9-color-bit codes of the 3× 3 graph centered at 𝑢, in
C = {𝑐0, 𝑐1, ...}

for code c in C do
result← HashFunction(𝑐)
if result is empty then

continue
end
boardLocation, boardRotation← result
nbrVote← getNbrVote(u, v, boardLocation,
boardRotation) // get (𝑖𝑢,𝑐𝑣 , 𝑗

𝑢,𝑐
𝑣 ) the board

coordinates of 𝑣 according to the (𝑢, 𝑐) pair

votes.Append(nbrVote)
end

end

majorVote, majorVoteCount← CalcMajorVote(votes)
if majorVoteCount == 1 then

boardLocationOverVertices[𝑣] = NULL // The vote count

has the form [1, 1, ...], we reject the board

registration

else
boardLocationOverVertices[𝑣] = majorVote

end
end

the RANSAC step, we first generate candidate 3D points by triangu-
lating from 100 random pairs of cameras. Then, for each candidate
we calculate the number of inliers by counting the number of cam-
eras with less than 1mm point-to-ray distance, and pick the one with
the greatest number of inliers as our best candidate. In the triangula-
tion refinement step, we take all the inliers from our best candidate
and use direct linear transformation (DLT) to produce an initial es-
timation. To further refine the result, we use an iterative procedure
to reweigh each camera in the DLT until convergence to find the
densest cluster and make the result more stable. More precisely, in
each iteration we assign a weight to each camera that is inversely
proportional to the exponential of the point-to-ray distance, and
solve the DLT again.

4.2 Camera Setup Analysis
In Table 1 we report the average precision and coverage of pattern
registration as a function of number of cameras on a collection of 200
representative frames. For this we use incremental sets of uniformly
distributed cameras. We measure the registration accuracy as the

(a) (b) (c)

Fig. 2. Surface coverage from left to right for 6 cameras (43%), 25 cameras
(76%) and 212 cameras (82%).

root mean square distance between the triangulated vertices and the
ground-truth vertices, whichwe assume are given by the registration
obtained with 212 cameras. We observe that the registration error
is stable at around 0.35 millimeters, even for a significantly smaller
number of cameras than we used. The surface coverage (visualized
in Figure 2) increases monotonously with the number of cameras.
Interestingly, using only 12 cameras is enough to get over 70%
coverage, while the improvement gained when changing from 100
cameras to 212 cameras is only 1.2% (!). For these results we use
2 views and a radius of 1mm as the parameters of the RANSAC
algorithm.

5 SPARSE-VIEW ANIMATION

5.1 Pixel-Driving Network Architecture
The pixel driving network consists of the following layers:

(1) Input convolution
(2) UNet
(3) Output convolution

The Input convolution processes the input features, which are the
stacked pixel coordinates signals of each camera channel. The input
shape is 𝑃𝑡 ∈ R𝑈×𝑉×2𝐶 , where𝐶 = 2 is the number of cameras, and
𝑈 ,𝑉 is the UV size. The input convolution performs a single convo-
lution operation, producing an output of dimensions 𝐹𝑡 ∈ R𝑈×𝑉×64.
The network uses a kernel size equal to 3, padding=1, applied in
all 4 sides of the UV signal, untied bias, and a LeakyReLU activa-
tion function. The UNet consists of 6 downsampling operations,
and 6 upsampling operations. Both downsampling and upsampling
are performed with a convolution / transposed-convolution layer
that uses untied bias, and operates with kernel size=4, stride=2, and
padding=1, applied to each of the 4 sides of each UV signal. The
layers use LeakyReLU activation function. In the downsampling di-
rection, every convolution operation decreases the input by a factor
of two, while the feature dimension increases by a factor of two. In
the upsampling direction, every convolution operation increases
the input by a factor of two, while the feature dimension decreases
by a factor of two. The features in the upsampling path are merges
with the features in the downsampling path by addition operation.
The Output convolution finally we apply an output convolution.
The output convolution performs a single convolution, producing
an output with the dimenstions of𝑂𝑡 ∈ R𝑈×𝑉×3. The network uses
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Camera setup analysis
Number of cameras Registration accuracy

Vertex RMSEe [mm]
Surface Coverage [%]

6 0.328 43.86
12 0.392 71.96
25 0.359 73.73
50 0.388 75.76
100 0.383 79.05
212 0.000

(Assumed "ground-truth")
80.25

Table 1. Influence of the number of cameras on surface coverage and registration accuracy.

a kernel size equal to 3, padding=1, applied in all 4 directions, untied
bias, and a LeakyReLU activation function.

5.2 Kinematic Model Construction
Our kinematic model K is automatically constructed from template
M. It is a skeleton with leaf nodes at a subset of vertices of the
template meshM. We compute leaf nodes by doing iterative far-
thest point insertion, providing a uniform coverage of the surface.
We compute intermediate nodes of the skeleton using procedural
clustering. For our experiments, we use a skeleton model that has
156 nodes, organized in 4 hierarchical levels with 1 (root), 5, 25, and
125 (leaves) nodes, respectively. We compute skinning weights for
each vertex inM by normalizing geodesic distance to nearby leaf
nodes.

5.3 Surface Augmentation
To make our driving network insensitive to the precise shape of the
coarse geometry used for normalization, we augment the coarse
surface produced by the kinematic model at training time. We de-
form the coarse geometry using a deformation space spanned by
the Laplace-Beltrami eigenfunctions, using a randomized filter to
select their linear combination. The deformation is defined as the
displacement along the surface normal modulated by the random
scalar function. We expect the coarse geometry to be projected close
to the pixel detections. Therefore, the most significant ambiguity
is likely to be along the local vector parallel to the surface nor-
mal. Since the kinematic model produces surfaces with coordinate
functions of limited frequency, we used an exponential function
as the spectral amplitude to decay the high-frequency modes of
the displacement function. We used Bernoulli random variables for
the filter coefficients to mix different modalities for each augmenta-
tion instance. Finally, we scale the resulting displacement function
with a Gaussian random variable to allow displacements of varying
magnitudes. More precise, our displacement function is:

𝐷 (𝑥) = 𝐴

∞∑︁
𝑛=1

𝑞𝑛𝑒
−𝛼𝑛𝜙𝑛 (𝑥), 𝑥 ∈ S (1)

where, 𝜙𝑛 are the corresponding Laplace-Beltrami functions on
the coarse surface S, 𝛼 = 50 is the filter decay rate in the spec-
tral domain, 𝐴 ∼ N(0, 𝜎 = 20𝑚𝑚) is the random scale, and 𝑞𝑛 ∼

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝 = 1/2) are the random coefficients selecting the differ-
ent modes. To a good approximation,M is isometric to the coarse
surface S and Laplace-Beltrami eigenfunctions are isometry invari-
ant. Therefore, we calculated Laplace-Beltrami eigenfunctions once
on the template meshM, and map them to the coarse geometry.
At inference time, the coarse geometry is passed directly without
deforming it.

6 PERFORMANCE
Our current effort targeted the highest driving quality but not real-
time performance. More thorough engineering would help close the
performance gap. Computation times of the two-camera driving
system operating on two 4096x2668 images using a single GPU and
16 CPU cores are: 1)Pattern registration (4.2-4.4): 4 seconds. 2)Coarse
geometry fitting (6.3.3): 30 seconds. 3)Pixel-driving network (6.2): 1
second. (2) uses gradient-descent iterations in PyTorch, expecting a
significant acceleration converting to CUDA implementation and
higher-order solvers or, alternatively, to a regression model. (1,3)
will accelerate by converting from python to a compiled framework.
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