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Developing robust and fair AI systems requires datasets with comprehensive set of labels that can help ensure the validity and
legitimacy of relevant measurements. Recent efforts, therefore, focus on collecting person-related datasets that have carefully selected
labels, including sensitive characteristics, and consent forms in place to use those attributes for model testing and development.
Responsible data collection involves several stages, including but not limited to determining use-case scenarios, selecting categories
(annotations) such that the data are fit for the purpose of measuring algorithmic bias for subgroups and most importantly ensure that
the selected categories/subcategories are robust to regional diversities and inclusive of as many subgroups as possible.

Meta, in a continuation of our efforts to measure AI algorithmic bias and robustness1, is working on collecting a large consent-driven
dataset with a comprehensive list of categories. This paper describes our proposed design of such categories and subcategories for
Casual Conversations v2.
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1 INTRODUCTION

There is no shortage of literature [61, 92, 130] on AI systems performing inconsistently across different sub-groups of
society, and scholars have continued to advocate for further diversity of such datasets. Several recent studies [8, 41, 55,
67, 75] propose various learning strategies for AI models to be well-calibrated across all protected subgroups, while
others focus on collecting responsible datasets [57, 82, 124] to make sure evaluations of AI models are accurate and
algorithmic bias can be measured while promoting data privacy.

There has been much criticism regarding the design choice of the publicly used datasets, such as for ImageNet [36, 38,
56, 70]. Discussions are mostly focused on concerns around collecting sensitive data about people without their consent.
Casual Conversations v1 [57] was one of the first benchmarks that was designed with permission from participants.
However, that dataset has several limitations: samples were collected only in the US, the gender label is limited to three
options, and only age and gender labels are self-provided with the permission of the participants. While it has enabled
many researchers [40, 51] to evaluate their models across these and other dimensions, it does not cover many categories
that may be needed to more fully evaluate models such as physical attributes and more granular subcategories.

In order to understand the landscape of a responsible dataset for model evaluation in audio/vision/speech models,
we conducted on a literature survey that helped us understand how we should identify new self-provided label options
and how those labels should be sub-categorized in order to be more inclusive. The objective of the design is to provide
a list of categories to measure potential algorithmic failure on as many use-cases as possible, e.g., computer vision,
audio, speech and language models. Therefore to facilitate this, we decided to collect ten categories. Many of the
recent works [5–7, 32, 35, 51, 53, 57, 62, 72, 82, 92, 93, 115] break down their analysis mostly based on age, gender,
race, language, geo-location, apparent skin-tone, and voice timbre. However, there are several other categories that
have not been covered in most of the datasets but will improve the inclusion of less represented sub-groups of people
and circumstances such as physical attributes (body size, body/face markings, tattoo, etc.), and activity (standing,
walking, etc.).

While we do believe demography-related labels are highly salient to measuring bias, we also add a set of categories
that are relevant to model performance for the relevant use-cases and thus can help measure robustness of the models
that may directly impact or be experienced as model fairness gaps, such as different recording setups (lighting, camera
quality, environment, etc.).

In Section 2 we provide our literature review for each category and present proposed subcategories of each that will
be included in our dataset. Further, in Section 3 we discuss other categories that are commonly used for measuring
algorithmic bias, e.g., race, and elaborate the reasons why we opted not to solicit them in our data collection.

2 PROPOSED CATEGORIES IN THE CASUAL CONVERSATIONS V2 DATASET

In the following section, we discuss each of these categories, provide a list of proposed subcategories and further
evaluate their utility for algorithmic bias measurement. In Table 1, we list all categories and indicate which ones will be
self-provided and which ones will be annotated.

2.1 Age

Investigating the robustness of AI models for age groups is important in building fair AI algorithms. Notably, many
current public datasets [57, 74] perform analysis on the various age groups. However the definition of these age groups
vary from dataset to dataset and we would like to propose the categorization shown in Table 2. This proposal summarizes
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Section Category Self-provided Annotated

Section 2.1 Age ✓

Section 2.2 Gender ✓

Section 2.3 Language/Dialect ✓

Section 2.4 Geo-Location (Country/State/City) ✓

Section 2.5 Disability ✓

Section 2.6 Physical Adornments and Physical Attributes ✓

Section 2.7 Voice Timbre ✓

Section 2.8 Apparent Skin Tone ✓

Section 2.9 Different Recording Setup ✓

Section 2.10 Activity ✓

Section Excluded Categories

Section 3 Race & Ethnicity ✗ ✗

Section 3 Facial Expressions ✗ ✗

Table 1. List of proposed self-provided and annotated categories that will present in the CCv2 dataset. We exclude several categories
in this dataset and provide reasons in Section 3.

how we plan to categorize age, which is synthesized from various governmental and academic resources. Though
fairness for AI with regard to youth is a priority for policymakers, we propose to collect data from people who are older
than the age of maturity, which varies by country between (18 − 22) given equally salient privacy concerns when it
comes to younger populations [49].

Governmental resources. Many government population statistics include age distribution. Here we consult the
statistical standards of age groups from multiple governmental resources. Both Singapore Department of Statistics [106]
and World Bank [16] divide the age groups into 0 − 14, 15 − 64, and 65+. Statistics Canada [29] chooses to divide the
age groups into Children (0 − 14), Youth (15 − 24), Adults (25 − 64) and Seniors (65+). In addition, United Nations [101]
uses 0 − 14, 15 − 24, 25 − 44, 45 − 64 and 65+ age groups.

Scientific resources. We also reviewed the current public datasets. Many works have been performed on using face
representation to predict age groups [1, 39, 42, 64]. For example, an age group classification dataset based on facial
features [60] divides the groups into Baby (0 − 2), Young Adults (3 − 39), Middle-age Adults (40 − 59), and Old Adults
(60+). An Automatic Speech Recognition dataset that aims to quantify age bias [48] introduces age groups includes
children (7 − 11), Teenagers (12 − 16), Adults (17 − 64) and Older Adults (65+). Casual Conversations v1 dataset [57]
groups the category for age into three buckets that are 18− 30, 31− 45 and 46− 85. FairFace: a face attribute dataset [69]
and Common Voice: a speech corpus [13] use age buckets mainly at ten-year intervals.

Age Groups Age Intervals

Young Adults 𝑋 -24
Adults 25-40
Middle-age Adults 41-65
Old Adults 65+

Table 2. The proposed age intervals for age groups. 𝑋 , the age of maturity varies by country between 18 − 22.
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2.2 Gender

Gender is one of the most actively discussed protected attributes when it comes to algorithmic bias and robustness of
AI systems [26, 129, 136, 137, 144]. Until recent years and even today in many cultures, gender identities have often
been interchangeably confused with sex at birth (male and female). Thus, cumulative data or data annotation in much
research considers gender as binary (man and woman). Most of the facial recognition research [35, 53, 62, 115] only
considers binary genders in their analyses. However, gender is a social construction that changes over time and differs
among various cultures [110]. Thus, choosing subcategories in gender requires a thorough assessment.

There is no fixed number of subgroups for gender identity; rather, it is more of a spectrum than a discrete matter [25].
There are more than twenty five gender subcategories according to the LGBTQIA Resource Center Glossary [30].
However, as stated in [66] (guideline for gender options in the surveys), an exhaustive list with every possible option
may overwhelm and cause fatigue to the participants. In order to ensure inclusion of all possible gender identities, we
recommend offering "Not stated above, please specify“ option where participants can indicate their genders in a free-form
text. The following provides the overview of gender categorization in perspectives from governmental, scientific and
survey resources.

Governmental resources. Conventionally, many governments have adopted heteronormative binary gender, i.e.,
“Cis Man/Male (M)” and “Cis Woman/Female (F)”, as a common choice for legal and institutional systems and official
documents. However, with increased awareness of “Non-binary” genders in past few years, there has been legal
recognition with an option of “Non-binary” [33, 104, 108]. Seventeen countries around the world legally recognize the
Non-binary gender option on their passports (i.e., gender-neutral passport), including Argentina, Austria, Australia,
Canada, Colombia, Denmark, Germany, Iceland, India, Ireland, Malta, Nepal, the Netherlands, New Zealand, Pakistan
and the United States2 [44]. Besides, there is sometimes an option not to disclose their gender identity (e.g., “Preferred
not to say”) in some governmental survey or consensus, respecting one’s willingness for the disclosure. However, further
specification about the Non-binary genders is still very limited.

In the United States, many official documents now require the option of “Non-binary” as an effort to promote greater
equity and inclusion. This includes adding “Non-binary” as a gender marker printed on the U.S. passport (starting from
2023) [104] and in the Equal Employment Opportunity Commission (EEOC)’s charge intake process [33]. A survey of
the LGBTQ+ population by the UK government [108] has given more options including “Trans Man/Woman”, “I do not
want to say”, “I do not know” and “Something else”. The “Something else” option allows participants of the survey to
indicate their gender by themselves. The Australian government releases a standard for sex, gender, variations of sex
characteristics and sexual orientation variables to standardize the collection and dissemination of related data [105].
Table 3 shows the considered or required gender options for aforementioned consensus or surveys.

Scientific resources. Gender is one of the most important protected attributes discussed within the topics of AI
fairness. Broadly speaking, there are two cases where gender categorization is required 1) perceived gender: labeling
the data with different gender categories when the data already includes gendered information (e.g., utilizing gender
pronouns for constructing data for gender-bias in text or labelling human figures for gender in images) 2) gender
identity of participants: collecting the personal information from data construction contributors (e.g., gender of actors
in video data, gender of data annotators, gender of the authors of certain online comments). The former are cases where
gender information has not been provided directly thus a third party assumes the gender information by observing

2The data are as of September 2022.
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Considered Genders UK National LGBT Survey [108] Gender Survey Suggestion [66] U.S. Passport [104] U.S. EEOC [33] Australian Govt. [105]

Cis Woman Woman/girl Female Female (F) Female (F) Female (Sex at birth)
Cis Man Man/Boy Male Male (M) Male (M) Male (Sex at birth)
Trans Man Trans Man Transgender Male
Trans Woman Trans Woman Transgender Female

Non-binary

Non-binary/
Genderqueer/
Agender/
Gender-fluid

Another gender
identity (X) Non-binary (X) Non-binary

Not stated above
(free-form) I do not know Gender Variant /

Not-Conforming

[I/they] use a
different term
(please specify)

Something else Not Listed
Prefer Not to Say I do not want to say Prefer Not to Answer Prefer not to answer

Table 3. Gender subcategories considered or/and required by different governmental resources and social perspectives. EEOC stands
for the Equal Employment Opportunity Commission.

already existing data. The latter, in contrast, is where gender information can be gathered from the participants or the
data builder. We looked into both approaches to gender categorizations in scientific resources.

Although there has been increased awareness regarding gender inclusiveness in the AI research community, binary
gender is still a common categorization choice of gender attribute [48, 77, 90, 99, 112, 126]. For instance, there are only
a few exceptions incorporating “Non-binary” genders despite of the extensive list of research on gender bias mitigation
in NLP community in past few years [129]. One of the reasons for considering binary genders is the difficulty of data
collection with “Non-binary” genders. For example, gendered pronouns are clearer for binary genders (e.g., she, he) when
crawling data from web-data in the NLP research. As a result, there is scarcity of such data that includes “Non-binary”
genders (nonbinary people may also be referred to with pronouns they do not prefer in written context, and a common
pronoun, “they,” also more commonly refers to groups of people). As an effort for inclusion, [90, 136, 137, 144] showed
understanding of “Non-binary” genders and gender fluidity, but mostly limited to the acknowledgement. Some scholars
go further and provide rationale on why “Non-binary” genders are not included to compensate their limited inclusion
of gender diversity.

“Non-binary” genders are included when the gender of the data building contributors can be explicitly asked.
Maarten et al. [121] included “Non-binary” genders option for collecting the personal information of data annotators
and commonly used speech data set Common Voice [13] extended the options to have “Other”.

Research Guideline/Survey Design Guideline. While the topic of inclusion and diversity regarding gender has
recently received more attention in AI and machine learning research, other research fields have extensive explorations
that can be brought into AI/ML research. There are inclusive language guidelines for asking gender when collecting
data from an individual from various institutions or organizations [66]. In addition to the binary genders (Woman
and Man), most commonly recommended options are “Non-binary” and “Non-disclosure” option (e.g., “Prefer not
to answer/say/respond/disclose”). Many of the guidelines also recommend to include “Transgender(s)” as an option
besides “Non-binary”, e.g., some include it as “Transgender” [91] while some further separate “Trans Man” and “Trans
Woman” [107]. An option of additional response (self-indication) is also recommended by most of the guidelines. To
provide the self-indication option, it is recommended to use a term of “Not Listed/Referred” to avoid any negative
connotation of the term “Other” which is a common practice for indicating the not-listed options [66].
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Proposed final list of subcategories. While we avoid exhaustion-of-choices and survey fatigue, we came to a final
list of subcategories as follow: Cis Man, Cis Woman, Transgender Man, Transgender Woman, Non-binary, Not stated above,
please specify (free-form), Preferred not to say. We also provide definitions of these gender terms to the participants
during data collection:

• Cisgender: an individual whose gender identity aligns with those typically associated with the biological sex
assigned to them at birth.

• Transgender (also shortened to trans) refers to an individual whose gender identity and/or expression is different
from cultural expectations based on the sex they were assigned at birth. Being transgender does not imply any
sexual orientation.
– Transgender man: an individual whose biological sex was assigned female at birth, but identifies as a man.
– Transgender woman: an individual whose biological sex was assigned male at birth, but identifies as a woman.

• Non-binary: a term used to describe a person who does not identify exclusively as a man or a woman. Non-binary
people can identify as being both a man and a woman, somewhere in between, or fall completely outside the
gender binary. Non-binary can also be used as an umbrella term encompassing identities such as genderqueer or
gender-fluid.

2.3 Language/Dialect

Linguists have long established categories and subcategories for languages and dialects. There is likely to be no need
for AI researchers to re-define this categorization for languages. Rather, it is important to understand which languages
to include when constructing a multi-lingual dataset. We conducted our literature review in two directions, i.e., 1) most
commonly used languages and 2) a more diverse set of languages that takes into account low resource languages [114].

When we enriched the selected languages/dialects to a more diverse set, we gathered more than a hundred sub-
categories. In order to find the right balance, we first listed the most commonly spoken/used nineteen languages and
extended them to a more diverse set with several other languages. These nineteen languages include English, Spanish,
Japanese, Mandarin/Cantonese/Wu (Shanghainese), Korean, Vietnamese, Hindi/Tamil/Telugu, Arabic, Farsi, French,
German, Italian, Slavic Languages, Portuguese, Turkish, Swahili, Thai, Bahasa (Indonesian) and American Sign Language
(ASL). The additional more commonly used languages are Dutch, Greek, Swedish, Finnish, Hungarian, Filipino, Hebrew,
and Bengali.

Languages also have linguistic variations (i.e., dialects) that differ in grammar, pronunciation, and/or vocabulary [132,
133]. In practice of collecting a dataset, dialects are often not clearly indicated, either because they are not considered or
in some cases are included as optional. In the online crowd-sourced speech data Common Voice [13] dataset, volunteers
indicate their dialects from a predefined list (e.g., the United States English, Australian English, the United Kingdom
English) or self-declare. We recommend letting participants provide their dialects in a free-form text box during data
collection. For instance, a participant may state their spoken language as Arabic while they also provide their dialect as
Levantine Arabic.

Most Commonly Used Languages. For our dataset, we took a holistic view and while we took into consideration the
statistics of the most commonly used languages. We also reviewed various sources that demonstrate a compilation of the
frequently used languages including Duolingo3, Web languages, Wikipedia articles (Table 4). We first checked the most
spoken languages world-wide (most Top-20 spoken languages) [43] as well as nation-wide in the U.S. (Top-30 Languages
3An online language learning platform; It is the world’s most-downloaded education app.; https://www.duolingo.com
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Most commonly
used languages

World most
Top-20 spoken
languages

[43]

Top-30 spoken
languages at
home in US∗

[27]

World’s most
used Top-10
languages
in the Web

[128]

Top-30 languages
sorted by number
of Wikipedia

articles
[45]

UN official
languages
[102]

Top-10 languages
studied around

the world
from Duolingo

[23]

English ✓ ✓ ✓ ✓ ✓
Spanish
(Castilian
and Neutral)

✓ ✓ ✓ ✓ ✓ ✓

Japanese ✓ ✓ ✓ ✓ ✓
Mandarin/
Cantonese/
Wu (Shanghainese)

✓ ✓ ✓ ✓ ✓ ✓

Korean ✓ ✓ ✓
Vietnamese ✓ ✓ ✓
Hindi, Tamil, Telugu ✓ ✓
Arabic ✓ ✓ ✓ ✓ ✓
Farsi
French ✓ ✓ ✓ ✓ ✓ ✓
German ✓ ✓ ✓ ✓ ✓
Italian ✓ ✓ ✓
Slavic languages ✓ ✓ ✓ ✓ ✓ ✓
Portuguese ✓ ✓ ✓ ✓ ✓
Turkish ✓ ✓
Swahili
Thai ✓
Bahasa (Indonesian) ✓ ✓ ✓
American Sign Language

Table 4. Most commonly used languages based on various resources. ∗This statistics excludes English.

spoken at home other than English in the U.S.) [27]. Besides the spoken languages, the most commonly used languages
online are referred through statistics on World’s most used Top-10 languages in the Web (2020) [128] and Top-30
languages sorted by the number of Wikipedia articles [45]. Other references include the U.N. official languages [102]
and Top-10 languages studied around the World (2021) from the Duolingo app [23]. As a result, the list provided in the
Table 4 below is composed by counting the intersections of the listed sources as well as the selected languages from the
research papers as follow.

Diverse set of Languages. We explored the diverse set of languages by referring to the literature in the field of NLP.
Language understanding has always been an important task in the development of the NLP models. Since the 1990s,
much research effort has been put into solving multilingual problems [81, 83, 103]. Others have provided multilingual
datasets. Meta AI proposed a Multilingual LibriSpeech (MLS) dataset, which includes eight languages’ speech data from
audio books [113]. Google Research introduced a multilingual dataset that consists of more than forty languages, in
total around forty billion characters [54]. Many multilingual benchmarks, such as XGLUE [80] and XTREME [63] have
been introduced to evaluate the multilingual AI models. With the development of large-scale pre-training, pre-trained
multilingual models (e.g., mBART [84] and mT5 [143]) show significant success in immensely complicated tasks. In
addition, Meta AI has built the first unified model for the multilingual machine translation that translates directly
between the two hundred languages without relying on the English data [47].
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2.4 Geo-Location (Country/State/City)

As many open-source datasets are collected via crowd-sourcing, the geographical location of the speech/video data
recording is not often shared. The well-known public speech datasets, Common Voice [13], M-AILABS Speech
dataset [126] and LibriSpeech [111], also do not include any geographical information but only assume the speaker of
crowd sourced data is a native speaker. The Casual Conversations v1 dataset is one of the few examples that shares
geo-location information where videos were recorded but it is only limited to five US cities.

However, geo-location can be useful information in speech and natural language data to assess the models’ robustness.
For instance, as one of the contributors of linguistic variations (dialect) [21], geo-location is used to analyze AI speech
problems for the same country but for different regions and/or cities. Thus, we propose instead to collect geo-location
(where videos were collected) in addition to the language spoken in each video. While granularity of geo-location could
be as precise as longitude/latitude, we believe country, state/region and city will be enough to assess model robustness
and fairness with respect to language and dialects.

2.5 Disability

Building AI systems that can better serve people with disabilities has been a major aspiration within the research
community [22, 139]. The key theme of prominent “Nothing about us without us” movement [31], casts light on the
criticality of active inclusion of disabled participants. However, approaches for evaluating the AI models’ effectiveness
for disabled people is not extensively investigated in comparison to other protected characteristics such as age and
gender in audio and vision systems. [131] points out the diversity and outliers as one of the main challenges for AI
fairness for people with disabilities as the disability is not a simple variable with a small number of discrete values unlike
other attributes such as age. One individual may have several different disabilities with varying degrees, and ability
may evolve over time – it requires the consideration of degree and diversity.

Since our dataset does not focus on specific disability, we considered the criteria for disability classification from
different perspectives. Disability is generally classified into physical, sensory, intellectual and mental [14, 141] categories.
In academic research works, there has been no clear set of categories. The category of disability itself is generally
considered for assessing bias towards the people with disabilities without any subcategories labels in [100]. [124]
approached with few more categories of auditory, neurological, visual and unspecific. Academic researchers have also
divided disability into hierarchical categories from general to specific subgroups [52].

We propose disability categories as the following: vision (blind, low-vision, visual field loss, vision-impaired, color-
blindness, loss of depth perception, glasses-wearing); hearing (deaf, hard-of-hearing, hearing with one ear, cochlear-
implant-using), physical (mobility, dexterity); speech (aphasic, speech-impaired, speech loss), cognitive (Learning/Neuro-
diversity); use of assistive technology.

2.6 Physical Adornments and Physical Attributes

Body and/or face markings are rarely taken into consideration in data collection as the collection of such data often
requires more time and is a resource-intensive process. There is limited research work with physical attribute subcate-
gories. Instead, we referred to the use cases of metaverse or online character creation such as Memoji (Apple) [12] and
Avatar(Meta) [34]. We propose to divide the category into physical adornments and physical attributes as illustrated in
Table 5. For each participant, we suggest asking as YES or NO for each criteria, and provide an option of free-form text
for participants to provide details if they wish.
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Subcategories

Physical Adornments Have hair cover, Hair color (dye), Have beard/mustache, Have face covering, Have face
mask, Have make-up, Have eye wear (sunglasses, glasses, contact lenses, etc.), Have ear
wear (ear rings), Have visible tattoos, Have bindi (South Asian face markings), Have
visible piercings

Physical Attributes Hair type, Hair color (original), Hearing aids, Eye color, Have birthmarks/fleckers/moles,
Have other non-tattoo facial markings

Table 5. Proposed subcategories for Physical Adornments and Attributes.

2.7 Voice Timbre

Voice timbre is a unique tonal quality that gives color and personality to a person’s voice. It is crucial to help make AI
systems, especially Automatic Speech Recognition (ASR) models, more equally performant with regards to voice timbre.
Voice timbre is generally categorized into Soprano, Mezzo Soprano, Alto, Contralto, Countertenor, Tenor, Baritone and
Bass based on music theory [116, 117, 127]. Moreover, one special category for pre-pubescent voice is called Treble.
Although we do not plan to include minors in our dataset, we intend to include this voice timbre label as well, as age
may not be dispositive of voice timbre

In practice, voice timbre is often used as a technical term for music theory, thus, it is hard for general individuals
to self-identify their own voice timbres. Academic publications either categorize voice from high-pitched to deep
(e.g., High-pitched, Ethereal, Sweet, Powerful, Gravelly and Deep) [122], or use gender/age-referring phrases such as
middle-aged women, young men, or little girls [89]. One study utilizes a dataset that is collected from singers and
separates three groups for both male and female [118] (see Table 6).

We propose three subcategories of low pitch, average pitch, and high pitch to ensure easier labeling. These sub-
categories provide intuitive names while enabling us to gather meaningful enough information for testing model
performance in voice timbre variation.

Ours [117] [127] [116] [122] [89] [118]

high pitch Soprano Soprano Soprano High-pitched Middle-aged Women Soprano
average pitch Mezzo Mezzo-soprano Mezzo Soprano Ethereal queen-style ladies Mezzosoprano
low pitch Alto Contralto Alto Sweet Young girls Alto

Tenor Tenor Contralto Powerful Cute little girls Tenor
Bass Baritone Countertenor Gravelly Elderly Baritone

Bass Tenor Deep Middle-aged men Bass
Baritone Young men
Bass Cute little boys

Table 6. Suggested voice timbre subcategories and categorization of voice timbre from music theory and academic research.

2.8 Apparent Skin Tone

Skin tone is an important attribute of human appearance, with significant variation from pale to dark. Recently, AI
systems, especially computer vision models, have become controversial over concerns about the potential bias of
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performance varying based on the skin tone [26, 72, 87]. Therefore, we include skin tone as one of the categories to
collect data for the purposes of measuring algorithmic bias.

Skin tone (or skin color in some literature [17, 142]) does not have one clear universal measure even within
the field of dermatology [94]. In computer vision, the Fitzpatrick scale [120] is currently the most commonly used
numerical classification schema for skin tone due to its simplicity and widespread use [9, 26, 98, 140]. However, some
literature points out that the use of the Fitzpatrick scale may be problematic as it is an unreliable estimator of the skin
pigmentation [109]. Recently, the Monk Skin Tone (MST) Scale [96] was proposed in collaboration with Google which
is going to be utilized in several Google products [65] including search and photos. In contrast to the 6-tone Fitzpatrick
scale, Monk has 10 tones that favors darker and lighter skin tones equally. Many studies in different fields have used
the MST Scale [50, 86, 97].

We suggest using both Fitzpatrick and Monk scales for apparent skin tone annotation. Using both scales will allow
clearer comparison with previous works that use Fitzpatrick scale while also enabling measurement based on more
balanced skin tone information collection through Monk scale.

2.9 Different Recording Setup

To understand the models’ robustness and fairness, the different recording setup is also an important element to
consider as all environments in the videos cannot be uniform across different datasets – and such variation may have an
underlying relationship to factors relevant to understanding unfair bias such as income level. From simple consideration
of resolutions of the videos (e.g., high-definition, low-definition, smartphones) to environment (e.g., outdoor, indoor,
beach, etc.), we suggest to consider varieties of recording setups as suggested in Table 7.

Recording setup Notes

Setup
Subscripted text for speech,
Unsubscripted free–form speech,
Interview

Environment
Indoor, Outdoor, Beach, Field, Mountain,
Office, Living room, Bedroom, Kitchen,
Street, Sky, Water, etc.

Diverse weather settings -

Diversity in northern and southern hemisphere
(sun position)

-

Types of video quality
Web camera, Laptop camera,
Smartphone camera, Professional camera, etc.
(technical details about the camera if possible)

Background noise -

Camera position Hand-held phone, Selfie,
Laptop, Photography studio, etc.

Object bounding boxes and/or segmentation -
Lighting Perceptually dark or light

Table 7. Different recording setup.
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2.10 Activity

Types of human activities are broadly categorized as gestures, actions and interactions [2]. The subcategories for each
activity category can be fine-grained to 200+ activities [28]. Since annotating a whole list of human activities can be
innumerable, we mainly focused on the most overlapping list of activities and also the most applicable actions, gestures
and appearance in our data collection setup shown in Table 8. We mainly referred to computer vision research paper
that focuses on daily human activity detection [2, 11, 24, 73, 146].

Activity Subcategories

Action

Standing
Walking
Sitting
Laying
Waving

Gesture
Streching body
Raising hand/leg
Moving head

Appearance

Full body visible
Upper body visible
Lower body visible
Only head visible

Table 8. List of activities. We group activities into action, gesture and appearance.

3 DELIBERATE EXCLUSION OF CERTAIN CATEGORIES

In the previous Section 2, we went over each of the ten different categories and the related literature and rationale for
final sub categories. However, there are some categories that cannot be generalized to the world population and may
not be relevant to the aforementioned measurement or ML training tasks. In this section, we explain the reason why we
will not include them in our dataset.

Race & Ethnicity. Both race and ethnicity are categories that are often discussed in fairness analysis of AI systems
[32, 69, 134, 138]. For instance, most studies in face recognition fairness have heavily relied on race/ethnicity [37, 69, 134].
However, Roth [119] argues that there is no single dimension that identifies the person’s “true” or “correct” race because
race is being experienced as a result of conflicting dimensions including self-identification, perception by others in the
society, person’s belief on others’ perception, racial self-classification, skin color, racial appearance and racial ancestry.
By decoupling race into its diverse dimensions, Roth demonstrates that race is a social construct and discusses further to
show racial fluidity and racial boundary change. Furthermore, race has ambiguities to be well-defined and generalized
to all regions (i.e., race and ethnicity are defined differently in different countries). Barjubani et al. [18] also highlights
that “agreeing on a catalogue of human races has so far proved impossible.”

Recently, a shift towards using skin tone instead is starting to happen [26, 35, 72, 135], mostly due to the problems
outlined here. Moreover, when evaluating visual or auditory models it is more accurate to consider actual visual
attributes [46] rather than race with its limitations and ambiguities. We already have location, apparent skin-tone and
language/accent/dialect information which provide a robust baseline analysis of AI models performance. Thus, the
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additional collection of controversial/sensitive data about race/ethnicity fails to override the reasons not to.

Facial Expression. There has been a substantial amount of research conducted in the field of apparent emotion

detection [3, 4, 10, 15, 20, 68, 71, 76, 78, 79, 85, 88, 95, 123, 125, 145]. Nevertheless, the most recent studies have unearthed
several risks of mis-contextualizing facial expressions. Barrett et al. [19] discusses the challenges of inferring emotions

as expressions (anger, fear, disgust, happiness, etc.) may be communicated in many different forms across different
cultures and situations. As a result, mis-contextualizing of emotions may result in potential harms in the commercial
applications. Hernandez et al. [59] provides twelve guidelines for systematic assessment and reducing the risk presented
by apparent emotion detection applications. Moreover, facial expression could be potentially utilized to reveal unintended
information of individuals [58]. Considering all these risks and ambiguity in facial expression detection, we decided to
exclude this category from the list of labels we plan to collect for the dataset.

4 CONCLUSION

In this article, we presented a literature survey we have conducted for Casual Conversations v2, i.e. a large consent
driven dataset designed for measuring algorithmic bias and robustness of AI systems. We proposed to collect six
self-provided (by the participants) and four annotated categories, including age, gender, language/dialect, geo-location
(country/state/city), disability, physical adornment, physical attributes, voice timbre, apparent skin tone, different recording
setup and activity. For each of these categories, we provided a thorough review and discussed the proposed subcategories
that we aim to collect. Furthermore, in the spirit of building a responsible dataset, three sensitive categories, i.e. race &
ethnicity and facial expressions, have been excluded for ethical and safety reasons that also aligns with our ongoing
efforts and long term vision in Responsible AI.

This literature review has been carried out by Meta as part of our continued commitment to Responsible AI in
collaboration with academic partners. Casual Conversations v2 will be unique in the academic world in terms of its
proposed categories (which are rarely seen in the publicly available audio/vision benchmarks) and also the countries
where the data collection will take place. Our dataset will enable the research community 1) to develop new models
that are more fair, inclusive, and robust and also 2) to measure their models on these axes.
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