
Under review as a conference paper at ICLR 2016

SEQUENCE LEVEL TRAINING WITH
RECURRENT NEURAL NETWORKS

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba
Facebook AI Research
{ranzato, spchopra, michealauli, wojciech}@fb.com

ABSTRACT

Many natural language processing applications use language models to generate
text. These models are typically trained to predict the next word in a sequence,
given the previous words and some context such as an image. However, at test
time the model is expected to generate the entire sequence from scratch. This
discrepancy makes generation brittle, as errors may accumulate along the way.
We address this issue by proposing a novel sequence level training algorithm that
directly optimizes the metric used at test time, such as BLEU or ROUGE. On
three different tasks, our approach outperforms several strong baselines for greedy
generation. The method is also competitive when these baselines employ beam
search, while being several times faster.

1 INTRODUCTION

Natural language is the most natural form of communication for humans. It is therefore essential
that interactive AI systems are capable of generating text. A wide variety of applications rely on text
generation, including machine translation, video/text summarization, question answering, among
others. From a machine learning perspective, text generation is the problem of predicting a syntac-
tically and semantically correct sequence of consecutive words given some context. For instance,
given an image the model may be expected to generate an appropriate caption for it, or, given a
sentence in English language the model may be expected to translate it into French.

Popular choices for text generation models are language models based on n-grams (Kneser &
Ney, 1995), feed-forward neural networks (Morin & Bengio, 2005), and recurrent neural networks
(RNNs; Mikolov et al., 2010). These models when used as is to generate text suffer from two major
drawbacks. First, they are trained to predict the next word given the previous ground truth words
as input. However, at test time, the resulting models are used to generate an entire sequence by
predicting one word at a time, and by feeding the generated word back as input at the next time
step. This process is very brittle because the model was trained on a different distribution of in-
puts, namely, words drawn from the data distribution, as opposed to words drawn from the model
distribution. As a result the errors made along the way will quickly accumulate. We refer to this
discrepancy as exposure bias which occurs when a model is only exposed to the training data dis-
tribution, instead of its own predictions. Second, the loss function used to train these models is at
the word level. A popular choice is the cross-entropy loss used to maximize the probability of the
next correct word. However, the performance of these models is typically evaluated using discrete
metrics. One such metric is called BLEU (Papineni et al., 2002) for instance, which measures the
n-gram overlap between the model generation and the reference text. Training these models to di-
rectly optimize metrics like BLEU is hard because a) these are not differentiable (Rosti et al., 2011),
and b) combinatorial optimization is required to determine which sub-string maximizes them given
some context. Prior attempts (McAllester et al., 2010) at optimizing test metrics were restricted to
linear models, or required a large number of samples to work well (?).

This paper proposes a novel training algorithm which results in improved text generation compared
to standard models. The algorithm addresses the two issues discussed above as follows. First, while
training the generative model we avoid the exposure bias by using model predictions at training
time. Second, we directly optimize for our final evaluation metric. Our proposed methodology bor-
rows ideas from the reinforcement learning literature (Sutton & Barto, 1988). In particular, we build

1

ar
X

iv
:1

51
1.

06
73

2v
3

 [
cs

.L
G

]
 1

5
D

ec
 2

01
5

Under review as a conference paper at ICLR 2016

on the REINFORCE algorithm proposed by Williams (1992), to achieve the above two objectives.
While sampling from the model during training is quite a natural step for the REINFORCE algo-
rithm, optimizing directly for any test metric can also be achieved by it. REINFORCE side steps the
issues associated with the discrete nature of the optimization by not requiring rewards (or losses) to
be differentiable.

While REINFORCE appears to be well suited to tackle the text generation problem, it suffers from a
significant issue. The problem setting of text generation has a very large action space which makes
it extremely difficult to learn with an initial random policy. Specifically, the search space for text
generation is of size O(WT), whereW is the number of words in the vocabulary (typically in the
order of 104 or more) and T is the length of the sentence (typically around 10 to 30).

Towards that end, we introduce Mixed Incremental Cross-Entropy Reinforce (MIXER), which is our
first major contribution of this work. MIXER is an easy-to-implement recipe to make REINFORCE
work well for text generation applications. It is based on two key ideas: incremental learning and the
use of a hybrid loss function which combines both REINFORCE and cross-entropy (see Sec. 3.2.2
for details). Both ingredients are essential to training with large action spaces. In MIXER, the model
starts from the optimal policy given by cross-entropy training (as opposed to a random one), from
which it then slowly deviates, in order to make use of its own predictions, as is done at test time.

Our second contribution is a thorough empirical evaluation on three different tasks, namely, Text
Summarization, Machine Translation and Image Captioning. We compare against several strong
baselines, including, RNNs trained with cross-entropy and Data as Demonstrator (DAD) (Bengio
et al., 2015; Venkatraman et al., 2015). We also compare MIXER with another simple yet novel
model that we propose in this paper. We call it the End-to-End BackProp model (see Sec. 3.1.3 for
details). Our results show that MIXER with a simple greedy search achieves much better accuracy
compared to the baselines on all the three tasks. In addition we show that MIXER with greedy
search is even more accurate than the cross entropy model augmented with beam search at inference
time as a post-processing step. This is particularly remarkable because MIXER with greedy search
is at least 10 times faster than the cross entropy model with a beam of size 10. Lastly, we note that
MIXER and beam search are complementary to each other and can be combined to further improve
performance, although the extent of the improvement is task dependent.

2 RELATED WORK

Sequence models are typically trained to predict the next word using the cross-entropy loss (a.k.a.
negative log-likelihood loss). At test time, it is common to use beam search to explore multiple
alternative paths (Sutskever et al., 2014; Bahdanau et al., 2015; Rush et al., 2015). While this
improves generation by typically one or two BLEU points (Papineni et al., 2002), it also comes at a
cost: it makes generation at least k times slower, where k is the number of active paths in the beam
(see Sec. 3.1.1 for more details).

The key idea of this work is to improve generation by letting the model use its own predictions
at training time, as first advocated by Daume III et al. (2009). In their seminal work, the authors
first noticed that structured prediction problems can be cast as a particular instance of reinforcement
learning, and they then proposed SEARN, an algorithm to learn such structured prediction tasks.
The basic idea is to let the model use its own predictions at training time to produce a sequence of
actions (e.g., the choice of the next word). Then, a search algorithm is run to determine the optimal
action at each time step, and a classifier (a.k.a. policy) is trained to predict that action. A similar
idea was later proposed by Ross et al. (2011) in an imitation learning framework. Unfortunately, for
text generation it is generally intractable to compute an oracle of the optimal target word given the
words predicted so far.

The oracle issue was later addressed by an algorithm called Data As Demonstrator (DAD) (Venka-
traman et al., 2015), whereby the target action at step k is the k-th action taken by the optimal policy
(ground truth sequence) regardless of which input is fed to the system, whether it is ground truth, or
the model’s prediction. This idea was also recently tested for text generation applications by Bengio
et al. (2015), who had the same motivation as our work (see Sec. 3.1.2 for more details). While
DAD usually improves generation, it seems unsatisfactory to force the model to predict a certain
word regardless of the preceding words.

2

Under review as a conference paper at ICLR 2016

PROPERTY XENT DAD E2E MIXER
avoids exposure bias No Yes Yes Yes
end-to-end No No Yes Yes
sequence level No No No Yes

Table 1: Text generation models can be described across three dimensions: whether they suffer from
exposure bias, whether they are trained in an end-to-end manner by back-propagation of the error,
and whether they are trained to predict one word ahead only or the whole sequence.

3 MODELS

The learning algorithms we describe in the following sections are agnostic to the choice of the
underlying model, as long as it is parametric. In this work, we focus on Recurrent Neural Networks
(RNNs) as they are a popular choice for text generation. In particular, we use standard Elman
RNNs (Elman, 1990) and LSTMs (?). For the sake of simplicity but without loss of generality, we
discuss next Elman RNNs. This is a parametric model that takes as input a word wt ∈ W at each
time step t ∈ [1, T], together with an internal representation ht. This internal representation is a
real-valued vector which encodes the history of words it has seen so far. Optionally, the RNN can
also take as input an additional context vector ct. It learns a recursive function to compute ht and it
also outputs the distribution over the next word:

ht+1 = φθ(wt,ht, ct) (1)
wt+1 ∼ pθ(w|wt,ht+1) = pθ(w|wt, φθ(wt,ht, ct)) (2)

The parametric expression for pθ and φθ depends on the type of RNN. In Elman RNNs, we have
(ignoring biases):

ht+1 = σ(Mi1(wt) +Mhht +Mcct) (3)
ot+1 = Moht+1 (4)
wt+1 ∼ softmax(ot+1) (5)

where the parameters of the model θ are the set of matrices {Mo,Mi,Mh,Mc} and also the addi-
tional parameters used to compute c, softmax(x) is a vector whose components are exj/

∑
k e

xk ,
and 1(i) is an indicator vector with only the i-th component set to 1 and the rest to 0. We assume
the first word of the sequence is a special token indicating the beginning of a sequence, denoted by
w1 = ∅. All entries of the first hidden state h1 are set to a constant value.

Next, we are going to introduce both baselines and the model we propose. As we describe these
models, it is useful to keep in mind the key characteristics of a text generation system, as outlined
in Table 1. There are three dimensions which are important when training a model for text gen-
eration: tbe exposure bias which can adversely affect generation at test time, the ability to fully
back-propagate gradients (including with respect to the chosen inputs at each time step), and a loss
operating at the sequence level. We will start discussing models that do not possess any of these de-
sirable features, and then move towards models that better satisfy our requirements. The last model
we propose, dubbed MIXER, has all the desiderata.

3.1 WORD-LEVEL TRAINING

In this section we review a collection of methodologies used for training text generation models at
the word level, that is, optimizing the prediction of only one word ahead of time. We start with
the simplest and the most popular method which optimizes the cross-entropy loss at every time
step. We then discuss a recently proposed modification to the standard cross-entropy training which
explicitly uses the model predictions during training. We finish by proposing a simple yet novel
baseline which uses its model prediction during training and also has the ability to back propagate
the gradients through the entire sequence. While these extensions tend to make generation more
robust, they still lack explicit supervision at the sequence level.

3.1.1 CROSS ENTROPY TRAINING (XENT)

Cross-entropy loss (XENT) maximizes the probability of the observed sequence according to the
model. In particular, if the target sequence is [w1, w2, . . . , wT], then XENT training involves mini-

3

Under review as a conference paper at ICLR 2016

h2 = �✓(;, h1) h3 = �✓(w2, h2)

p✓(w|;, h1)

XENT

h1

;

w2 XENT w3

p✓(w|w2, h2)

h2 = �✓(;, h1)

p✓(w|;, h1)

h1

;
wg

2

argm
ax

p✓(w|wg
2 , h2)

wg
3

h3 = �✓(w
g
2 , h2)

argm
ax

Figure 1: Illustration of how an RNN is trained using XENT (top) and how it is then used at test time
for generation (bottom). The RNN is unfolded for three time steps in this example. The red oval is
a module computing a loss, while the rectangles represent the computation done by the RNN at one
step. At the first step, all inputs are given. In the remaining steps, the input words are clamped to
ground truth words at training time, while at test time they are clamped to model predictions, denoted
by wgt . Predictions are produced by either taking the argmax or by sampling from the distribution
over words. Additionally, the RNN can also take a context vector as input at each time step (not
shown here).

mizing the following loss function:

L = − log p(w1, . . . , wT) = − log

T∏
t=1

p(wt|w1, . . . , wt−1) = −
T∑
t=1

log p(wt|w1, . . . , wt−1). (6)

When using an RNN, each term p(wt|w1, . . . , wt−1) is modeled as a parametric function as given
in Eq. 5. The above loss function trains the model to be good at greedily predicting the next word
at each time step without considering the whole sequence. Training proceeds by truncated back-
propagation through time (Rumelhart et al., 1986) with gradient clipping (Mikolov et al., 2010).

Once trained, one can use the model to generate an entire sequence as follows. Let wgt denote the
word generated by the model at the t-th time step. Then the next word is generated by:

wgt+1 = argmax
w

pθ(w|wgt ,ht+1). (7)

Notice that, the model is trained to maximize pθ(w|wt,ht+1), where wt is the word in the ground
truth sequence. However, during generation the model is used as pθ(w|wgt ,ht+1). In other words,
during training the model is only exposed to the ground truth words. However, at test time the model
has only access to its own predictions, which may not be correct. As a result, during generation the
model can potentially deviate quite far from the actual sequence to be generated. Figure 1 illustrates
this discrepancy.

The generation described by Eq. 7 is a greedy left-to-right process which does not necessarily pro-
duce the most likely sequence according to the model, because:

T∏
t=1

max
wt+1

pθ(wt+1|wgt ,ht+1) ≤ max
w1,...,wT

T∏
t=1

pθ(wt+1|wgt ,ht+1)

The most likely sequence [w1, w2, . . . , wT] might contain a word wt which is sub-optimal at an
intermediate time-step t. This phenomena is commonly known as a search error.

Beam Search Equation 7 always chooses the highest scoring next word candidate at each time
step. At test time we can reduce the effect of search error by pursuing not only one but k next
word candidates at each point, which is commonly known as beam search. While still approximate,

4

Under review as a conference paper at ICLR 2016

h2 = �✓(;, h1)

p✓(w|;, h1)

XENT

h1

;

w2 w3

sampler
wg

2 w0

XENT

sampler
wg

3 w00p✓(w|w0, h2)

h3 = �✓(w
0, h2)

Figure 2: Illustration of DAD (Bengio et al., 2015; Venkatraman et al., 2015). Training proceeds
similar to XENT, except that at each time step we choose with a certain probability whether to take
the previous model prediction or the actual ground truth word. Notice how a) gradients are not back-
propagated through the eventual model predictions wgt , and b) the XENT loss always uses as target
the next word in the reference sequence, even when the input is wgt .

this strategy can recover higher scoring sequences that are often also better in terms of our final
evaluation metric. The algorithm maintains the k highest scoring partial sequences, where k is a
hyper-parameter. Setting k = 1 reduces the algorithm to a greedy left-to-right search (Eq. 7). The
downside of such an exploration of multiple paths is that it significantly slows down the generation
process. The time complexity grows linearly in k because we need to perform k forward passes for
our network which is the most time intensive operation. As a result, beam search generation is k
times slower than greedy search (Eq. 7). Pseudo-code of beam search is shown in Algorithm 2 of
our Supplementary Material.

3.1.2 DATA AS DEMONSTRATOR (DAD)

Conventional training with XENT suffers from exposure bias since training uses ground truth words
as opposed to model predictions. DAD, proposed in (Venkatraman et al., 2015) and also used
in (Bengio et al., 2015) for sequence generation, addresses this issue by mixing the ground truth
training data with model predictions.

At each time step and with a certain probability, DAD takes as input either the prediction from the
model at the previous time step or the ground truth data. Bengio et al. (2015) proposed different
annealing schedules for the probability of choosing the ground truth word. The annealing schedules
are such that at the beginning, the algorithm always chooses the ground truth words. However, as the
training progresses the model predictions are selected more often. This has the effect of making the
model somewhat more aware of how it will be used at test time. Figure 2 illustrates the algorithm.

A major limitation of this approach is that at every time step the target labels are always selected
from the ground truth data, regardless of how the input word is chosen. As a result, the targets may
not be aligned with the generated sequence. This in turn will forcefully train the model to predict
a potentially incorrect sequence. For instance, if the ground truth sequence is “I took a long walk”
and the model has so far predicted “I took a walk”, DAD will force the model to predict the word
“walk” a second time, since it is the next word in the ground truth sequence. Finally, gradients are
not back-propagated through the samples drawn by the model and the XENT loss is still at the word
level. It is not well understood how these problems affect generation.

3.1.3 END-TO-END BACKPROP (E2E)

In our quest to bridge the gap between the way the text generation models are trained and the way
they are used, we also experimented with a novel modification to the standard training of RNNs.
This is perhaps the most natural and naı̈ve approach approximating sequence level training, which
can also be interpreted as a computationally efficient approximation to beam search. The key idea
is that at time step t + 1 we propagate as input the top k words predicted at the previous time step
instead of the ground truth word. Specifically, we take the output distribution over words from the
previous time step t, and pass it through a k-max layer. This layer zeros all but the the k largest
values and re-normalizes them to sum to one. The re-normalized distribution is used as input at the
current time step:

{it+1,j , vt+1,j}j=1,...,k = k-max pθ(wt+1|wt, ht), (8)

5

Under review as a conference paper at ICLR 2016

h2 = �✓(;, h1)

p✓(w|;, h1)

XENT

h1

;

w2 w3XENT

top-k
w0

1,...,k p✓(w|w0
1,...,k, h2) w00

1,...,k

h3 = �✓(w
0
1,...,k, h2)

top-k

Figure 3: Illustration of the End-to-End BackProp method. The first steps of the unrolled sequence
(here just the first step) are exactly the same as in a regular RNN trained with cross-entropy. How-
ever, in the remaining steps the input to each module is a sparse vector whose non-zero entries are
the k largest probabilities of the distribution predicted at the previous time step. Errors are back-
propagated through these inputs as well.

where it+1,j are indexes of the words with k largest probabilities and vt+1,j are their corresponding
scores. At the next time step, instead of taking the ground truth word as input, we take the k
largest scoring previous words as input whose contributions is weighted by their scores. Smoothing
the input in this way makes the whole process differentiable and trainable using standard back-
propagation of the error using the cross-entropy loss of Equation 6. Compared to beam search, this
can be interpreted as fusing the k possible next hypothesis together into a single path, as illustrated
in Figure 3. In practice, we also employ a schedule, whereby we let the model use its own top-k
predictions more and more as training proceeds. At the beginning it uses only ground truth words.
After a few epochs, we use top-k predictions for the last ∆ steps of the sequence. Afterwards, the
RNN uses its own predictions for the last 2∆ steps, on so on so forth.

While this algorithm is a simple way to expose the model to its own predictions, the loss function
optimized is still XENT at each time step, and therefore, it operates at the word level. There is no
explicit supervision at the sequence level while training the model.

3.2 SEQUENCE LEVEL TRAINING

We now introduce a novel algorithm for sequence level training, which we call Mixed Incremental
Cross-Entropy Reinforce (MIXER). The proposed method not only avoids the exposure bias prob-
lem, but it also directly optimizes for the final evaluation metric. Since MIXER can be viewed as
an extension of the REINFORCE algorithm, we first describe the REINFORCE algorithm from the
perspective of sequence generation.

3.2.1 REINFORCE

In order to apply the REINFORCE algorithm (Williams, 1992; Zaremba & Sutskever, 2015) to the
problem of sequence generation we cast our problem in the reinforcement learning (RL) frame-
work (Sutton & Barto, 1988). Our generative model (the RNN) can be viewed as an agent, which
interacts with the external environment (the words and the context vector it sees as input at every
time step). The parameters of this agent defines a policy, whose execution results in the agent pick-
ing an action. In the sequence generation setting, an action would refer to predicting the next word
in the sequence at each time step. After taking an action the agent updates its internal state (the state
of the hidden units of RNN). Once the agent has reached the end of a sequence, it observes a reward.
We can choose any reward function. Here, we use BLEU (Papineni et al., 2002) and ROUGE-2 (?)
since these are the metrics we use at test time. BLEU is essentially a geometric mean over n-gram
precision scores as well as a brevity penalty (Liang et al., 2006); in this work, we consider up to
4-grams. ROUGE-2 is instead recall over bi-grams. Like in imitation learning, we have a training
set of optimal sequences of actions. During training we choose actions according to the current
policy and only observe a reward at the end of the sequence (or after maximum sequence length),
by comparing the sequence of actions from the current policy against the optimal action sequence.
The goal of training is to find the parameters of the agent that maximize the expected reward.

6

Under review as a conference paper at ICLR 2016

We define our loss as the negative expected reward:

Lθ = −
∑

wg1 ,...,w
g
T

pθ(w
g
1 , . . . , w

g
T)r(wg1 , . . . , w

g
T) = −E[wg1 ,...w

g
T]∼pθr(w

g
1 , . . . , w

g
T), (9)

where wgn is the word chosen by our model at the n-th time step, and r is the reward associated
with the generated sequence. In practice, we approximate this expectation with a single sample
from the distribution of actions implemented by the RNN (right hand side of the equation above
and Figure 7 of Supplementary Material). We refer the reader to prior work (Zaremba & Sutskever,
2015; Williams, 1992) for the full derivation of the gradients. Here, we directly report the partial
derivatives and their interpretation. The derivatives w.r.t. parameters are:

∂Lθ
∂θ

=
∑
t

∂Lθ
∂ot

∂ot
∂θ

(10)

where ot is the input to the softmax as in Equation 5. The gradient of the loss Lθ with respect to ot
is given by:

∂Lθ
∂ot

= (r(wg1 , . . . , w
g
T)− r̄t+1)

(
pθ(wt+1|wgt ,ht+1, ct)− 1(wgt+1)

)
, (11)

where r̄t+1 is the average reward at time t+ 1.

The interpretation of this weight update rule is straightforward. While Equation 10 is standard back-
propagation (a.k.a. chain rule), Equation 11 is almost exactly the same as the gradient of a multi-
class logistic regression classifier. In logistic regression, the gradient is the difference between the
prediction and the actual 1-of-N representation of the target word:

∂LXENT
θ

∂ot
= pθ(wt+1|wt,ht+1, ct)− 1(wt+1)

Therefore, Equation 11 says that the chosen word wgt+1 acts like a surrogate target for our output
distribution, pθ(wt+1|wgt ,ht+1, ct) at time t. REINFORCE first establishes a baseline r̄t+1, and
then either encourages a word choice wgt+1 if r > r̄t+1, or discourages it if r < r̄t+1. The actual
derivation suggests that the choice of this average reward r̄t is useful to decrease the variance of the
gradient estimator since in Equation 9 we use a single sample from the distribution of actions.

In our implementation, the baseline r̄t is estimated by a linear regressor which takes as input the
hidden states ht of the RNN. The regressor is an unbiased estimator of future rewards since it only
uses past information. The parameters of the regressor are trained by minimizing the mean squared
loss: ||r̄t − r||2. In order to prevent feedback loops, we do not backpropagate this error through the
recurrent network (Zaremba & Sutskever, 2015).

REINFORCE is an elegant algorithm to train at the sequence level using any user-defined reward.
In this work, we use BLEU and ROUGE-2 as reward, however one could just as easily use any other
metric. When presented as is, one major drawback associated with the algorithm is that it assumes
a random policy to start with. This assumption can make the learning for large action spaces very
challenging. Unfortunately, text generation is such a setting where the cardinality of the action set
is in the order of 104 (the number of words in the vocabulary). This leads to a very high branching
factor where it is extremely hard for a random policy to improve in any reasonable amount of time.
In the next section we describe the MIXER algorithm which addresses these issues, better targeting
text generation applications.

3.2.2 MIXED INCREMENTAL CROSS-ENTROPY REINFORCE (MIXER)

The MIXER algorithm borrows ideas both from DAGGER (Ross et al., 2011) and DAD (Venkatra-
man et al., 2015; Bengio et al., 2015) and modifies the REINFORCE appropriately. The first key
idea is to change the initial policy of REINFORCE to make sure the model can effectively deal
with the large action space of text generation. Instead of starting from a poor random policy and
training the model to converge towards the optimal policy, we do the exact opposite. We start from
the optimal policy and then slowly deviate from it to let the model explore and make use of its own
predictions. We first train the RNN with the usual cross-entropy loss for NXENT epochs using the

7

Under review as a conference paper at ICLR 2016

h2 = �✓(;, h1)

p✓(w|;, h1)

XENT

h1

;

w2

sampler sampler
wg

2
p✓(w|wg

2 , h2) wg
3

BLEU

[wg
1 , . . . , wg

T]

[w1, . . . , wT]

h3 = �✓(w
g
2 , h2)

Figure 4: Illustration of MIXER. In the first s unrolling steps (here s = 1), the network resembles a
standard RNN trained by XENT. In the remaining steps, the input to each module is a sample from
the distribution over words produced at the previous time step. Once the end of sentence has been
reached (or the maximum sequence length), a reward is computed, e.g., BLEU. REINFORCE is
then used to back-propagate the gradients, even through the sequence of samplers. We employ an
annealing schedule on s, starting with s equal to the maximum sequence length T and finishing with
s = 1.

Data: a set of sequences with their corresponding context.
Result: RNN optimized for generation.
Initialize RNN at random and set NXENT, NXE+R and ∆;
for s = T , 1, −∆ do

if s == T then
train RNN for NXENT epochs using XENT only;

else
train RNN for NXE+R epochs. Use XENT loss in the first s steps, and REINFORCE (sampling from
the model) in the remaining T − s steps;

end
end

Algorithm 1: MIXER pseudo-code.

ground truth sequences. This ensures that we start off with a much better policy than random be-
cause now the model can focus on a good part of the search space. This can be better understood by
comparing the perplexity of a language model that is randomly initialized versus one that is trained.
Perplexity is a measure of uncertainty of the prediction and, roughly speaking, it corresponds to the
average number of words the model is ‘hesitating’ about when making a prediction. A good lan-
guage model trained on one of our datasets has perplexity of 50, whereas a random model is likely
to have perplexity close to the size of the vocabulary, which is about 10000.

The second idea is to introduce model predictions during training with an annealing schedule in
order to gradually teach the model to produce stable sequences. Let T be the length of the sequence.
After the initial NXENT epochs, we continue training the model for NXE+R epochs, such that, for
every sequence we use the XENT loss for the first (T −∆) steps, and the REINFORCE algorithm
for the remaining ∆ steps. In our experiments ∆ is typically set to two or three. Next we anneal
the number of steps for which we use the XENT loss for every sequence to (T − 2∆) and repeat the
training for another NXE+R epochs. We repeat this process until only REINFORCE is used to train
the whole sequence. See Algorithm 1 for exact details.

We call this algorithm Mixed Incremental Cross-Entropy Reinforce (MIXER) because we combine
both XENT and REINFORCE, and we use incremental learning (a.k.a. curriculum learning). The
overall algorithm is illustrated in Figure 4. By the end of training, the model can make effective use
of its own predictions, consistently to its use at test time.

4 EXPERIMENTS

In all our experiments, we train conditional RNNs by unfolding them up to a certain maximum
length. We chose this length to cover about 95% of the target sentences in the datasets we consider.
The remaining sentences are cropped to the chosen maximum length. For training, we use stochastic
gradient descent with mini-batches of size 32 and we reset the hidden states at the beginning of

8

Under review as a conference paper at ICLR 2016

each sequence. Before updating the parameters we re-scale the gradients if their norm is above
10 (Mikolov et al., 2010).

For each task all training methods use the same architecture. We search over the values of other
hyper-parameter, such as the initial learning rate, the various scheduling parameters, number of
epochs, etc., using a separate validation set. We then take the model that performed best on the
validation set and compute BLEU or ROUGE score on the test set. In the following sections we
report results on the test set only. Greedy generation is performed by taking the most likely word at
each time step.

4.1 TEXT SUMMARIZATION

For the summarization task, we only consider the problem of abstractive summarization, where,
given a piece of “source” text, we aim at generating its summary (the “target” text). The dataset
we use to train and evaluate our models consists of a subset of the Gigaword corpus (Graff et al.,
2003) as described in Rush et al. (2015). This is a collection of news articles taken from different
sources over the past two decades. Our version is organized as a set of example pairs, where each
pair is composed of the first sentence of a news article (the source sentence) and the headline of the
corresponding news article (the target sentence). The summarization task then reduces to generating
the target sentence given the source sentence. We apply the same pre-processing described in (Rush
et al., 2015), which consists of lower-casing and removal of very infrequent words. Infrequent words
are mapped to a special token denoted by “<unk>”. There are 12321 unique words in the source
dictionary and 6828 unique words in the target dictionary. The number of sample pairs in the training
set is 179414, 22568 in the validation set, and 22259 in the test set. The average sequence length of
the target headlines is about 10. We considered sequences up to 15 words to comply with our initial
constraint of covering about 95% of the data.

Our generative model is a conditional Elman RNN with 128 hidden units, where the conditioning is
provided by a convolutional attention module similar to the one described in (Rush et al., 2015). The
words in the source context are embedded and averaged over windows of size 5, yielding vectors st.
Then, the actual context vector ct is computed as a weighted sum of these st, where the weights are
computed via a softmax on the dot products between the current hidden state ht and the vectors st
themselves, a mechanism known as attention (Bahdanau et al., 2015). We also tried LSTMs as our
generative model for this task, however they did not improve performance. We conjecture that this
might be due to the fact that the target sentences in this dataset are rather short.

4.2 MACHINE TRANSLATION

For the translation task, we chose the same model architecture as for the summarization task, except
that the Elman RNN is replaced by an LSTM with 256 hidden units. We use data from the German-
English machine translation track of the IWSLT 2014 evaluation campaign (Cettolo et al., 2014).
The corpus consists of sentence-aligned subtitles of TED and TEDx talks. We pre-process the
training data using the tokenizer of the Moses toolkit (Koehn et al., 2007) and remove any casing.
The training data comprises about 160000 sentences where the average English sentence is 17.5
words long and the average German sentence is 18.5 words long. In order to retain at least 95%
of this data, we unrolled our RNN for 25 steps. We concatenated dev2010 and dev2012 to form a
validation set of 2052 sentences. The test set is a combination of tst2010, tst2011 and tst2012 and it
contains 4698 sentences. The English dictionary has 23328 words while the German dictionary has
32964 words.

4.3 IMAGE CAPTIONING

For the image captioning task, we use the MSCOCO dataset (Lin et al., 2014). We use the entire
training set provided by the authors, which consists of around 80k images. We then took the original
validation set (consisting of around 40k images) and randomly sampled (without replacement) 5000
images for validation and another 5000 for test. There are 5 different captions for each image. At
training time we sample one of these captions, while at test time we report the maximum BLEU
score across the five captions.

9

Under review as a conference paper at ICLR 2016

TASK XENT DAD E2E MIXER
summarization 13.01 12.18 12.78 16.22
translation 17.74 20.12 17.77 20.73
image captioning 27.8 28.16 26.42 29.16

Figure 5: Left: BLEU-4 (translation and image captioning) and ROUGE-2 (summarization) scores
using greedy generation on the three tasks we considered. Right: Relative gains produced by DAD,
E2E and MIXER on the three tasks. The relative gain is computed as the ratio between the score of
a model over the score of the reference XENT model on the same task. The horizontal line indicates
the performance of the XENT baseline.

For this task, the context is represented by 1024 features extracted by a Convolutional Neural Net-
work (CNN) trained on the Imagenet dataset (Deng et al., 2009); we do not back-propagate through
these features. We use a similar experimental set up described by Bengio et al. (2015). The RNN
is a single layer LSTM with 512 hidden units and the image features are provided to the generative
model as the first word in the sequence. We perform minimal pre-processing of the text data. This
includes lower-casing all the words and removing all the words which appear less than 3 times in
the training corpus. As a result the total number of unique words in our dataset is 10012. Keeping
in mind the 95% rule, we unroll the RNN for 15 steps.

4.4 RESULTS

In order to validate MIXER, we compute BLEU score on the machine translation and image cap-
tioning task, and ROUGE on the summarization task. For instance, for every document in the test
set of the summarization task, we predict the headline and then compute ROUGE with respect to the
ground truth title. The input provided to the system is only the context and the beginning of sentence
token. We apply the same protocol to the baseline methods as well. The scores on the test set are
reported in Figure 5. We observe that MIXER produces the best generations. MIXER improves
generation over XENT by one to three points across all the different tasks we considered.

Unfortunately the E2E approach did not prove to be very effective instead. Training at the sequence
level and directly optimizing for testing score yields better generations than turning a sequence of
discrete decisions into a differentiable process amenable to standard back-propagation of the error.
Finally, DAD is usually better than the XENT, but not as good as MIXER.

Figure 6: Test score (ROUGE for summarization and BLEU for machine translation and image
captioning) as a function of the number of hypothesis k in the beam search. Beam search always
improves performance, although the amount depends on the task. The dark line shows the perfor-
mance of MIXER using greedy generation, while the gray line shows MIXER using beam search
with k = 10.

10

Under review as a conference paper at ICLR 2016

Overall, these experiments demonstrate the importance of optimizing for the metric used at test time.
In summarization for instance, XENT and MIXER trained with ROUGE achieve a poor performance
in terms of BLEU (8.16 and 5.80 versus 9.32 of MIXER trained with BLEU); likewise, MIXER
trained with BLEU does not achieve as good ROUGE score as a MIXER optimizing ROUGE at
training time as well (15.1 versus 16.22, see also Figure 9 in Supplementary Material).

Next, we experimented with beam search. The results in Figure 6 suggest that all methods, including
MIXER, improve the quality of their generation by using beam search. However, the extent of the
improvement is very much task dependent. We observe that the greedy performance of MIXER (i.e.,
without beam search) cannot be even matched by baselines using beam search in two out of the three
tasks. Moreover, in this setting, MIXER is several times faster since it relies only on greedy search.

It is worth mentioning that the REINFORCE baseline did not work for these applications. Explo-
ration from a random policy has too little chance of success. We do not report it since we were never
able to make it converge within a reasonable amount of time. Using the hybrid XENT-REINFORCE
loss without incremental learning is also insufficient to make training take off from random chance.
In order to gain some insight on what kind of schedule works, we report in Table 2 of Supplementary
Material the best values we found after grid search over the hyper-parameters of MIXER. Finally,
we report some examples of generations in Figure 8 of Supplementary Material, showing that also
qualitatively MIXER generally produces better generations.

5 CONCLUSIONS

Our work is motivated by two major deficiencies in training the current generative models for text
generation: exposure bias and a loss which does not operate at the sequence level. Reinforcement
learning is a framework that can address these issues. First, at training time the model is used to
generate an entire sequence of actions. Second, the reward does not need to factor over individual
words nor does it need to be differentiable. Therefore, we can easily and directly operate at the
sequence level, generate at training time and optimize our model towards any desired metric, such
as BLEU and ROUGE. One challenge with reinforcement learning is that it struggles with very large
action spaces such as for text generation.

The algorithm we propose, MIXER, deals with this issue and enables successful training of rein-
forcement learning models for text generation. We achieve this by replacing the initial random pol-
icy with the optimal policy of a cross-entropy trained model and by gradually exposing the model
more and more to its own predictions in an incremental learning framework.

Our results show that MIXER outperforms three strong baselines for greedy generation and it is very
competitive with beam search. The approach we propose is agnostic to the underlying model or the
form of the reward function.

In future work we would like to design better estimation techniques for the average reward r̄t,
because poor estimates can lead to slow convergence of both REINFORCE and MIXER. Finally,
our training algorithm relies on a single sample while it would be interesting to investigate the effect
of more comprehensive search methods at training time.

ACKNOWLEDGMENTS

The authors would like to thank David Grangier, Tomas Mikolov, Leon Bottou, Ronan Collobert
and Laurens van der Maaten for their insightful comments. We also would like to thank Alexander
M. Rush for his help in preparing the data set for the summarization task.

REFERENCES

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and
translate. In ICLR, 2015.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Scheduled sampling for sequence prediction with
recurrent neural networks. In NIPS, 2015.

11

Under review as a conference paper at ICLR 2016

Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., , and Federico, M. Report on the 11th iwslt
evaluation campaign. In Proc. of IWSLT, 2014.

Daume III, H., Langford, J., and Marcu, D. Search-based structured prediction as classification.
Machine Learning Journal, 2009.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and Fei-Fei, L. Imagenet: a large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition, 2009.

Elman, Jeffrey L. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

Graff, D., Kong, J., Chen, K., and Maeda, K. English gigaword. Technical report, 2003.

Kneser, Reinhard and Ney, Hermann. Improved backing-off for M-gram language modeling. In
Proc. of the International Conference on Acoustics, Speech, and Signal Processing, pp. 181–184,
May 1995.

Koehn, Philipp, Hoang, Hieu, Birch, Alexandra, Callison-Burch, Chris, Federico, Marcello,
Bertoldi, Nicola, Cowan, Brooke, Shen, Wade, Moran, Christine, Zens, Richard, Dyer, Chris,
Bojar, Ondrej, Constantin, Alexandra, and Herbst, Evan. Moses: Open source toolkit for statisti-
cal machine translation. In Proc. of ACL Demo and Poster Sessions, Jun 2007.

Liang, Percy, Bouchard-Côté, Alexandre, Taskar, Ben, and Klein, Dan. An end-to-end discrimina-
tive approach to machine translation. In acl-coling2006, pp. 761–768, Jul 2006.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., and Zitnick, C.L.
Microsoft coco: Common objects in context. Technical report, 2014.

McAllester, D., Hazan, T., and Keshet, J. Direct loss minimization for structured prediction. In
NIPS, 2010.

Mikolov, T., Karafit, M., Burget, L., Cernock, J., and Khudanpur, S. Recurrent neural network based
language model. In INTERSPEECH, 2010.

Morin, F. and Bengio, Y. Hierarchical probabilistic neural network language model. In AISTATS,
2005.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.J. Bleu: a method for automatic evaluation of
machine translation. In ACL, 2002.

Ross, S., Gordon, G.J., and Bagnell, J.A. A reduction of imitation learning and structured prediction
to no-regret online learning. In AISTATS, 2011.

Rosti, Antti-Veikko I, Zhang, Bing, Matsoukas, Spyros, and Schwartz, Richard. Expected bleu
training for graphs: Bbn system description for wmt11 system combination task. In Proc. of
WMT, pp. 159–165. Association for Computational Linguistics, July 2011.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. Learning internal representations by back-
propagating errors. Nature, 323:533–536, 1986.

Rush, A.M., Chopra, S., and Weston, J. A neural attention model for abstractive sentence summa-
rization. In EMNLP, 2015.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc. Sequence to sequence learning with neural networks.
In Proc. of NIPS, 2014.

Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Introduction. MIT Press, 1988.

Venkatraman, A., Hebert, M., and Bagnell, J.A. Improving multi-step prediction of learned time
series models. In AAAI, 2015.

Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Zaremba, W. and Sutskever, I. Reinforcement learning neural turing machines. Technical report,
2015.

12

Under review as a conference paper at ICLR 2016

6 SUPPLEMENTARY MATERIAL

6.1 MODELS

Input: model pθ, beam size k
Result: sequence of words [wg1 , w

g
2 , . . . , w

g
n]

empty heaps {Ht}t=1,...T ;
an empty hidden state vector h1;
H1.push(1, [[∅],h1]);
for t← 1 to T − 1 do

for i← 1 to min(k,#Ht) do
(p, [[w1, w2, . . . , wt],h])← Ht.pop();
h′ = φθ(w,h) ;
for w′ ← k-most likely words w′ from pθ(w

′|wt,h) do
p′ = p ∗ pθ(w′|w,h);
Ht+1.push(p′, [[w1, w2, . . . , wt, w

′],h′]);
end

end
end
(p, [[w1, w2, . . . , wT],h])← HT .pop();
Output: [w1, w2, . . . , wT]

Algorithm 2: Pseudo-code of beam search with beam size k.

Time

w

w0 w1

w00 w01 w10 w11

w000 w001 w010 w011 w100 w101 w110 w111

w... w... w... w... w... w... w... w... w... w... w... w... w... w... w... w...

Training with exposure bias
w

w0 w1

w00 w01 w10 w11

w000 w001 w010 w011 w100 w101 w110 w111

w... w... w... w... w... w... w... w... w... w... w... w... w... w... w... w...

w000 w001 w010 w011 w100 w101 w110 w111

w... w... w... w... w... w... w... w... w... w... w... w... w... w... w... w...

Training in expectation (Reinforce)

Figure 7: Search space for the toy case of a binary vocabulary and sequences of length 4. The trees
represent all the 24 possible sequences. The solid black line is the ground truth sequence. (Left)
Greedy training such as XENT optimizes only the probability of the next word. The model may
consider choices indicated by the green arrows, but it starts off from words taken from the ground
truth sequence. The model experiences exposure bias, since it sees only words branching off the
ground truth path; (Right) REINFORCE and MIXER optimize over all possible sequences, using
the predictions made by the model itself. In practice, the model samples only a single path indicated
by the blue solid line. The model does not suffer from exposure bias; the model is trained as it is
tested.

6.2 EXPERIMENTS

TASK NXENT NXE+R ∆

summarization 20 5 2
machine translation 25 5 3
image captioning 20 5 2

Table 2: Best scheduling parameters found by hyper-parameter search of MIXER.

13

Under review as a conference paper at ICLR 2016

CONTEXT: masked gunmen opened fire on a palestinian minister and a top economic official in a jenin restaurant
wednesday , the latest in a series attacks on palestinian officials in the increasingly lawless west bank

GROUND TRUTH: palestinian cabinet minister survives restaurant shooting
XENT: gunmen kill palestinian minister
DAD: gunmen kill palestinian , top official in west bank
E2E: gunmen kill palestinian , palestinian minister
MIXER: gunmen kill palestinian minister in jenin

CONTEXT: a chinese government official on sunday dismissed reports that the government was delaying the issuing
of third generation -lrb- #g -rrb- mobile phone licenses in order to give a developing <unk> system an
advantage

GROUND TRUTH: foreign phone operators to get equal access to china ’s #g market
XENT: china dismisses report of #g mobile phone phone
DAD: china denies <unk> <unk> mobile phone licenses
E2E: china ’s mobile phone licenses delayed
MIXER: china official dismisses reports of #g mobile licenses

CONTEXT: greece risks bankruptcy if it does not take radical extra measures to fix its finances , prime minister
george papandreou warned on tuesday , saying the country was in a ‘‘ wartime situation

GROUND TRUTH: greece risks bankruptcy without radical action
XENT: greece warns <unk> measures to <unk> finances
DAD: greece says no measures to <unk> <unk>
E2E: greece threatens to <unk> measures to <unk> finances
MIXER: greece does not take radical measures to <unk> deficit

CONTEXT: the indonesian police were close to identify the body parts resulted from the deadly explosion in front
of the australian embassy by the dna test , police chief general <unk> <unk> said on wednesday

GROUND TRUTH: indonesian police close to <unk> australian embassy bomber
XENT: indonesian police close to <unk>
DAD: indonesian police close to <unk>
E2E: indonesian police close to monitor deadly australia
MIXER: indonesian police close to <unk> parts of australian embassy

CONTEXT: hundreds of catholic and protestant youths attacked security forces with <unk> bombs in a flashpoint
area of north belfast late thursday as violence erupted for the second night in a row , police said

GROUND TRUTH: second night of violence erupts in north belfast
XENT: urgent hundreds of catholic and <unk> <unk> in <unk>
DAD: hundreds of belfast <unk> <unk> in n. belfast
E2E: hundreds of catholic protestant , <unk> clash with <unk>
MIXER: hundreds of catholic <unk> attacked in north belfast

CONTEXT: uganda ’s lord ’s resistance army -lrb- lra -rrb- rebel leader joseph <unk> is planning to join his
commanders in the ceasefire area ahead of talks with the government , ugandan army has said

GROUND TRUTH: rebel leader to move to ceasefire area
XENT: uganda ’s <unk> rebel leader to join ceasefire
DAD: ugandan rebel leader to join ceasefire talks
E2E: ugandan rebels <unk> rebel leader
MIXER: ugandan rebels to join ceasefire in <unk>

CONTEXT: a russian veterinary official reported a fourth outbreak of dead domestic poultry in a suburban
moscow district sunday as experts tightened <unk> following confirmation of the presence of the
deadly h#n# bird flu strain

GROUND TRUTH: tests confirm h#n# bird flu strain in # <unk> moscow <unk>
XENT: russian official reports fourth flu in <unk>
DAD: bird flu outbreak in central china
E2E: russian official official says outbreak outbreak outbreak in <unk>
MIXER: russian official reports fourth bird flu

CONTEXT: a jewish human rights group announced monday that it will offer <unk> a dlrs ##,### reward for
information that helps them track down those suspected of participating in nazi atrocities during
world war ii

GROUND TRUTH: jewish human rights group offers reward for information on nazi suspects in lithuania
XENT: jewish rights group announces <unk> to reward for war during world war
DAD: rights group announces <unk> dlrs dlrs dlrs reward
E2E: jewish rights group offers reward for <unk>
MIXER: jewish human rights group to offer reward for <unk>

CONTEXT: a senior u.s. envoy reassured australia ’s opposition labor party on saturday that no decision
had been made to take military action against iraq and so no military assistance had been sought
from australia

GROUND TRUTH: u.s. envoy meets opposition labor party to discuss iraq
XENT: australian opposition party makes progress on military action against iraq
DAD: australian opposition party says no military action against iraq
E2E: us envoy says no decision to take australia ’s labor
MIXER: u.s. envoy says no decision to military action against iraq

CONTEXT: republican u.s. presidential candidate rudy giuliani met privately wednesday with iraqi president
jalal talabani and indicated that he would keep a u.s. presence in iraq for as long as necessary ,
campaign aides said

GROUND TRUTH: giuliani meets with iraqi president , discusses war
XENT: <unk> meets with president of iraqi president
DAD: republican presidential candidate meets iraqi president
E2E: u.s. president meets with iraqi president
MIXER: u.s. presidential candidate giuliani meets with iraqi president

Figure 8: Examples of greedy generations after conditioning on sentences from the test summariza-
tion dataset. The ”<unk>” token is produced by our tokenizer and it replaces rare words.

14

Under review as a conference paper at ICLR 2016

Figure 9: Relative gains on summarization with respect to the XENT baseline. Left: relative BLEU
score. Right: relative ROUGE-2. The models are: DAD, E2E, MIXER trained for the objective
used at test time (method proposed in this paper), and MIXER trained with a different metric. When
evaluating for BLEU, the last column on the left reports the evaluation of MIXER trained using
ROUGE-2. When evaluating for ROUGE-2, the last column on the right reports the evaluation of
MIXER trained using BLEU.

6.3 NOTES

The current version of the paper updates the first version uploaded on arXiv as follows:

• on the summarization task, we report results using both ROUGE-2 and BLEU to demon-
strate that MIXER can work with any metric.

• on machine translation and image captioning we use LSTM instead of Elman RNN to
demonstrate the MIXER can work with any underlying parametric model.

• BLEU is evaluated using up to 4-grams, and it is computed at the corpus level (except in
the image captioning case) as this seems the most common practice in the summarization
and machine translation literature.

15

	1 Introduction
	2 Related Work
	3 Models
	3.1 Word-Level Training
	3.1.1 Cross Entropy Training (XENT)
	3.1.2 Data As Demonstrator (DAD)
	3.1.3 End-to-End BackProp (E2E)

	3.2 Sequence Level Training
	3.2.1 REINFORCE
	3.2.2 Mixed Incremental Cross-Entropy Reinforce (MIXER)

	4 Experiments
	4.1 Text Summarization
	4.2 Machine Translation
	4.3 Image Captioning
	4.4 Results

	5 Conclusions
	6 Supplementary Material
	6.1 Models
	6.2 Experiments
	6.3 Notes

