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Figure 1. Advantages of our framework. (A) We attain zero-shot cross-dataset inference. (B) Our framework trained on simulation data
produces on-par results with the one trained on real data.

Abstract

The majority of prior monocular depth estimation meth-
ods without groundtruth depth guidance focus on driving
scenarios. We show that such methods generalize poorly to
unseen complex indoor scenes, where objects are cluttered
and arbitrarily arranged in the near field. To obtain more
robustness, we propose a structure distillation approach to
learn knacks from an off-the-shelf relative depth estima-
tor that produces structured but metric-agnostic depth. By
combining structure distillation with a branch that learns
metrics from left-right consistency, we attain structured and
metric depth for generic indoor scenes and make inferences
in real-time. To facilitate learning and evaluation, we col-
lect SimSIN, a dataset from simulation with thousands of
environments, and UniSIN, a dataset that contains about
500 real scan sequences of generic indoor environments.
We experiment in both sim-to-real and real-to-real settings,
and show improvements, as well as in downstream applica-
tions using our depth maps. This work provides a full study,
covering methods, data, and applications aspects.

1. Introduction

This work proposes a practical indoor depth estimation
framework that has the following features: learning from
off-the-shelf estimators and left-right image pairs without
their depth annotations, efficient training data collection,
high generalizability to cross-dataset inference, and accu-
rate and real-time depth sensing. Our work applies to
consumer-level AR/VR, such as 3D indoor scene recon-
struction and virtual object insertion and interaction with
environment [32]

Although self-supervised depth estimation, especially
using left-right consistency, has attracted much research in-
terest recently, popular works, such as MonoDepth [23],
MonoDepth2 [24], DepthHints [74], and ManyDepth [75],
mainly focus on driving scenes and are trained on large-
scale driving datasets like KITTI [22] and Cityscapes [13],
and it is unclear how these methods apply on indoor envi-
ronments. Learning indoor depth via self-supervision is ar-
guably more challenging for a number of reasons: (1) struc-
ture priors: depth estimation for driving scenes imposes a
strong scene structure prior to the learning paradigm. The
upper parts of images, commonly occupied by the sky or
buildings, are typically farther away; on the other hand, the
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lower parts are usually roads extending to the distance [15].
By contrast, the structure priors are much weaker for indoor
environments since objects can be cluttered and arranged
arbitrarily in the near field. (2) distribution: scene depth
for driving scenarios tends to distribute more evenly across
near to far ranges on roads, whereas indoor depth can be
concentrated in either near or far ranges, such as zoom-in
views of desks or ceilings. The uneven depth distribution
makes it challenging to predict accurate metric depth for in-
door scenes. (3) camera pose: depth-sensing devices can
move in 6DoF for indoor captures, but they are typically
anchored on cars for collecting driving data where transla-
tions are usually without elevation and rotations are domi-
nated by yaw angle. Therefore, a desirable network needs
to be more robust to arbitrary camera poses and complex
scene structures for indoor cases. (4) untextured surfaces:
large untextured regions, such as walls, make the commonly
used photometric loss ambiguous.

In this work we propose DistDepth, a structure distilla-
tion approach to enhance depth accuracy trained by self-
supervised learning. DistDepth uses an off-the-shelf rela-
tive depth estimator, DPT [59, 60] that produces structured
but only relative depth (output values reflect depth-ordering
relations but are metric-agnostic). Our structure distillation
strategy encourages depth structural similarity both statis-
tically and spatially. In this way, depth-ordering relations
from DPT can be effectively blended into metric depth esti-
mation branch trained by left-right consistency. Our learn-
ing paradigm only needs an off-the-shelf relative depth esti-
mator and stereo image inputs without their curated depth
annotations. Given a monocular image at test time, our
depth estimator can predict structured and metric-accurate
depth with high generalizability to unseen indoor scenes
(Sec. 3.2). Distillation also helps downsize DPT’s large vi-
sion transformer to a smaller architecture, which enables
real-time inference on portable devices.

We next describe our dataset-level contributions. Current
publicly available stereo datasets are either targeting driving
scenarios [9, 13, 20, 22, 76], small-scale and lacking scene
variability [65, 66], rendered from unrealistic-scale 3D an-
imations [6, 52], or collected in-the-wild [35, 70]. Popular
indoor datasets are either small-scale (Middlebury [65]) or
lacking stereo pairs (NYUv2 [54]). There is currently no
large-scale indoor stereo dataset to facilitate left-right con-
sistency for self-supervised studies. We utilize the popu-
lar Habitat simulator [63, 69] to collect stereo pairs in 3D
indoor environments. Commonly-used environments are
chosen, including Replica [68], Matterport3D (MP3D) [8],
and Habitat-Matterport 3D (HM3D) [57], to create Sim-
SIN, a novel dataset consisting of about 500K simulated
stereo indoor images across about 1K indoor environments
(Sec. 4). With SimSIN, we are able to investigate per-
formances of prior self-supervised frameworks on indoor

scenes [24, 74, 75]. We show that we can fit on SimSIN by
directly training those models, but such models generalize
poorly to heterogeneous domain of unseen environments.
Using our structure distillation strategy, however, can pro-
duce highly structured and metric-accurate depth on unseen
data (Sec. 5).

Several commercial-quality simulations and real data are
utilized for evaluation, including a challenging virtual apart-
ment (VA) sequence [1, 2], pre-rendered scenes in Hyper-
sim [61], and real monocular images in NYUv2 [67]. To
further investigate the gap between training on simulation
v.s. training on real data, we further collect UniSIN, a
dataset including 500 real stereo indoor sequences, amount-
ing to 200K images, in a university across buildings and
spaces using off-the-shelf high-performing stereo cameras.
We show that our DistDepth trained on simulation data only
has on-par performance with those trained on real data.

Our DistDepth is especially capable of 1. attaining zero-
shot cross-dataset inference, and 2. closing the gap between
sim-to-real and real-to-real learning, as shown in Fig. 1.
Throughout the work we visualize depth maps in actual met-
ric ranges unless marked as relative depth. We summarize
our contributions as follows.

1. We propose DistDepth, a framework that distills
depth-domain structure knowledge into a self-supervised
depth estimator to obtain highly structured and metric-
accurate depth maps.

2. We present SimSIN, a large-scale indoor simulation
dataset that fuels the study of indoor depth estimation via
left-right consistency, and a real dataset, UniSIN, that tar-
gets at studying the gap between training on simulation and
real data.

3. We attain a practical indoor depth estimator: learning
without curated depth groundtruth, efficient and effective
data collection by simulation, high generalizability, and ac-
curate and real-time inference for depth sensing.

2. Related Work
Monocular Scene Depth Estimation. Much research

interest focuses on learning-based methods to learn a map-
ping: I → D, from image to depth domain.

2.1. Supervised Scene Depth Estimation

Supervised learning requires pixel-level depth annota-
tion. Early methods [17–19, 33, 45, 46, 49, 58, 79, 81] per-
form pixel-level regression of depth values using convo-
lutional neural networks to minimize a loss between pre-
dictions and groundtruth. Recently, Bhat et al. [4] adopt
adaptive bins for depth regression and use vision transform-
ers [16]. MiDaS [60] and Wei et al. [82] smartly mix several
datasets to attain large-scale depth training using scale-and-
shift-invariant losses. BoostingDepth [53] fuses multi-scale
depth cues in MiDaS based on observations from [34], but



Figure 2. DistDepth overview. We distill structures from an off-the-shelf expert to a self-supervised depth estimation branch, DepthNet.
Such an approach enables us to obtain metric depth maps with fine structures and still work without curated depth annotations. Note that
we omit the temporal warping and PoseNet here for simplicity.

it takes minutes to post-process a depth map. DPT (MiDaS-
V3) [59] designs a dense vision transformer and achieves
better results than the original MiDaS.

Although state-of-the-art MiDaS [60] and DPT [59] can
estimate fine-grained depth structures for in-the-wild im-
ages, they only provide relative depth, which is up to un-
known scale and shift factors to align with actual size due to
the mixed-dataset training strategy. Our DistDepth adopts
such pretraining on in-the-wild scenes as an expert for depth
structure distillation to attain both structured and metric
depth from a branch trained by left-right consistency.

2.2. Left-Right and Temporal Consistency

Left-Right and temporal consistency help attain self-
supervised learning to lift requirements on groundtruth
depth for training, which steps closer to practical depth
sensing [27, 41, 43, 44, 55]. MonoDepth [23] learns depth
from stereo pairs and uses left-right depth reprojection with
photometric loss minimization. MonoDepth2 [24] further
includes temporal neighboring frames and also minimizes
photometric consistency losses. DepthHints [74] adopts
pre-computed SGM [30, 31] depth from stereo pairs as a
proxy and still stay self-supervised. ManyDepth [75] uses
test-time multi-frame inputs with cost-volume minimiza-
tion to obtain more accurate predictions. However, these
methods all focus on driving scenarios, and their applica-
bility to indoor data is yet to be investigated. Our work is
based on the left-right and temporal consistency with depth
structure distillation to attain structured, metric, and gen-
eralizabile depth estimation, while most works do not dis-
cuss generalizability [24–26,75,80]. Note that our structure
distillation is different from regular distillation [29, 62, 84]
since our expert is capable of only estimating depth order-
ing, and it needs to be combined with metrics inferred by
the student to obtain the end output. Some other works at-
tain self-supervision by only temporal consistency [5, 36],
which makes scale less robust. Another work [47], based
on Manhattan world assumption, minimizes co-planar and
normal losses but only shows robustness to planar regions

with inherently ambiguous scale.

3. Method
3.1. Basic Problem Setup

We describe the commonly adopted left-right and tem-
poral photometric consistency in self-supervised methods
such as MonoDepth2, DepthHints, and ManyDepth in this
section. During training, It and I ′t are stereo pairs at
timestep t. DepthNet fd is used to predict depth of It,Dt =
fd(It). With known camera intrinsic K and transformation
Tt : It → I ′t using stereo baseline, one can back-project It
into 3D space and then re-project to the imaging plane of
I ′t by utilizing K, Dt, and Tt. Î ′t = It 〈proj(Dt, Tt,K)〉
denotes the reprojection. The objective is to minimize pho-
tometric loss L = pe(I ′t, Î

′
t), where pe is shown as follows.

pe(I ′t, Î
′
t) = κ

1− SSIM(I ′t, Î
′
t)

2
+ (1− κ)L1(I ′t, Î

′
t), (1)

where κ is commonly set to 0.85, SSIM [72] is used to
measure the image-domain structure similarity, L1 is used
to compute the pixel-wise difference. pe(I ′t, Î

′
t) measures

photometric reconstruction error of a stereo pair to attain
left-right consistency.

Temporal neighboring frames are also utilized to com-
pute photometric consistency. PoseNet calculates relative
camera pose between timestep t and t + k: Tt+k→t =
fp(It, It+k) with k ∈ {1,−1}. Then, temporal consistency
is attained by warping an image from t + k to t and calcu-
lating photometric consistency in Eq. 1. At inference time,
depth is predicted from a monocular image via D = fd(I).

Applicability. We train MonoDepth2, DepthHints, and
ManyDepth on the SimSIN dataset and exemplify the scene
fitting later in Fig. 4. Prior arts fit the training set but do
not generalize well for cross-dataset inference due to unseen
complex object arrangements for indoor environments.

3.2. DistDepth: Structure Distillation from Expert

To overcome the generalizability issue when applying
self-supervised frameworks to indoor environments, we



propose DistDepth (Fig. 2). DPT [59] using dense vision
transformer can produce highly structured but only relative
depth values by D∗t = f∗d (It)

1 as explained in Sec. 2.1.
We extract the depth-domain structure of D∗t and transfer
to the self-supervised learning branches, including Depth-
Net fd and PoseNet fp. The self-supervised branch learns
metric depth since it leverages stereo pairs with known
camera intrinsic and baseline with depth warping operation
It 〈proj(Dt, Tt,K)〉. Our distillation enables fd to produce
both highly structured and metric depth and still work in a
fashion without groundtruth depth for training.

We first estimate rough alignment factors of scale as
and shift at from DPT’s output D∗t to predicted depth Dt

by minimizing differences between D̄∗t = asD
∗
t + at and

Dt with closed-form expressions from the least-square op-
timization (see the supplementary).

Statistical loss. Compared with image-domain struc-
tures, depth-domain structures exclude depth-irrelevant
low-level cues such as textures and painted patterns on ob-
jects and show geometric structures. Image structure sim-
ilarity can be obtained by SSIM [71–73] w.r.t. statistical
constraints. Depth-domain structures also correlate to depth
distribution represented by mean, variance, and co-variance
for similarity measures. Thus, we compute the SSIM with
depth map input D̄∗t and Dt and use the negative metric as
the loss term

Lstat = 1− SSIM(D̄∗t , Dt), (2)

Unlike the widely-used appearance loss that combines
SSIM with L1 loss, we find that pixel-wise difference mea-
sures lead to unstable training since inverting from dispar-
ity to depth magnifies prediction uncertainty and produces
much larger outliers in arbitrary ranges. In contrast, the
SSIM loss constrains on the mean and variance terms for
two distributions instead of per-pixel differences and be-
comes a desirable choice.

Spatial refinement loss. SSIM loss only constrains sta-
tistical depth distribution but loses spatial information. We
next propose a spatial control using depth occluding bound-
ary maps (Fig. 2 (B)). The Sobel filter, which is a first-order
gradient operator [37], is applied to compute depth-domain
gradients: g = (∂X∂u ,

∂X
∂v ), where X ∈ {D̄∗t , Dt} and

u, v represent horizontal and vertical direction on 2D grids.
Then we calculate a turn-on level α = quantile(‖g‖2, 95%)
at the 95%-quantile level of gradient maps to determine the
depth occluding boundaries, where gradients are larger than
α. We compute the 0/1 binary-value maps, E∗ and E, to
represent occluding boundary locations by thresholding D̄∗t
and Dt with their respective α terms. Last we calculate the

1DPT (and MiDaS) outputs relative relation in disparity (inverse depth)
space since it trains on diverse data sources (laser-based depth, depth from
SfM, or stereo with unknown calibration). We inverse its outputs and com-
pute losses in the depth space since our training data source is single

Figure 3. Mapping from relative depth to metric depth is non-
trivial. x-axis captures (inverse) output values of DPT and y-axis
represents metric depth from simulation systems or sensors. We
run least-square linear regression with RANSAC to produce the
optimal fitted lines between relative depth and metric depth for
random scenes from our dataset.

Hamming distance, i.e. bitwise difference, of E∗ and E
and normalize it by the map size and use it as the spatial
loss term,

Lspat = E∗ ⊕ E/|E|, (3)

where ⊕ is the XOR operation for two boolean sets, and
|E| computes the size of a set. In implementation, to make
thresholding and binarization operations differentiable, we
substract respective α from D̄∗t and Dt and apply soft-
sign function, which resembles the sign function but back-
propagates smooth and non-zero gradients, to obtain maps
with values in {-1, 1}. After the division by 2, we ar-
rive at the element-wise Hamming distance between the
maps. The loss function for structure distillation is Ldist =
Lstat+10−1Lspat. The final loss function Lt for It is com-
bined with left-right consistency LLR = pe(I ′t, Î

′
t), tempo-

ral consistency Ltemp = pe(It, Ît+k→t), where Ît+k→t is
forward warping and backward warping, k ∈ {1,−1}, and
Ldist:

Lt = LLR + Ltemp + 10−1Ldist. (4)
The designed structure distillation is key to gearing up

the self-supervised depth estimator with high generalizabil-
ity to unseen textures such that it better separates depth-
relevant and depth-irrelevant low-level cues. From another
perspective, the student trained by left-right consistency
helps DPT learn ranges across different indoor scenes.

Another alternative way is to predict scale and shift fac-
tors to align relative depth to metric depth based on the
alignment relation [60]. This seemly simple method, how-
ever, suffers from the disadvantage that depth estimation
from neural networks inevitably includes uncertainty, which
is either caused by neural network model or caused by data
[38, 39, 51]. Conversion between relative depth and metric
depth shows overall linear but noisy trends, and the optimal
line equations can vary a lot for different scenes, as shown
in Fig. 3. Thus, this alternative approach cannot factorize
noise and outliers with only scale and shift terms. We show
experiments using this approach in the supplementary.



Figure 4. Intra-/ Inter-Dataset inference. Prior self-supervised
works can fit training data (SimSIN) shown in the first row, but
they generalize poorly to unseen testing dataset (VA), shown in
the second and third rows. Our DistDepth can produce more struc-
tured and accurate ranges with reference to groundtruth.

We adopt ResNet [28] as DepthNet fd. Although one can
use dense vision transformers for higher prediction accu-
racy, they suffer from low inference speed and cannot meet
real-time on-device depth sensing due to larger network size
and complex operations. Therefore, we maximally exploit
structure knowledge embedded in DPT and also downsize
the large vision transformer to smaller-size ResNet, which
enables us to run depth sensing at an interactive rate (35+
fps v.s. 8-11 fps for different version DPT, measured on a
laptop with RTX 2080 GPU) to fulfill the practical depth es-
timator purpose. See the supplementary for demonstration.

4. Datasets
4.1. Training: SimSIN

To utilize the left-right and temporal neighboring frames
to attain photometric consistency for self-supervised train-
ing, we adopt the popular Habitat simulator [63, 69] that
initiates a virtual agent and renders camera-captured 3D in-
door environments. We adopt Replica, MP3D, and HM3D
as the backend 3D models following prior embodied AI
works [10–12, 14, 21, 56].

We adopt a stereo baseline of 13cm following the camera
setting in [7] and render at 512× 512 resolution. The agent
navigates multiple times and captures stereo sequences. We
then manually filter out failure sequences, such as when the
agent gets too close to walls or navigates to null spaces.
Our dataset consists about 80K, 205K, and 215K images
from Replica, MP3D, and HM3D respectively, amounting
to 500K stereo images from ∼1000 various environments
in our proposed SimSIN dataset, which is by far the largest
stereo dataset for generic indoor environments.

4.2. Training: UniSIN

To investigate the gap between simulation and reality
and compare performances of models trained on simula-
tion and trained on real data. We use ZED-2i [3], a high-

performing stereo camera system, to collect large-scale
stereo sequences from various interior spaces around a uni-
versity and create the UniSIN dataset. Its training split
contains 500 sequences, and each sequence has 200 stereo
pairs, amounting to 200K training images.

4.3. Evaluation Sets

Commercial-Quality simulation. We select a deli-
cately designed virtual apartment (VA) and render about
3.5K photorealistic images along a trajectory as the evalua-
tion set [1, 2]. The VA dataset contains challenging indoor
scenes for depth sensing, such as cabinet cubes with differ-
ent lighting, thin structures, and complex decorators. These
scenes enable us to conduct a detailed study of depth sens-
ing in private indoor spaces, the most common use cases for
AR/VR. We further include samples from pre-rendered Hy-
persim [61] dataset, which contains monocular images of
virtual environments, for qualitative demonstration.

Real Data. We adopt popular NYUv2 [67] whose test
set contains 654 monocular images with depth maps from
time-of-flight laser using Kinect v1. To compensate for
Kinect’s older imaging system and low resolution to serve
more practical AR/VR use, we collect 1K high-definition
images with finely optimized depth delivered by ZED-2i for
numerical evaluation.

We show a sample collection for all the datasets in the
supplementary.

5. Experiments and Analysis
We set input size to 256×256, batch size to 24, and

epoch number to 10. Adam [40] is used as the optimizer
with an initial learning rate of 2×10−4 that drops by a fac-
tor of 10 at epoch 8 and 10. We adopt common data aug-
mentation of color jittering and random flipping. We use
ResNet50 for our PoseNet fp and ResNet152 for DepthNet
fd, and the same for MonDepth2, DepthHints, and Many-
Depth for comparison in this section. DPT adopts large-size
dense transformer network to apply on in-the-wild scenes.
Thus we choose larger architecture for DepthNet to demon-
strate generalizability but can still run in interactive frame
rate (illustrated in the supplementary).

5.1. Experiments on Simulation Data

We use SimSIN as the training dataset in Sec. 5.1 and
evaluate on various commercial-quality simulation data.

Prior self-supervised methods trained on SimSIN. We
first directly train MonoDepth2, DepthHints, and Many-
Depth on SimSIN following settings in their papers and
show fitting on the training data and inference on VA in
Fig. 4 to investigate the generalizability. ManyDepth and
DepthHints attain better results than MonoDepth2. Our
DistDepth produces highly regularized structures with ro-
bustness to unseen examples, w.r.t groundtruth. The range



Table 1. Quantitative comparison on the VA dataset. Our DistDepth attains much lower errors than prior works of left-right consistency.
DistDepth-M further uses the test-time multi-frame strategy in ManyDepth. See the main text.

Test-Time Single-Frame Test-Time Multi-Frame
Method MonoDepth2

[24]
DepthHints

[74]
DistDepth Improvement ManyDepth

[75]
DistDepth-M Improvement

MAE 0.295 0.291 0.253 -14.2% 0.275 0.239 -13.1%
AbsRel 0.203 0.197 0.175 -13.8% 0.189 0.166 -12.2%
RMSE 0.432 0.427 0.374 -13.4% 0.408 0.357 -12.5%
RMSElog 0.251 0.248 0.213 -15.1% 0.241 0.210 -12.9%

Figure 5. Qualitative results on VA sequence. Depth and error
maps are shown for DistDepth and MonoDepth2 for comparison.
These examples demonstrate that our DistDepth predicts geomet-
rically structured depth for common indoor objects.

prediction also improves, which we believe is due to better
structure occluding boundary reasoning.

Error analysis on VA. The VA dataset includes various
challenging scenes in indoor spaces. We show qualitative
error analysis in Fig. 5. Highlighted in error maps, our Dist-
Depth has better generalizability on estimating the under-
lying geometric structures such as paintings, shelves, and
walls under various lighting conditions. See supplementary
for more examples.

We further show numerical comparison on the entire
VA sequence in Table 1. All the methods in comparison
are trained on SimSIN. We further equip DistDepth with
the test-time multi-frame strategy with cost-volume min-
imization introduced in ManyDepth and denote this vari-
ant by DistDepth-M. Methods are categorized into test-time
single-frame and test-time multi-frame. In both cases, Dist-
Depth attains lower errors than prior arts. This validates
our network design: with an expert used for depth-domain
structure distillation, a student network fd can produce both
structured and metric depth that is closer to the groundtruth.

Ablation study on VA. We first study the expert network
and adopt different versions of DPT (hybrid and legacy),
whose network sizes are different. Table 2 shows that
the student network taught by the larger-size expert, DPT-

Figure 6. Qualitative study for depth-domain structure im-
provement. Two examples (A) and (B) are shown to study the
effects of distillation (dist) losses and turn-on level α in spatial
refinement to validate our design in Sec. 3.2.

Table 2. Study on the choice of the expert network for distil-
lation. Different versions of DPT [59] that vary in network sizes
(# of params) are adopted as the expert to teach the student. DPT-
legacy localizes occluding contours better and leads to a better-
performing student network. The results of supervised learning
are provided as a reference.

Self-Supervised Supervised
Expert w/o distil-

lation
DPT -
hybrid

DPT -
legacy

with
groundtruth

# of params - 123M 344M -
MAE 0.295 0.276 0.253 0.221
AbsRel 0.203 0.188 0.175 0.158
RMSE 0.432 0.394 0.374 0.325
RMSElog 0.251 0.227 0.213 0.188

legacy, achieves lower depth estimation errors. Without dis-
tillation, results are worse because its estimation relies only
on the photometric loss, which fails on untextured areas like
walls. As a sanity check, we also provide results of super-
vised training using SimSIN’s groundtruth depth with pixel-
wise MSE loss and test on the VA dataset, which shows the
gap between training on curated depth and depth from ex-
pert network’s predictions.

We next study the training strategy with different distil-
lation losses and effects of turn-on level α in Sec. 3.2. We



Figure 7. Results on Hypersim. Depth map and textured pointcloud comparison of MonoDepth2 and our DistDepth. With structure
distillation, DistDepth attains better object structure predictions, such as tables and paintings on the wall shown in (A) and much less
distortion for the large bookcase in (B).

compare (1) w/o distillation, (2) distillation with statistical
loss only, and (3) distillation with statistical and spatial re-
finement loss. We demonstrate qualitative results in Fig. 6
to show the depth-domain structure improvements. Without
distillation, spatial structures cannot be reasoned crisply.
With statistical refinement, depth structures are more dis-
tinct. Adding spatial refinement, the depth-domain struc-
tures show fine-grained details. We further analyze the ef-
fects of different turn-on levels of α. Low α makes struc-
tures blurry since the refinement does not focus on the high-
gradient occluding boundaries as high α does, which iden-
tifies only high-gradient areas as occluding boundaries and
benefits structure knowledge transfer.

Comparison on Hypersim. We next exhibit depth and
textured pointcloud in Fig. 7 for some scenes in Hypersim.
Two different views are adopted for pointcloud visualiza-
tion. One can find that our DistDepth predicts better geo-
metric shapes in both depth map and pointcloud. See the
supplementary for more examples.

5.2. Experiments on Real Data

Closing sim-to-real gap. We compare results of training
on simulation (SimSIN)2 and real data (UniSIN) to investi-
gate the performance gap. We examine (1) training Mon-
oDepth2 on simulation and evaluate on real data, (2) train-
ing MonoDepth2 on real data and evaluate on real data, (3)
training DistDepth on simulation and evaluate on real data,
and (4) training DistDepth on real and evaluate on real data.
Fig. 8 illustrates the results of the four settings. Comparing
(1) and (2), one can find that MonoDepth2 trained on real
data produces more reliable results than on simulation. By
contrast, this gap becomes unobvious when comparing (3)

2To balance the training dataset size, we randomly subsample about
200K images here in SimSIN to match UniSIN’s dataset size.

and (4) using DistDepth. Results of (3) are on-par with (4)
and sometimes even produce better geometric shapes like
highlighted areas. We further include numerical analysis in
the supplementary.

The results validate our proposals on both method and
dataset levels. First, DistDepth utilizes an expert network
to distill knacks to the student. The distillation substan-
tially adds robustness to models trained on simulation data
and makes the results comparable to models trained on real
data. This shows the ability of DistDepth for closing the
gap between simulation and real data. Second, stereo sim-
ulation data provide a platform for left-right consistency to
learn metric depth from stereo triangulation. We show a
collection of results in Fig. 9 using DistDepth that is trained
purely on simulation.

Evaluation on NYUv2. Table 3 shows evaluations on
NYUv2. We first train our DistDepth on SimSIN and fine-
tune on NYUv2 with only temporal consistency. Note
that one finetuned model (Sup:4) is categorized as semi-
supervised since it utilizes an expert that has been trained
with NYUv2’s curated depth. The finetuned models pro-
duce the best results among methods without NYUv2’s
depth supervision and even attain comparable results to
many supervised methods. We next train DistDepth only
on simulation (SimSIN) or real data (UniSIN) and eval-
uate on NYUv2. Performances of the model trained on
SimSIN only drop a little compared with that trained on
UniSIN, which justifies our sim-to-real advantage again.
Without involving any training data in NYUv2, DistDepth
still achieves comparable performances to many supervised
and self-supervised methods, which further validates our
zero-shot cross-dataset advantage. We exhibit real-time
depth sensing, 3D photos, and depth-aware AR applications
in supplementary.



Figure 8. Comparison on UniSIN. Geometric shapes produced from DistDepth are better than MonoDepth2. DistDepth concretely reduces
the gap for sim-to-real: (3) and (4) attain on-par results and sometimes training on simulation shows better structure than training on real.

Figure 9. Results on real data (UniSIN) using our DistDepth only trained on simulation (SimSIN).

Table 3. Evaluation on NYUv2. Sup: 3- supervised learning us-
ing groundtruth depth, 7- not using groundtruth depth, and 4-
semi-supervised learning (we use the expert finetuned on NYUv2,
where we have indirect access to the groundtruth). We achieve
the best results among all self-supervised methods, and our semi-
supervised and self-supervised finetuned on NYUv2 even outper-
form many supervised methods. The last two rows show results
without groundtruth supervision and without training on NYUv2.
In this challenging zero-shot cross-dataset evaluation, we still
achieve comparable performances to many methods trained on
NYUv2. Error and accuracy (yellow/green) metrics are reported.

Methods Sup Train on
NYUv2

AbsRel RMSE δ1 δ2 δ3

Make3D [64] 3 3 0.349 1.214 44.7 74.5 89.7
Li et al. [48] 3 3 0.143 0.635 78.8 95.8 99.1
Eigen et al. [17] 3 3 0.158 0.641 76.9 95.0 98.8
Laina et al. [45] 3 3 0.127 0.573 81.1 95.3 98.8
DORN [19] 3 3 0.115 0.509 82.8 86.5 99.2
AdaBins [4] 3 3 0.103 0.364 90.3 98.4 99.7
DPT [59] 3 3 0.110 0.357 90.4 98.8 99.8
Zhou et al. [87] 7 3 0.208 0.712 67.4 90.0 96.8
Zhao et al. [85] 7 3 0.189 0.686 70.1 91.2 97.8
Bian et al. [5] 7 3 0.157 0.593 78.0 94.0 98.4
P2Net+PP [83] 7 3 0.147 0.553 80.4 95.2 98.7
StructDepth [47] 7 3 0.142 0.540 81.3 95.4 98.8
MonoIndoor [36] 7 3 0.134 0.526 82.3 95.8 98.9
DistDepth (finetuned) 7 3 0.130 0.517 83.2 96.3 99.0
DistDepth (finetuned) 4 3 0.113 0.444 87.3 97.4 99.3
DistDepth (SimSIN) 7 7 0.164 0.566 77.9 93.5 98.0
DistDepth (UniSIN) 7 7 0.158 0.548 79.1 94.2 98.5

6. Conclusion and Discussion
This work targets at a practical indoor depth estimation

framework with following features: training without depth

groundtruth, effective training on simulation, high gener-
alizability, and accurate and real-time inference. We first
identify the challenges of indoor depth estimation and study
the applicability of existing self-supervised methods with
left-right consistency on SimSIN. Geared up with the depth-
domain structure knowledge distilled from an expert, we see
substantial improvement in both inferring finer structures
and more accurate metric depth. We show zero-shot cross-
dataset inference that proves its generalizability to work on
heterogeneous data domains and attain a broadly applica-
ble depth estimator for indoor scenes. Even more, depth
learned from simulation data transfers well to real scenes,
which shows the success of our distillation strategy. At
inference time, it only takes a single feed-forward pass to
DepthNet to produce structured metric depth and reach 35+
fps on a portable device which serves real-time needs.

Limitations. Although DistDepth is capable of produc-
ing structured and metric depth using a single forward pass
of depth estimation, it operates on a per-frame basis, which
can be refined to produce more temporally consistent depth
for video inputs [42,50]. Another issue commonly for depth
estimation is the proper handling of reflective objects. With
distillation, DistDepth can produce estimation for objects
with clear contours, as illustrated in Fig. 1 of bulbs. How-
ever, our approach is still not yet robust to large mirrors.
A possible solution is to locate mirrors and perform depth
completion [77, 78, 86, 88] on raw estimates.
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