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ABSTRACT
Database benchmarks are an important tool for database re-
searchers and practitioners that ease the process of making
informed comparisons between different database hardware,
software and configurations. Large scale web services such
as social networks are a major and growing database appli-
cation area, but currently there are few benchmarks that
accurately model web service workloads.

In this paper we present a new synthetic benchmark called
LinkBench. LinkBench is based on traces from production
databases that store “social graph” data at Facebook, a ma-
jor social network. We characterize the data and query
workload in many dimensions, and use the insights gained to
construct a realistic synthetic benchmark. LinkBench pro-
vides a realistic and challenging test for persistent storage
of social and web service data, filling a gap in the available
tools for researchers, developers and administrators.

1. INTRODUCTION
Much of the data powering Facebook is represented as

a social graph, comprised of people, pages, groups, user-
generated content and other entities interconnected by edges
representing relationships. Such graph data models have be-
come popular as sophisticated social web services proliferate.

At Facebook, persistent storage for the social graph is
provided by an array of MySQL[1] databases called User
Databases (UDBs). Facebook’s memcached and TAO cache
clusters [2, 3] cache large amounts of UDB data in memory.
The vast majority of read requests hit in the cache, so the
UDBs receive a production workload comprised of reads that
miss the caches and all writes.

The Database Enginering team at Facebook has a growing
need for benchmarks that reflect this database workload to
assist with development, testing and evaluation of alterna-
tive database technologies. Facebook’s software architecture
abstracts storage backends for social graph data, allowing
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alternative database systems to be used.
Given the scale of Facebook’s infrastructure, any changes

in technology require careful evaluation and testing. For ex-
ample, in the past we performed a thorough evaluation of
HBase [4] as an alternative social graph storage backend.
Facebook already uses HBase for major applications includ-
ing its messaging backend [5]. Its benefits include easier load
balancing, failover and strong random write performance.
To accurately compare performance of MySQL and HBase,
we mirrored part of the production workload on “shadow”
clusters running our tuned and enhanced versions of MySQL
and HBase. Contrary to expectation, MySQL slightly out-
performed HBase in latency and throughput while using a
fraction of the CPU and I/O capacity. Further experiment
details are in Appendix A

The UBase benchmark effort took a lot of time and hard
work to run and we want a more efficient way to evalu-
ate alternative database solutions. Assessing new database
systems will be crucial in the near future due to hardware
trends such as solid state storage and increasing core counts.
These new technologies could allow impressive performance
gains, but systems well-suited to the previous bottleneck of
rotating disks cannot always exploit the I/O capacity of solid
state drives, or the processing power of many-core. Signifi-
cant efforts are underway in industry and academia to better
exploit this new generation of hardware, including key-value
stores such as FlashStore [6], SILT [7], embedded databases
such as WiredTiger [8] and new storage engines for relational
databases such as TokuDB [9].

Many of these developments are promising, as are ongo-
ing efforts to improve and adapt current technologies such as
MySQL/InnoDB. We intend to conduct ongoing benchmark-
ing on new and existing systems to guide decisions about the
future of social graph storage at Facebook. Part of this plan
involves development of a database benchmark that closely
approximates our production workloads

The contributions of this paper are:

• A detailed characterization of the Facebook social graph
workload using traces collected from production databases.

• LinkBench, an open-source database benchmark1 that
is closely based on our production workloads, and cus-
tomizable for variant and alternative workloads.

1To be made available at https://github.com/facebook/



2. RELATED WORK
There are a number of existing widely accepted bench-

marks for database systems, some of which have been devel-
oped in industry and some in academia.

Mainstream database benchmarks do not closely match
the Facebook UDB workload, so are of limited use. Transac-
tional benchmarks such as TPC-C [10] are typically based on
business transaction-processing workloads and extensively
exercise the transaction handling properties required to main-
tain ACID. Analytic benchmarks such as TPC-H [11] focus
on complex queries that involve large table scans, joins and
aggregation. The Facebook UDB workload places different
demands on database systems from either type of bench-
mark. Queries are fairly simple and short-lived with no full
table scans or joins. While some ACID properties are re-
quired, transactions are simple and short-lived: the work-
load could be served by non-SQL database systems without
general-purpose transactions.

Existing and proposed graph [12, 13] and object database
benchmarks [14] operate on graph-structured data, not dis-
similar to the social graph. These benchmarks have a signif-
icant focus on multi-hop traversals and other complex graph
analysis operations, unlike the simpler retrieval operations
that comprise the bulk of the Facebook workload.

The Yahoo Cloud Services Benchmark [15] is a bench-
mark designed to measure performance of different database
systems, particularly distributed “cloud” database systems.
The Facebook workload has similarities to the YSCB bench-
mark, but the data, supported operations, and workload mix
are different. LinkBench’s workload and data model is also
grounded directly in measurements from production systems
to increase our confidence in the relevance of the benchmark.
Additionally, we are specifically interested in performance
of the persistent storage layer because we handle row-level
caching externally to the database. This focus simplifies un-
derstanding performance properties of design choices such
as disk storage layout, without confounding factors arising
from other design and implementation choices in a cloud
database’s caching and replication design.

3. WORKLOAD CHARACTERIZATION
We aim to construct a synthetic benchmark which can

predict with reasonable accuracy the performance of a data
storage layer for the Facebook production workload, and
more generally for other web services that use social or
graph-structured data. A synthetic benchmark has advan-
tages in comparison to alternative approaches, such as cap-
turing and replaying traces. We can share the benchmark
with the broader research community without any risk of
compromising users’ privacy. It also allows the benchmark
to be parameterized, allowing the simulated data and work-
load to be varied to test systems of different scales, and to
explore different scenarios and workloads.

This section presents a characterization of Facebook’s so-
cial graph workload, identifying key characteristics that we
will replicate in a synthetic benchmark.

3.1 Social Graph Data Model
The social graph at Facebook comprises many objects, the

nodes in the graph, and associations, directed edges in the
graph. There are many different types of objects and asso-
ciations. Examples of entities represented as objects include
status updates, photo albums, or photos/video metadata:

id int64 unique identifier
type int32 type of object
version int64 tracks version of object
update time int32 last modification (UNIX timestamp)
data text data payload

(a) Object (graph node). id is unique key.

id1, id2 int64 ids of edge’s endpoints
atype int64 type of the association
visibility int8 visibility mode of the edge
timestamp int32 a client-provided sort key
data varchar small additional data payload

(b) Association (graph edge). (id1, atype, id2) is unique key.

Table 1: Database schema for social graph storage.

typically entities which have some associated data. Associ-
ations are a lightweight way to represent relationships be-
tween objects, for example if a user posted a photo, a user
liked a photo, or if a user is friends with another user.

Table 1 shows the schema used to represent objects and
associations. The data fields are stored as a binary string. A
system at a higher level in the software stack supports richer
data types with per-object-type schemas which can then be
serialized into the data field. The version and update time
fields of the objects are updated with each change to the ob-
ject’s data, with the version incremented and update time
set to the current time. The timestamp field of an associa-
tion is a general-purpose user-defined sort key (often a true
timestamp), where high values are retrieved first. The vis-
ibility field allows data to be hidden without permanently
deleting it, for example to allow a user to temporarily dis-
able their account. Only visible associations are included in
any query results (including counts).

3.2 Sharding and Replication
The entire Facebook graph is far too large to fit on a single

server, so must be split into many shards. The nodes (ob-
jects) in the graph are allocated to shards based on id, with
a function mapping the id to a shard. Associations (edges)
are assigned to shards by applying the same mapping to id1,
meaning that all out-edges for a node are in the same shard.
Client applications have some control over the location of
newly created objects. For example, a new object could be
colocated with a related object (yielding some performance
benefit from locality), or assigned to a random shard. The
number of shards is chosen so that there are many shards
per database instance, allowing rebalancing if necessary.

Each database instance has multiple replicas, with one
master and multiple slaves. Replicas are geographically dis-
tributed, with reads handled from local replicas, which re-
duces latency and inter-datacenter traffic. Maintaining mul-
tiple replicas also allows for manual failover in the event
of node or datacenter outages. All writes are applied syn-
chronously at the master database, and replicated to slaves
asynchronously (but under normal circumstances, quickly).
In the current MySQL/InnoDB system, the data storage
layer supports ACID, so the master MySQL instance has
a fully consistent snapshot at all times. The overall sys-
tem therefore provides timeline consistency [16], which is
stronger than the eventual consistency supported by some
other systems.



3.3 Structure of the Social Graph
One component of a benchmark is a data generator that

can produce synthetic data with similar characteristics to
real data. To understand the salient characteristics of our
real data, such as graph structure and typical record size,
we looked in detail at the data in a single MySQL instance.

Due to some non-uniformity in the data between different
shards, the numbers and charts presented in this section do
not cover the entire data set, but we expect that they are
representative.

3.3.1 Object and Association Types
Figure 1 shows the breakdown of graph data by object

and association type. For both objects and associations we
see that there are a few especially numerous types (where
there are many instances of the type per user), but the tail
of other types makes up a large part of the social graph.

(a) Top 25 object types

(b) Top 100 association types

Figure 1: Top social graph data types ranked by count.
Count is light blue and payload size in dark red. A small
number of object (graph node) and association (graph edge)
types are far more common than the rest, with many in-
stances per user. The “tail” of less common types comprises
a large portion of the social graph.

3.3.2 Payload Data
The mean payload per object is 87.6 bytes, while the av-

erage payload per association is much smaller at 11.3 bytes.
49% of associations have no payload. Figure 2 shows the
overall distributions of data size for objects and associa-
tions. The distributions are similar to log-normal distri-
butions, aside from the significant number of objects and
associations with zero-size payloads. Figure 3 shows similar
distributions for individual object types. This is also true for
associations (not shown due to space limitations), although
many association types always have no payload.

Payload data uses a mix of formats, including text-based
and binary formats. Large payloads are compressed above
the database tier. Compressibility of data affects system
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(a) Object payload size distribution

(b) Association payload size distribution

Figure 2: Payload size distributions. Both follow roughly
log-normal distributions, aside from an additional peak at 0
bytes. In both cases payload sizes cluster within an order of
magnitude around different modes. Histogram buckets are
labeled with the lower bound.

Figure 3: Size histograms for selected object types, illustrat-
ing that size distributions for different types shows roughly
similar patterns with different peaks

Compression ratio
Objects in database 61.3%
Object insert queries from trace 46.0%
Object update queries from trace 67.2%
Associations in database 30.6%
Association insert queries from trace 30.3%
Association update queries from trace 57.5%

Table 2: Compressibility of object payload data from differ-
ent sources. Payload data from a random sample of rows
was concatenated into a single file separated by newlines,
and compressed using bzip2.

performance and file size because we use InnoDB compres-
sion to improve storage efficiency. Compressibility was esti-
mated by sampling data from several sources and compress-
ing with bzip2, an effective but slow compression algorithm.
Results are shown in Table 2. Compressibility varies be-
tween sources, but 60% for objects and 30% for association
payload data are representative compression ratios.

3.3.3 Graph Structure
Understanding certain properties of structure of the social

graph is important in order to generate realistic benchmark
data.



The outdegree distribution for each object is one impor-
tant property. Every object has at least one out-edge, how-
ever there are also out-edges for ids that do not correspond
to objects: some data types are allocated identifiers but are
not represented as objects. Figure 4 shows the outdegree dis-
tribution. We see that the trend is consistent with a pareto
distribution, but with a bulge showing more nodes with out-
degree between 100 and 100, 000 than a pareto distribution.

Figure 4: Distribution of node outdegree with logarithmic
scale.

Previous analysis of online social networks [17, 18] has
reported similar heavy-tailed power-law distributions for so-
cial networks comprised solely of people and relationships
between people. Our results show that a power-law distri-
bution still occurs with the additional variety of nodes and
edges of the full Facebook social graph. We did not analyze
the indegree distribution, as the sharding scheme means that
doing so would have required accessing all database shards.
However, we expect indegree to be correlated with outde-
gree, as many edge types in the social graph are symmetric,
and past work [17] has reported strong correlation between
indegree and outdegree in social networks.

There are many further properties of the social network
graph structure that could be examined, such as cluster-
ing coefficient [19] or community structure [20]. However,
for our purpose of modeling our database workload, it suf-
fices to assume that there is no higher order graph structure
in communities or correlations between properties of neigh-
boring nodes. We believe that, for the operations in our
workload, locality of access for a given id, and the average
result size for range scans capture the main factors influenc-
ing performance of each operation in isolation. There are
certainly patterns of locality in our social network workload
as pages are generated for users and users navigate between
related entities in the social graph. The amount of locality
however, is likely to be relatively small and unpredictable,
since aggressive caching outside of the database will absorb
much of the locality. Since we are not modelling locality, the
structure of the graph becomes less important for database
performance and a generative model that neglects higher or-
der graph structure is sufficient to measure performance of
the storage layer.

3.4 Operation Mix
The set of operations used by the web front end and other

services to access the social graph include standard insert,
update and delete operations to modify data, and variations
on key lookup, range and count queries. The set of opera-
tions covers most of the common access patterns required to
serve data to users and is deliberately kept simple, to allow
easier caching and system implementation2.

2There are features, such as complex search queries, that

Graph Operation Result # Queries

obj get(ot, id) object 45.3M (12.9%)
obj insert(ot, version, time, data) id 9.0M (2.6%)
obj delete(ot, id) - 3.5M (1.0%)
obj update(ot, id, version, time, data) - 25.8M (7.4%)
assoc count(at, id) count 17.1M (4.9%)
assoc range(at, id1, max time, limit) assocs 177.7M (50.7%)
assoc multiget(at, id1, id2 list) assocs 1.8M (0.5%)
assoc insert(at, id1, id2, vis, time, ver-
sion, data)

- 31.5M (9.0%)

assoc delete(atype, id1, id2) - 10.5M (3.0%)
assoc update(atype, id1, id2, vis, time,
version, data)

- 28.1M (8.0%)

Table 3: The set of social graph operations received by
database instance over a six day period. Operation param-
eters and return values are shown, ot stands for object type
and at stands for association type. Other parameters corre-
spond to fields described in Section 3.1.

The queries issued to databases are classified into a few
basic operations, shown in Table 3. These include:

• Point reads for associations and objects identified by
primary key, with the option of batching multiple as-
sociation reads batched into a single query.

• Simple create, delete and update operations for asso-
ciations and objects identified by primary key.

• Association range queries for a given id and type and
a timestamp range, ordered from latest to oldest. For
example, a range query might obtain the node ids for
the most recent comment on a post. A row limit, N ,
must be specified. The most recent N associations
before the provided timestamp are returned.

• Association count queries, for the number of visible
out-edges of a given type from a given node. For ex-
ample, a count query might count a user’s friends.

To understand the database workload, we collected six
days of traces of all social graph database queries issued
by TAO, the distributed in-memory caching system through
which Facebook’s production web infrastructure accesses the
social graph. We present in this section an analysis of the
high-level trends and patterns.

Table 3 shows a 2.19 : 1 ratio of read to write queries, and
a 3.19 : 1 ratios of association of object queries, with asso-
ciation range queries alone making up half of the workload.
System load varies over time (see Figure 5) with a high base
level and major and minor peaks every day.

# Limit % of range queries
1 0.86%
1000 0.39%
6000 7.44%
10000 91.54%
Other 0.07%

Table 4: Row limit for range queries observed in read work-
load. These statistics are determined by configuration of
TAO cache clusters, rather than inherent in the workload.

Although the workload was fairly balanced between read
and write operations, we saw 40.8 rows read per row written,

cannot be efficiently implemented using this interface, but
in practice are better provided by specialized services.



Figure 5: Temporal variation in number of operations in
workload over time. Top: object operations. Bottom: asso-
ciation operations.

% of range
# rows queries
0 26.6%
1 45.4%
2 5.4%
3-5 6.4%
6-10 4.2%
11-20 4.2%
21-50 3.5%
51-100 1.6%
101-500 2.0%
501-1000 0.4%
1001-10000 0.3%
>10000 0.01%

(a) Range scan row count distri-
bution

% of assoc.
# keys get queries
1 64.6%
2 8.8%
3 3.1%
4 1.9%
5 1.6%
6 1.4%
7 10.6%
8 0.8%
9 7.1%
10 0.2%

(b) Lookup key count for multi-
get queries.

Table 5: Rows read for social graph edge read queries.

since write operations only affect a single row but many read
operations return multiple rows. The workload is surpris-
ingly read heavy given that all writes hit the databases, but
cache clusters intercept most reads. Most range scans had a
large upper limit on the result size, shown in Table 4. The
large limits are due to aggressive caching that prefetches and
caches ranges of associations. Analysis of read logs showed
that the mean range scan result, ignoring limits, was 21.9
rows. Range limits only slightly reduce this: uniform limits
of of 10000 or 6000 would result in 20.9 or 20.1 rows respec-
tively. The average number of keys per association get query
was 2.62. Table 5 shows distributions for both.

Most range queries were for the n most recent items:
0.96% of range scan queries specified a maximum timestamp,
typically because they were trying to fetch older history that
was not retrieved in the first query.

3.5 Access Patterns and Distributions
In database deployments, some “hot” data is far more fre-

quently accessed than other data, while there is often also
“cold” data that is infrequently accessed, if at all. Stated
differently, some rows of data are orders of magnitude more
likely to be read or written than others. When construct-

(a) Object fetches

(b) Object updates

Figure 6: Distribution of accesses for different kinds of oper-
ations based on id of object. Pareto distributions are shown
for comparison. Distributions are also shown excluding the
two top types for reads and writes, which exhibited unusual
behavior.

ing a synthetic benchmark, it is important to have realistic
data access patterns because the interaction between pat-
terns of hot and cold rows and a database system’s caches
is an important factor in overall performance.

(a) association reads (get, count
and range queries)

(b) association writes (update,
insert and delete queries)

Figure 7: Distribution of accesses for different kinds of op-
erations based on id1/type of association.

In order to do an initial characterization of the distribu-
tion of “hotness” for data, we examined the distribution of
operations between different node ids. We aggregated all
different varieties of reads and writes. Different categories
of operation show similar skewed access distributions, where
the majority of items are rarely accessed, but a small minor-
ity are read and written frequently. These patterns occur
even in spite of the extensive caching of data outside of the
database. Figure 6 and Figure 7 show the access distribu-
tions for objects and associations respectively. A power-law
distribution, such as the pareto distribution, looks to be a
reasonable approximation. We examined several of the most
popular association and object types and determined that
the power law pattern remains when looking at individual
data types. Figure 8 shows the access distribution for the
like association, one of the top association types.

In order to produce a realistic benchmark, we want to
understand more accurately the causes of access patterns.
We looked into a number of possibilities to better inform
the design of LinkBench:
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Figure 8: Distribution of reads for the “like” association
showing that power law behavior is still present for indi-
vidual association types.
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Figure 10: Workload metrics for top object types, illustrat-
ing the disparity in data access patterns for different types.

• Some of the variation may be explained by different
access patterns for different types. For example, a per-
son’s profile will be more frequently accessed than any
particular post. We discuss this in Section 3.6.

• The “popularity” of a node in the graph: for exam-
ple, a post that has been shared by many people, or
a page for a popular figure with many followers will
be more frequently accessed. Objects with high de-
grees are more “discoverable” and more likely to be
read, due to the large number of path through the
graph that lead to them. They may also accumulate
more new edges, due to processes such as preferential
attachment that are commonly believed to occur in
social networks[21], where nodes in a graph with high
degrees are more likely to accumulate more connec-
tions to other edges as the graph evolves. We explore
this possibility in Section 3.6.

3.6 Access Patterns by Data Type
Figure 10 illustrates varying access patterns for different

object types, with different types having widely varying ra-
tios of reads to writes. We looked at what fraction of objects
were never accessed, or cold. Overall a large proportion of
objects, 91.3%, are cold data that was never accessed during
the 6 day trace. 95.2% were read-only during that period.
Some types are far more intensely read and written than
other types, with average read and write intensity varying
by two to three orders of magnitude between types.

Access patterns for associations are more complex, be-
cause of the variety of supported operations, and because
range queries return variable numbers of rows. Figure 11
compares metrics between association types. As with ob-
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soc type pair), which are accessed or modified. Overall 3.2% of lists
were modified and 7.8% were accessed.
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Figure 11: Workload metrics for top association types, illus-
trating the disparity in data access patterns.

jects, the workload varies greatly between association types
in composition of queries and frequency of reads and writes.

We looked at what proportion of associations were cold.
Breaking down the associations into lists, identified by a
(id1, assoc type) pair, we saw that 92.2% of these lists were
cold and not the subject of any read or write operations
in 6 day period and 96.6% were not modified. 23.3% of
queried lists were only counted, without any association data
returned. Interestingly, 92.2% of association lists were cold,
but only 74% of association rows were cold. This indicates
a correlation between the length of an association list and
the likelihood of it being accessed.

3.7 Graph Structure and Access Patterns
One important question is whether there is a relationship

between the structure of the graph and the frequency of
access of different nodes and edges in the graph. To investi-
gate, we took a random sample of 1% of the ids with at least
one out-edge in the database, and compared the outdegree
with the number of queries for that id in the trace. Figure 9
shows the results for various classes of queries. There is a
correlation between outdegree and association read queries
(mostly range scans), while there is little correlation for node
read queries, possible because simple object retrievals are
cached more effectively than complex association queries.
Similar patterns can be seen for write queries. This indi-
cates that a realistic benchmark needs to have a query mix
that is biased towards graph nodes with high outdegree.

3.8 Update characterization
The nature of in-place updates may have some impact on

performance of the system, for example causing fragmenta-
tion if data shrinks, or forcing additional page allocations.

Updates to objects always update the version, timestamp
and data fields. Updates to associations often only update
one or two fields, such as the timestamp or the visibility, as
shown in Table 6.

Typically the payload data size only changes by a small
amount, illustrated by Figure 12. For objects, over a third



(a) Object reads (b) Object updates

(c) Association read queries (d) Association insert/delete/update queries

Figure 9: Correlation between social graph node’s outdegree and read/write frequency. The outdegree is correlated with
operations on edges, but not operations on nodes. Jitter added to show density.

Field % Assoc. Updates
Visibility 12.0%
Timestamp 84.4%
Version 98.4%
Data 46.3%

Table 6: Fields modified by association update operations.

of updates do not change the data size, while the majority
of other updates alter it less than 128 bytes. Associations
exhibit a similar pattern. In both cases, when the data size
stays constant it is typically because a data field, such as a
number or other identifier, is modified in such a way that
the length of the representation does not change.
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(b) Association updates

Figure 12: Change in payload data size for update oper-
ations. Most data updates only change the size a small
amount.

4. BENCHMARK DESIGN
In this section we present the LinkBench database bench-

mark, describing the architecture of the system, the con-
figurable building blocks that allow the benchmark to be
customized, and the process of generating a synthetic social
graph and database workload of graph operations.

The benchmark is designed to test performance of a sin-
gle database instance in isolation. We have a client-server
architecture, shown in Figure 13 with the Linkbench client
implemented in Java driving a graph store. We currently
have implemented a MySQL graph store, but any database

LinkBench Driver

Graph 
Store 
Shard

Requester threads

Open Connections

# Graph config
graphsize=1000000
link_types=5
node_med_datasize=97.9
node_datagen=motif
link_med_datasize=6.7
link_datagen=uniform
outlink_dist=zipf
outlink_dist_shape=0.6
…

Configuration # Workload config
requesters=6
requestrate=1000
node_get=12.9%
link_count=4.9%
link_range=50.7%
…
node_read_dist=zipf
node_read_dist_shape=0.7
link_read_dist=zipf
link_read_dist_shape=0.8
...

Probability
Distributions

Data
Generator

Graph Store Adapter

Workload Generator

Figure 13: LinkBench architecture, showing the datastore
under benchmark (which could logically be considered a sin-
gle shard of a larger system), a subset of configuration set-
tings, and the internal components of the LinkBench driver.

system that meets the requirements in Section 4.1 can be
benchmarked. We describe key decisions made in the design
of the client in Section 4.2.

The LinkBench driver operates in two phases. The first
phase populates the graph store by generating and bulk-
loading a synthetic social graph. The generative model used
is described in Section 4.3 and Section 4.4. In the second
phase the driver benchmarks the graph store with a gener-
ated workload of database queries and collects performance
statistics. Generation of the simulated workload is discussed
in Section 4.5 and the metrics collected are discussed in Sec-
tion 4.6. Both phases have many configurable parameters
that can be used to scale up or down the workload, or to
explore workloads with different characteristics.



4.1 LinkBench Graph Store Implementation
LinkBench is designed so that the same benchmark imple-

mentation can be used for many different database systems.
A database can be used as a LinkBench graph store with an
adapter implementing the operations in Table 3.

To ensure comparability of benchmark results, we impose
some constraints on the implementation. The entire social
graph should be stored in persistent storage. Any database
schemas, compression, indices or other configuration or op-
timization should be reported. All writes must be durable,
with data flushed to persistent storage before the operation
completes so that the data can be recovered in the event of a
crash. Any update operations should be atomic and ensure
consistency. For example, in our MySQL benchmark im-
plementation, a separate edge count is updated in the same
atomic transaction as an edge insertion or deletion. Any
weaker ACID properties should be disclosed.

4.2 Tradeoffs in Design of Benchmark Client
In designing the benchmark we kept a balance between re-

alism and simplicity. The preceding analysis of the workload
indicates there are many complex patterns, correlations and
internal variations in our database workload, many of which
have implications for database design and performance. It
is important for us that the benchmark be a reasonably
good predictor of the real-world performance of a database
system, so we must capture some of these features in the
benchmark. However, in some cases we did not try to fully
replicate complex patterns, where it would have required ex-
cessive memory or CPU in the client, where it would have
perturbed performance of the system under test, or led to
an excessively complex benchmark with results difficult to
understand or replicate.

Some important patterns in the workload are data-dependent,
where the structure of the graph affects the queries issued
by the client, for example where nodes with high outdegree
frequently queried. It is not feasible to track this data in
memory for a large database, which presents a challenge in
creating a scalable and realistic benchmark.

LinkBench uses multiple concurrent requesting threads in
order to allow a high throughput of queries and to test
performance of concurrent queries. Sharing state between
these threads complicates scaling and implementation of the
benchmark client, and also complicates horizontal scaling of
the benchmark client across multiple nodes if needed.

For these reasons, we decided to keep the workload gen-
erator stateless with a couple of exceptions, only using con-
figuration parameters and knowledge about how the graph
was generated to make decisions about the next operation to
execute. The statelessness contrasts with real-world clients,
which are stateful: caches cause some temporal anti-locality,
while navigation patterns of users induce some spatial local-
ity, with bursts of activity in sections of the graph. We
believe that the locality effects will be limited and unpre-
dictable due to the aggressive caching, so we do not emulate
them.

4.3 Workload Generator Building Blocks
LinkBench uses a range of configurable and extensible

building blocks so that the benchmark can be tweaked and
customized. The benchmark configuration file contains many
modifiable parameters, and allows different implementations
of these building blocks for graph creation and workload gen-

eration to be swapped in.
LinkBench has a framework for probability distributions,

which are used in many places in the benchmark to generate
random data. Distributions are implemented as Java classes
and include the uniform distribution, the Zipf distribution,
and the log-normal distribution. Wherever a distribution
is used in LinkBench, the implementation and parameters
can be configured. A distribution provides two functions:
a quantile function that allows, for example, calculation of
outdegree of the graph node with the kth highest outdegree
out of n nodes; and a choose function that selects integers in
a range [1, n] with probability weighted by the distribution.

The weighting works such that the lowest keys are most
popular, meaning that popular database rows would be clus-
tered together if the values are used directly as database row
keys. In real data sets, popular data is scattered through-
put the key space. Other benchmarks shuffle popular data
throughout the key space by permuting each key i within the
range of valid keys [1, n] using a permutation function p(i).
Gray suggests multiplying the index by a prime modulo n
to obtain the new key [22]. YCSB [15] generates keys within
a much larger range, and shrinks the range by hashing.

In LinkBench, we want correlated distributions for access
frequency and node outdegree, while generating data in bulk
in primary key order. In order to achieve this p−1(i), the
inverse of the prior permutation, needs to be efficiently com-
putable. Both permutation functions mentioned previously
are difficult to invert, so LinkBench uses a different, invert-
ible, permutation function. It can be given different parame-
ters to alter the permutation, and has low CPU and memory
overhead. If there are n items in the keyspace, we choose
a number k, for example k = 1024. We then fill an array
A with k pseudorandom integers (using a known seed for
reproducibility). If n is divisible by k, then the permutation
is computed as p(i) = ((i+k ·A[i mod k]) mod n), which ro-
tates each set of indices with the same remainder modulo k
in the keyspace. The inverse is easily computable using the
same formula with A[i mod k] negated. For Linkbench, we
generalized the formula for the case where n is not divisible
by k. This method of permuting data can key distribution
sufficiently with limited memory overhead.

LinkBench also has a framework for data generators, which
can fill byte buffers with randomly generated data, useful
when adding payload data for graph nodes and edges. The
main one used in LinkBench is the motif data generator,
which generates a configurable mix of random bytes and re-
peated multi-byte motifs.

4.4 Generative Model for Social Graph
In this section we describe the generative model used to

construct a social graph. Generating random graphs with
structure close to real social networks is challenging and an
active area of research. For the purposes of the benchmark,
we do not need full fidelity to the original graph structure.
Rather, we want a simple, configurable and fast graph gen-
erator give results close to the real social graph in the right
dimension so that it places similar stresses on the database.
The degree distribution of the generated data must be realis-
tic, so that similar numbers of records are scanned by range
queries. However, the community structure of the generated
graph (e.g. the probability of two friends having another mu-
tual friend) is unimportant, as this does not directly affect
the performance of any queries in the workload.



4.4.1 Graph Size
LinkBench can be run with different graph sizes by spec-

ifying the initial node id range. For example, if a range of
[1, 1000001] is specified, then 1000000 nodes and correspond-
ing edges will be bulk loaded. The graph will continue to
expand in the later benchmark phase.

For full-scale benchmarking we use graphs with around 1
billion nodes occupying approximately 1TB using InnoDB
without compression. A social graph of this size can be
generated and loaded by LinkBench in around 12 hours on
a high-end servers with solid state drives thanks to bulk-
loading optimizations such as batch insertions.

4.4.2 Generating Graph Nodes
The simpler part of generating a synthetic social graph

is generating graph nodes (also referred to as objects). We
have simplified the benchmark by only having a single node
type in the graph. The major downside of this is that we
cannot have different types of nodes with different work-
load characteristics. The simplification of the benchmark
implementation is considerable, as without this simplifica-
tion, to select a random node ID of a given type to query
would require the benchmark client to track which parts
of the id space are of which type. This is challenging and
memory-intensive when new IDs are being allocated dur-
ing the benchmark. This is a good compromise, since node
queries are a small portion of the workload compared to edge
queries, and much of the variation in access patterns is cap-
tured by the access distributions used when generating node
queries.

Node payload data is generated using the motif generator
with parameters chosen to get a compression ratio of approx-
imately 60%, similar to the measured compression ratio in
Table 2. The size of the payload is chosen from a configured
probability distribution. We use a log-normal distribution
with a median of 128 bytes.

4.4.3 Generating Graph Edges
Given the varying access patterns for different association

types seen in Section 3.6, we explored the possibility of a
benchmark that incorporated a range of distinct association
types. However, in the end we decided against attempting
to faithfully replicate the diversity of associations, mainly
because we could not justify the additional complexity when
it was possible to capture much variation with a homogenous
model of edges. We support a configurable number of edge
types, but all use the same data and workload generator.

Graph edges, which we term links in the benchmark, are
generated concurrently with graph nodes during bulk load-
ing. We divide the node id space into chunks based on the
id of the source node. The chunks are processed in parallel
to speed loading. The chunks are processed in approximate
order of id, and within each chunk strictly in order of id,
improving the locality of access and speeding up load times.
Loading in primary key order leads to lower fragmentation
for B-tree-based database systems as tree nodes are filled
close to capacity. Over time, as rows are added and re-
moved, fragmentation of the database will tend to increase,
leading to increased storage usage and somewhat degraded
performance as caches can fit fewer rows. Database bench-
markers should be aware of this phenomenon, particularly
when examining storage efficiency.

For each node the steps to generate edges are:

• Choose the outdegree deterministically using a proba-
bility distribution and shuffler. We use the measured
outdegree distribution from Section 3.3.3 directly.

• Divide the outlinks between the different link types in
a round robin fashion, in such a way that the ith type
always has at least as many edges as the i+ 1th type.

• Select the id of target nodes for the jth link of each
link type to be source id + j. This makes it simple
to determine during later workload generation which
graph edges are likely to exist.

• Generate payload data for each edge using the mo-
tif data generator with compression ratio of approxi-
mately 30%, in line with Table 2.

4.5 Generating workload
Our workload generator comprises many threads of exe-

cution, all of which execute the same randomized workload.
Statistics are collected by each thread and then aggregated
at the end of the benchmark.

4.5.1 Node Selection
As discussed previously, some of the most important fea-

tures of the benchmark workload are the access patterns for
different data types and operations: the distribution of reads
and writes between graph nodes and edges. In this section
we discuss the approaches used to select the ids for nodes
used for operations.

The access patterns for node reads, node writes, link reads
and link writes are separately configurable using the previ-
ously described probability distribution framework. We use
the algorithm described by Gray et al. [22] to implement a
Zipf probability distribution that is used for node accesses,
with parameters calculated based on the fitted pareto dis-
tributions in Section 3.5.

The most straightforward access patterns are for node
queries, where only the node id must be chosen. Since we
observed that node query frequency was uncorrelated with
the number of out-edges, we use a different shuffler to that
used to generate outdegree.

For edge queries, we saw a loose correlation between row
hotness and outdegree in the real workload. In order to
simulate this loose correlation two access distributions are
combined: one with the same shuffler as the outdegree distri-
bution, giving a perfect correlation between access frequency
and outdegree, and another with a different shuffler and no
correlation. The distributions are blended by selecting from
the correlated distribution with probability pcorr and the
uncorrelated with probability 1 − pcorr pcorr is selected such
that the mean range scan size approximately matched the
empirical observations.

Some link operations (multiget, add, delete, update) re-
quire that the id or ids of the target node for the link is
provided. We observe that for some of these operations
(delete, update) the link should be present, for others (add)
the edge should be absent, and for others (multiget) a mix
of hits and misses is desirable. It is not practical for the
client to track which links exist for a large database, so
we exploit the knowledge that edges from node i to nodes
[i..i+ outdegree(id) − 1] were in the initial graph to choose
target node ids with a given probability of the edge exist-
ing. Edges are added or removed during benchmarking, so



to handle the cases of inserting existing edges and updating
non-existing edges, a single combined insert/update opera-
tion that inserts if not present or updates if present is used.

4.5.2 Arrival Rate
In order to generate latency/throughput curves, we want

to be able to control the arrival rate of new operations. We
assume that the average arrival rate (a configurable parame-
ter) remains constant over the course of the benchmark and
choose the interval between arrivals from an exponential dis-
tribution.

4.5.3 Operation Mix
Given the timing of an operation, we then need to select

the operation to execute and then the parameters of that
operation. We do not attempt to capture any temporal cor-
relation between different operation types. The steps for all
operations are the same:

1. An operation from Table 3 is selected. The measure-
ments of the operation mix in Section 3.4 are used to
select which operation to execute.

2. The id (id of the node, or id1 of the link) is chosen as
described previously

3. For link queries, a link type is selected uniformly.

4. For link point queries, the number of link is selected
using a geometric distribution with p = 0.382, yielding
the same mean as observed (2.615 ids per query).

5. Any required target node ids of links are chosen as
described previously.

6. For data modification, node or link fields are filled in
with the same method as in initial data generation
phase. This is not a perfect approximation, since the
workload characterization in Section 3.8 revealed that
many updates only made a small change to data size,
or did not change some fields at all. This inaccuracy
may slightly hurt update performance on storage layers
that perform in-place modification of data, since the
additional churn in data size and values may result in
more fragmentation, page splitting and dirty pages.

7. For link range queries, a fixed result limit of 10000
is used, which should be reasonably reflective of the
real workload since that was the value for over 90%
of queries observed, and very few queries return more
than 1000 rows. By default, the queries return the
most recent rows, but a small fraction are history queries,
which may specify a maximum timestamp. The client
generates history queries by maintaining a fixed-size
cache of (id1, link type, timestamp) records which are
added whenever a range query returns 10000 rows (which
indicates there is likely more history past the oldest
timestamp). This simulates a process where a client,
after retrieving the first 10000 entries in a list of links,
may later retrieve further history.

4.6 Metrics
There are a number of key metrics that we want Linkbench

to measure. The most important metrics for speed are op-
eration latency and throughput. We measure latency in
Linkbench from the time when the operation to be executed

is selected in the Linkbench client, until the time when the
client receives all result data for a read operation, or receives
confirmation of completion for a write operation.

The mean operation throughput should be reported, along
with the latency statistics for each operation type that are
reported by LinkBench: latency at 50th, 75th, 95th, 99th
percentiles, maximum latency and mean latency.

Latency versus throughput curves can be obtained by
varying the arrival rate of operations. A complete compari-
son of two systems will show a complete curve. Latency for
specific operation types at the given level of throughput can
also be reported.

Price/performance is also important, so for comparison of
commercial systems, peak throughput per dollar for the full
system (hardware and software) should be reported.

Several measures of resource utilization by the database
system under test should be collected at one second inter-
vals:

• CPU usage: user, system, idle, and wait.

• Read and write I/O operations per second.

• Read and write I/O rate in MB/s.

• Resident memory size.

• Persistent storage size, including temporary indices,
tables and logs.

All of these metrics are useful for understanding system per-
formance and efficiency. Storage size has become increas-
ingly important as the bottleneck for systems with solid
state disks is often capacity rather than I/O.

4.7 Validating Benchmark Configuration
Although LinkBench is customizable, we also focused on

creating a workload configuration that would closely match
the workload characterized earlier in this paper. This section
summarizes how the match between LinkBench and our real
workload can be validated in certain important dimensions.

The generated graph matches in several dimensions by
construction: the outdegree distribution exactly matches the
empirical outdegree distribution, while node and link pay-
load data sizes follow a similar log-normal distribution, and
have the same compression ratios.

The workload generated also matches in several dimen-
sions by construction. The mix of different operation types is
the same, and the distributions of reads and writes to nodes
follow power-law distribution with empirically derived expo-
nents. The mean number of keys per multiget is the same,
and has a similar skewed distribution.

One important property of the workload that we could
not guarantee by design was the mean number of result rows
for range queries, which was measured at approximately 21
rows. Our first attempted configuration lead to an average
result size of several hundred rows. We brought this down
to 20 − 30 rows by modifying the configuration in several
ways. Links were split into two different link types, halving
average length. We limited link history queries, which tend
to have larger results, to 0.3% of range queries, less than the
0.96% observed. We finally set pcorr = 0.005 for link reads,
so the outdegree-correlated distribution is used only 0.5% of
the time.
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Figure 14: Operation throughput and system resource uti-
lization over time.

mean p25 p50 p75 p95 p99 max
node get 1.6 0.4 0.6 1 9 13 191
node insert 4.2 1 3 5 12 20 142
node delete 5.2 2 3 6 14 21 142
node update 5.3 2 3 6 14 21 143
link count 1.3 0.3 0.5 0.9 8 12 65
link range 2.4 0.7 1 1 10 15 2064
link multiget 1.7 0.5 0.8 1 9 14 53
link insert 10.4 4 7 14 25 38 554
link delete 5.1 0.5 1 7 19 31 468
link update 10.3 4 7 14 25 38 554

Table 7: MySQL LinkBench operation latencies in ms.

5. MYSQL BENCHMARK RESULTS
In this section we present results of benchmarking MySQL

with LinkBench. The system under test is MySQL 5.1.53
with the Facebook patch. MySQL was configured with a
120GB InnoDB buffer pool, and the link table partitioned
32 ways to reduce mutex contention. Full durability was
enabled with logs flushed to disk at transaction commit,
and a binary log for replication generated. Separate hosts
were used for the LinkBench client and MySQL server. The
MySQL host had 2 CPU sockets, 8+ cores/socket, 144GB
of RAM and solid-state storage with read latency at 16kB
less than 500µs.

In order to ensure that benchmark performance was not
bottlenecked by the LinkBench client, we did several runs
while monitoring the client. The MySQL server was satu-
rated using only a fraction of client CPU and network ca-
pacity. To double-check this result, we ran two LinkBench
clients concurrently on different hosts and confirmed that

this did not increase overall operation throughput.
A graph with 1.2 billion nodes and approximately 5 billion

links was generated, which occupied 1.4TB on disk.
We performed a benchmark run with 50 concurrent re-

questing threads performing 25 million requests in total.
Figure 14 shows benchmark throughput and resource uti-
lization and Table 7 reports operation latencies at different
percentiles. The benchmark took 2266 seconds, for an aver-
age throughput of 11029 requests a second. The system goes
through a warm-up phase as the InnoDB buffer pool is pop-
ulated with pages from disk and those pages are dirtied with
writes. After a period it enters a steady-state phase. Dur-
ing the steady-state phase I/O read utilization remains high,
indicating that the working set of the benchmark is larger
than main memory. The high rates of I/O operations and
I/O throughput highlight the benefit that MySQL/InnoDB
can derive from solid-state storage.

6. CONCLUSION
We have presented the motivation and design of LinkBench,

a database benchmark that reflects real-world database work-
loads for social applications.

We characterized the social graph data and accompanying
database workload for Facebook’s social network, extracting
key statistical distributions and showing how power law dis-
tributions occur in several places.

We then described the design and construction of a bench-
mark that mimics the key aspects of the database workload,
and presented a performance profile of the MySQL database
system under this workload.

The benchmark software has been released as open source
and we hope can be used by others to profile and experiment
with other database systems. We will extend LinkBench
with adapters for further database systems as we continue
to evaluate new database technology for use at Facebook.
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APPENDIX
A. HBASE/MYSQL EXPERIMENT

The HBase/MySQL comparison was begun in 2011 with
the goal of reducing total cost of storing massive amounts
of User DataBase (UDB) data. At this time, HBase was
already in production deployment for Facebook Messages, so
was an obvious candidate. In addition by design it is a high-
write-throughput database and maintains three synchronous
local data replicas for quick local failover.

A MySQL and a HBase cluster were both set up to re-
ceive a portion of production requests. The HBase cluster
had five machines: a dedicated HDFS NameNode, a dedi-
cated HBase master and three nodes running both HDFS
Datanode and HBase Region Server. Facebook’s internal
branches of HBase (roughly corresponding to HBase release
0.94) and HDFS were used. A native C++ client for HBase
was developed and used for benchmarking. Data was com-
pressed using the LZO compression algorithm. The MySQL
cluster had three machines each running one MySQL server.
Data was compresed until zlib. Both MySQL and HBase
servers were set up so that 8GB of memory was usable for
data caching (the OS buffer cache was disabled). In-house
experts for both MySQL and HBase were involved in tuning
and optimizing both systems. The benchmark process led
to many HBase code enhancements to reduce latency and
I/O usage.

We measured the 99th percentile latencies of several oper-
ations. Latencies were similar or markedly lower on MySQL.

MySQL p99 Latency HBase p99 Latency
assoc range 25.3ms 54.8ms
assoc get 21.9ms 39.0ms
assoc insert 39.2ms 56.3ms
assoc delete 49.9ms 52.3ms

System resource utilization was markedly different be-
tween MySQL and HBase processing the same workload.
CPU utilization for HBase servers fluctuated between 20%
and 35%, while it remained steady at around 5% for the
MySQL servers. I/O operations per second varied greatly
with HBase, varying sharply from 1000 up to above 2000,
while MySQL consistently used 1200-1400.

This experiment showed that HBase consumed more CPU
and incurred more I/O operations for the Facebook Graph
workload. It also demonstrated the challenges in building
custom tools to shadow production load onto test systems.


