
1

Spatial audio signal enhancement by a two-stage
source - system estimation with frequency

smoothing for improved perception
Moti Lugasi, Student Member, IEEE, Anjali Menon, Member, IEEE, Vladimir Tourbabin, Member, IEEE,

and Boaz Rafaely, Senior Member, IEEE,

Abstract— In many applications, such as hearing aids and
virtual reality, spatial audio is used to provide a more natural
experience to the users. However, when captured in the real
world, the audio signals may suffer from noise and interference.
The challenge in this case is to attenuate the undesired signals,
while preserving the desired signals with their spatial informa-
tion. In this paper, an approach for spatial signal enhancement
is presented. This approach is based on two phases of estimation.
The first phase is source signal estimation using a beamformer.
Then, in the second phase, the acoustic transfer function (ATF)
between the source and the array is estimated leading to an
enhanced estimation of the desired signal at the microphones.
This approach has been previously proposed but was not inves-
tigated in depth. In this paper, a model for the estimated desired
signals is developed. In contrast to other methods of spatial
enhancement, no trade-off between noise reduction and signal
distortion is found in this model in the circumstance of a single
desired source and single interfering source in a reverberant
room. To overcome the limited accuracy of ATF estimation for
short duration signals, frequency smoothing is applied. Listening
tests verify the performance of the proposed approach.

I. INTRODUCTION

The important information that 3D sound carries and the
natural way in which human beings process these signals
motivate the incorporation of 3D sound in many applications,
such as hearing aids [1], [2], virtual reality [3] and commu-
nication [4], [5]. In most of the aforementioned applications
the sound field is captured in the real world by using a
microphone array [6]. One problem encountered in this case
is that the captured sound field may be composed of undesired
components (e.g. noise sources and interference) in addition
to the desired components. Hence, methods for the reduction
of these undesired components are required.

There are a number of approaches that attempt to solve
this problem. Most recent methods that are based on deep
neural networks have been found to be useful for enhancing
single channel signals, while preserving the monaural infor-
mation [7], [8]. However, despite their effectiveness in noise
reduction, these methods do not preserve spatial cues of the
processed signals, and are therefore not suitable for spatial
audio enhancement.

Binaural beamformers are a common solution for noise
reduction and spatial cue preservation in the case of hearing
aids. In [2] the authors suggest using a binaural beamformer,
which, in certain acoustic cases, can be decomposed into a
spatial filter (e.g. beamforming) and a single-channel postfilter.

This method manages to preserve the spatial cues of the
desired sound field, but may change the spatial cues of the
residual noise; this may be problematic for acoustic awareness
and environmental orientation. Hence, different extensions of
this method have been developed to preserve the spatial cues
of the residual noise in the cases of diffuse noise [9], [10] and
directional interference [11], [12]. Another approach suggests
applying common time-frequency masking to the binaural
signal in order to attenuate the noise [13], [14]. However, in
all of the aforementioned methods there is a trade-off between
noise reduction and distortion of the desired components of
the sound field. Moreover, these methods require the signals
at the ears of the listeners, which restricts the choice of the
microphone arrays that can be used and the range of operations
that can be applied to those signals. One such operation
enables to track the head rotation of the listener when the
captured signals are played off-line [15].

In contrast, spherical microphone arrays (e.g. [16]) do
not exhibit the last-mentioned limitations. Hence, they are
commonly used for binaural reproduction [17] and for sound
field reproduction [18], typically using Ambisonics signals
[19]. Spherical arrays are also used for real-world recordings,
motivating the development of methods that attempt to reduce
the noise in the Ambisonics signals. In [20], [21] the authors
proposed methods to attenuate some directions of the sound
field and to amplify others, so that directional interference
signals are attenuated. However, as a result, the desired sound
field may be distorted as well. In [22], [23] the authors
proposed two methods. The first method estimates the desired
source signals, and then recovers the desired sound field by
matching each source estimation to its corresponding steering
vector. Hence, this method may not be suitable for reverberant
sound fields. The second method proposes the application
of a Wiener mask to each component of the sound field’s
plane wave amplitude density function (PWD), but this may
change the direction of arrival (DOA) of the residual noise
under certain acoustic conditions [24], [25]. In addition, this
method distorts the desired sound field [23]. Another drawback
of methods based on Ambisonics enhancement is that the
Ambisonics signals typically require a specially designed mi-
crophone array, which may not be practical for all applications
[19, Ch. 1]. It is noteworthy that in order to use Ambisonics
signals for binaural reproduction, the head related transfer
function (HRTF) of the user (the listener) is required [26].
For practical reasons, this HRTF is measured using a dummy
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head, which may not generalize well for some users [27].
While in many cases the methods presented above provide

a good solution for spatial audio signal enhancement, they
all have clear limitations. Methods tailored for binaural and
spherical arrays impose a severe constraint on array configura-
tions, while many methods require information on the signal’s
statistics, which may not always be available. In summary, a
method that can be applied to any microphone array and that
does not require extensive prior information may be of great
interest. One example of such a method was presented in [28];
in this method the desired source signal is estimated using
a maximum directivity beamformer, followed by acoustic
transfer function (ATF) estimation. However, this method was
only proposed for spherical arrays, and lacked comprehensive
theoretical and experimental performance analysis.

Motivated by [28], in this paper a general framework for
spatial audio capture enhancement is presented. The desired
source signal is first estimated using a spatial filter, and then
the ATF is estimated using the method from [29] to reproduce
the desired signal at the microphones. This framework can
be applied under various acoustic conditions and with various
microphone arrays, while the only required prior information
is for the beamforming. Recently, this approach was shown,
objectively and in a listening test, to be very effective for
spatial enhancement in the case of a wearable array (the
Facebook augmented reality glasses [30], [31]).

The contribution of this paper is threefold. First, models for
the observed signal, the source signal estimate, and the ATF
estimate are provided, facilitating analysis of the errors and
artifacts of the processed signals. These models predict that the
proposed approach will provide distortion-free enhancement of
the processed signals in the case of a high output signal-to-
noise ratio (SNR) at the source estimation stage. In addition,
these models predict that, in contrast to other approaches
[11], [12], the spatial cues of the residual noise may not
be preserved using the proposed approach. Second, frequency
smoothing is used in the ATF estimation stage to improve the
perception experience. Third, objective analysis and listening
tests show the superiority of the proposed approach over other
state-of-the-art methods for spatial enhancement.

II. SIGNAL AND SYSTEM MODEL

Assume that a desired source, with signal s, and L interfer-
ing sources, with signals u1(f), u2(f), ..., uL(f), are located
in a reverberant room, where f denotes the frequency in Hz.
In addition to these sources, assume an undesired noise, which
cannot be described as a point source, also exists in this room,
and the entire sound field is captured by using a microphone
array with an arbitrary configuration, having I microphones.
The model of the observed signal, denoted x, with size I × 1,
is given by:

x(f) = s(f)h(f) +

L∑
l=1

ul(f)rl(f) + ñ(f), (1)

where h(f) = [h1(f), h2(f), ..., hI(f)]
T and rl(f) =

[rl1(f), rl2(f), ..., rlI(f)]
T for l = 1, 2, ..., L are the ATFs

of the desired and the L interference sources at frequency f ,

respectively; the signal ñ(f) denotes the ambient noise, and
(·)T represents the transpose operator. The terms hi(f) and
rli(f) are denoted the ATFs of the desired source and the lth

interfering source for 1 ≤ i ≤ I , respectively. For brevity the
frequency index, f , is omitted from now on.

Equation (1) can be rewritten using matrix notation as
follows:

x = hs+Ru+ ñ = d+ n, (2)

where R = [r1, r2, ..., rL], u = [u1, u2, ..., uL]
T , d = hs

and n = Ru+ ñ; d and n are the desired and the undesired
microphone signals, respectively. Throughout this work it is
assumed that d and n are independent zero-mean random
processes and the correlation matrix of vector n is given by:

P = E{nnH}, (3)

where E{·} is the expectation operator, (·)H represents the
conjugate transpose operator.

III. DISTORTIONLESS ENHANCEMENT

The aim of this work is to reduce the noise level in a
spatial audio signal, while maintaining the desired microphone
signal unchanged. In other words, the desired microphone
signal d in (2) should be undistorted, while the variance
of the undesired microphone signals at each microphone is
required to be attenuated. This can be achieved by applying
I beamformers (as the number of microphones in the array),
where each one of these beamformers provides a distortionless
response to the desired signal, while minimizing the noise
variance at its corresponding microphone. These beamformers
will be defined first.

Let
wi = [wi,1, wi,2, ..., wi,I ]

T (4)

denote the ith beamformer weights at frequency f , which aim
to produce the undistorted desired signal of the ith microphone
at the beamformer’s output:

yi = wH
i x, (5)

where yi denotes the output of the ith beamformer. Now, the
contribution of the noise component to the variance of the
beamformer’s output, E{|yi|2}, is computed from (2), (3) and
(5) as wH

i Pwi. Minimizing this noise term and constraining
a distortionless response leads to I optimization problems as
follows:

minimize
wi

wH
i Pwi

subject to wH
i h = hi, for i = 1, 2, ..., I.

(6)

The solution is given by [19, p. 163], [32, pp. 428-709] as:

wi
oracle = h∗

i ·
P−1h

hHP−1h
= h∗

i ·woracle, for i = 1, 2, ..., I. (7)

Note that these I oracle beamformers have a common term,
denoted as woracle, while the term h∗

i is different for each
beamformer i. This separation of terms provides a unique in-
terpretation for the beamformers, that stems from the common
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beamformer woracle. This beamformer (woracle) is the optimal
solution of the following optimization problem:

minimize
w

wHPw

subject to wHh = 1,
(8)

where (·)∗ is the conjugate operator and w =
[w1, w2, ..., wI ]

T . The solution of (8) is a beamformer
that aims to provide a distortionless estimate of the source
signal s, while minimizing the noise component at the
beamformer output. Once this single beamformer has been
computed, all I beamformers can now be obtained directly
from (7).

Following the derivation above, the goal of producing a dis-
tortionless response for the desired microphone signals, while
minimizing the contribution of the noise, can be achieved
in two stages: (i) apply a minimum-variance distortionless
response beamformer, with weights woracle from (7), to esti-
mate the desired source signal s, denoted here ŝ; (ii) multiply
ŝ by h to obtain the noise-attenuated desired signal at the
microphones, leading to:

yknown h = ŝ · h, (9)

where yknown h = [y1, ..., yI ]
T .

Note that, as detailed above, the optimal solution of (6)
requires knowledge of the ATF h, even at the source estimation
stage. Unfortunately, in practice, the ATF corresponding to
the desired source may not be known. For that reason the
beamformer from (7) is assumed to be an oracle beamformer.
In the following sections an approach for estimating the
desired source signal and its corresponding ATF is presented
with the aim of approximating the ideal solution in (9).

IV. DESIRED MICROPHONE SIGNAL ESTIMATION PROCESS

In order to estimate the desired microphone signal from
the observed signal, two phases are used. In the first phase,
the desired source signal is estimated by using a spatial filter
(beamformer). In the second phase, the ATF, h, is estimated
using the desired source signal estimate, ŝ, and the observed
signal, x. Then, these two estimates are used to recover the
desired microphone signals, d. In this section, these phases
are presented.

A. Source signal estimation using beamforming

By using spatial filtering (beamforming) and the observed
signal, the source can be estimated as follows:

ŝ = wHx, (10)

where w = [w1, w2, ..., wI ]
T is the vector of the beamformer

weights. Typically, the beamformer is steered towards the
direct sound. Therefore, the steering vector in the desired
source DOA should form a basic beamformer. Assuming that
the required information is available, by using a beamformer
with a distortionless response in the DOA of the desired
source, the desired source signal is correctly obtained at the
output of the beamformer. In addition, the reflections and the
noise sources also appear at the output of the beamformer

and add distortion and noise to the source signal estimate. By
substituting (2) into (10), the following is obtained:

ŝ = wHd+wHn

= wHhs+wHn.
(11)

It can be shown that the ideal beamformer from (7) maximizes
the SNR at the output of the beamformer; this will later be
shown to be an advantage. However, the ATF h is required in
order to construct this beamformer. Hence, in many acoustic
scenes where the ATF is not available, the ideal beamformer
is not a practical solution, and other alternatives are needed.

Assuming that there are segments in time where the ob-
servation signal x does not contain the desired microphone
signals d, the matrix P can be estimated. In addition to the
assumption that the steering vector in the desired source DOA
is given, a realistic approximation of woracle from (7), which
solves the optimization problem:

minimize
w

wHP̂w

subject to wHad = 1,
(12)

can be obtained, and the solution is given by:

wMVDR =
P̂−1ad

adHP̂−1ad
, (13)

where P̂ is an estimate of matrix P and ad is the steering
vector in the desired source DOA. Unlike the ATF h, the steer-
ing vector ad is dependent only on the array configuration; it
is the transfer function between the source and the array in
a free field. Therefore, ad can be calculated (or measured)
once, for a given DOA, and then can be used for any acoustic
condition. The beamformer in (13) is called the minimum
variance distortionless response (MVDR) beamformer [19,
p. 163], but, in this case, the distortionless response is only
for the direct sound.

If matrix P cannot be estimated for some reason, then, by
assuming that the undesired microphone signal is spatially
white noise, namely P ∼ II , where II is a unit matrix of
size I × I , the beamformer in (13) can be rewritten as:

wBar =
ad

∥ad∥2
, (14)

which is also known as the Bartlet beamformer [33]. The
beamformers presented in (13) and (14), in addition to the
ideal solution from (9), will be used to estimate the desired
source signal, and the results of each will be theoretically and
experimentally analyzed later, where the ideal solution from
(9) will be set as an upper bound for the other beamformers.

B. Acoustic transfer function and desired microphone signal
estimation

To estimate the ATF h, the following formulation is used
[34]:

ĥopt =
Ssx

Sss
, (15)

where Ssx and Sss are the cross-spectrum of the signals s and
the observed signal x, and the auto-spectrum of s, respectively.
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Under the assumption that s and n are uncorrelated, the esti-
mator in (15) leads to a correct estimate of the ATF, namely,
ĥopt ≈ h. Unfortunately, in the considered acoustic conditions
the desired source signal s is not available. Therefore, the
estimate of the desired source signal is used to approximate
the estimate in (15) as follows:

ĥ =
Sŝx

Sŝŝ
, (16)

where Sŝx and Sŝŝ are the cross-spectrum of the signals
ŝ and the observed signal x, and the auto-spectrum of ŝ,
respectively. By using the source signal estimate from (11),
and the observed signal from (2), the cross-spectrum of the
desired source signal estimate and the observation vector, Sŝx,
is given by:

Sŝx = Sŝd + Sŝn. (17)

By using matrix P from (3), the explicit definition of d from
(2), and the explicit expression of the desired source signal
estimate given in (11), the cross-spectra Sŝd, and Sŝn are given
by:

Sŝd = Sss(w
Hh)∗h, (18)

and
Sŝn = Pw, (19)

where Sss is the auto spectrum of the desired source signal.
By substituting (18) and (19) into (17), Sŝx is rewritten as:

Sŝx = Sss(w
Hh)∗h+Pw. (20)

Using (11) and (3), the auto-spectrum of the desired source
signal estimate, Sŝŝ, is given by:

Sŝŝ = Sss|wHh|2 +wHPw. (21)

Therefore, by substituting (20),(21) into (16) the following is
obtained:

ĥ =
Sss(w

Hh)∗h+Pw

Sss|wHh|2 +wHPw
. (22)

Later, (22) will be investigated for a simple acoustic scene to
provide some insight into this expression.

Using the source signal estimate, ŝ, and the estimate of the
ATF, ĥ, the estimate of the desired microphone signal, d, is
given by:

y = ŝĥ. (23)

V. THEORETICAL PERFORMANCE ANALYSIS

In this section a theoretical analysis of the proposed ap-
proach, as presented in the previous section, is provided. In
order to estimate the desired microphone signals d, the desired
source signal estimate from (11) and the estimate of the ATF
h from (22) are substituted into (23). For the general case, the
expression from (23) might be complex to analyze. Therefore,
a simple acoustic scene, composed of one desired source and
one interference, is considered in order to gain insight into the
noise attenuation and the signal distortion that the proposed
approach provides.

A. Expansion of the estimated desired microphone signal into
distinct components

Under the assumption of a single desired source and a
single interference that are located in a reverberant room, the
estimates of the desired signal and its corresponding ATF,
according to (11) and (22), are given by:

ŝ = wHh · s+wHr1 · u1, (24)

and

ĥ =
h

wHh
· SNRBF

1 + SNRBF
+

r1
wHr1

· 1

1 + SNRBF
, (25)

respectively, where u1 and r1 were defined in (1), SNRBF is
the SNR at the output of the beamformer and is given by:

SNRBF =
Sss|wHh|2

wHPw
=

Sss|wHh|2

Su1u1
|wHr1|2

, (26)

and P = Su1u1
r1r

H
1 in this case. As shown in (26), for this

specific acoustic scene, the SNR at the beamformer’s output
can be presented as a multiplication of two components as
follows:

SNRBF = SNRin · |G|2, (27)

where SNRin = Sss

Su1u1
and G = wHh

wHr1
. Therefore, using

(24), (25) and (27) leads to the following representation of
the desired microphone signal estimate:

y = sh · SNRBF

1 + SNRBF︸ ︷︷ ︸
ys

+ sr1 ·
G

1 + SNRin · |G|2︸ ︷︷ ︸
ys phantom

+ u1h · SNRin ·G
1 + SNRin · |G|2︸ ︷︷ ︸

yu phantom

+u1r1 ·
1

1 + SNRBF︸ ︷︷ ︸
yu

.

(28)

As can be seen from (28), four components compose y,
labeled ys, ys phantom, yu phantom and yu. The rationale behind
the names of the components composing y stems from their
physical interpretation; for instance, ys contains the desired
source in its original position (due to the appearance of ATF
h), whereas, ys phantom is the desired source in the position
of the undesired source position (due to the appearance of
ATF r1). These four components are analyzed in the following
sections.

B. Frequency dependent distortion (ys)

The first component in (28) is composed of the product
of the terms sh, and is the desired microphone signal d
and the term SNRBF

1+SNRBF
. The term SNRBF

1+SNRBF
is frequency de-

pendent, and may lead to frequency-dependent distortion, in
particular when SNRBF is low and changes significantly with
frequency. Note that SNRBF

1+SNRBF
depends on the beamformer’s

performance, namely this component becomes closer to 1
as SNRBF increases, which leads to better estimation of the
desired microphone signals d from this component.
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C. Distortion with spatial characteristic (ys phantom)

The second component in (28), namely ys phantom, is a
scaled version of the desired source signal, but relocated to
the undesired source position. Therefore, this component is
considered to be a spatial distortion. It is clear from (28) that
when SNRBF ≫ 1 and |G| > 1, this component is proportional
to 1

G , implying that this component diminishes as G increases.

D. Spatially distorted noise component (yu phantom)

The third component in (28), namely yu phantom, is a scaled
version of the undesired source, but relocated to the desired
source position. Therefore, this component is considered to be
an artificial interference, because it does not represent a real
source in the room. It is clear from (28) that when SNRBF ≫ 1
and |G| > 1, this component is proportional to 1

G , implying
that this component also diminishes as G increases.

E. Attenuated noise component (yu)

The fourth component in (28), namely yu, is a scaled
version of the undesired source from its original direction.
This component diminishes as SNRBF increases.

F. Noise reduction and signal distortion trade-off

In many traditional methods for noise attenuation, such as
those mentioned in Sec. I, there is a trade-off between noise
reduction and signal distortion, namely, as the noise reduction
increases the distortion level also increases and vice versa.
This trade-off is investigated in this section for the proposed
approach.

Assuming SNRBF ≫ 1 and |G| ≫ 1, the source signal
estimate from (24) reduces to:

ŝ ≈ s ·wHh. (29)

Note that even when SNRBF is high the estimate of s is
distorted by wHh. Now, using ŝ in (29) to estimate the ATF
h with (16) leads to:

ĥ ≈ h

wHh
. (30)

This result also shows that the estimate of h is distorted even
under high SNRBF. Next, by substituting (29) and (30) into
(23), the following estimate of the desired microphone signal
d, assuming that wHh has an inverse (i.e., wHh ̸= 0) is
given:

y ≈ s ·wHh · h

wHh
= sh = d. (31)

This is a very important result, which shows that when SNRBF
is high, the estimate of the desired signal at the microphone
is approximately distortionless, even though the estimates
of s and h may carry significant distortion. Furthermore,
according to subsections V-B, V-C, V-D, and V-E, it can be
deduced that there is no trade-off between noise reduction
and signal distortion for this specific acoustic scene, namely,
higher noise attenuation at the beamformer’s output leads to
improved performance in terms of both noise reduction and
signal distortion. These insights provide the motivation to find
the beamformer which maximizes SNRBF.

G. Limitations

Clearly, alongside the advantages of the proposed approach,
there are some limitations. Observing (28), the limitations of
the proposed approach can be outlined:

• To approximately achieve the result from (31) G needs
to have a high value. According to the definition of G,
to get that high value, spatial separation between the
ATFs of the desired and the undesired sources is required.
This result predicts that the proposed approach will have
limited noise attenuation in the case of diffuse noise.

• In the proposed approach, it is assumed that the desired
signal d is given by the multiplication of the desired
source signal, s, and the corresponding ATF, h. Later in
this paper, the ATF will be estimated in the STFT domain
using time averaging (for each frequency). In order to
achieve the multiplicative transfer function approxima-
tion, the length of the STFT window should be large
enough [29]. Therefore, a limit on the time duration of the
room impulse response, is required as prior information
for the proposed approach.

These two limitations can cause errors and artifacts when the
required conditions are violated, and their influence should be
further investigated in future work.

VI. FREQUENCY SMOOTHING FOR ENHANCING ATF
ESTIMATION

In the current work, the ATF was estimated using averaging
in the STFT domain by assuming the multiplicative transfer
function (MTF) approximation [29]. As shown in [29], the
ATF estimate may suffer from numerical errors. Later in this
paper, these errors will be shown to have a distinct effect on the
signal perception. In this section, these errors are investigated,
and a perceptually effective way to reduce them is suggested.

We first assume, for simplicity, that the desired source signal
is available. This means that (15) can be approximated in
practice by employing the MTF approximation and applying
averaging in the STFT domain. Therefore, the observation
signal (x from (2)) and the desired source signal (s from (11))
are presented in the STFT domain [35] as follows:

xp,k = dp,k + np,k, (32)

where p represents the time frame index and k represents the
frequency index. Then, assuming that there are Nt available
time frames for each frequency index, the observation matrix:

xk = [x1,k,x2,k, ...,xNt,k] = dk + nk, (33)

where dk = [d1,k,d2,k, ...,dNt,k] and nk =
[n1,k,n2,k, ...,nNt,k], and the desired source signal vector:

sk = [s1,k, s2,k, ..., sNt,k]
T , (34)

are defined for each frequency index k. Here, sp,k denotes
the source signal in the STFT domain. Finally, the numerical
approximation of (15) for each frequency index k is given by
[29]:

h̃k =
xks

∗
k

∥sk∥22
, (35)



6

where the numerator is the estimate of Ssx, the denominator
is the estimate of Sss and ∗ represents the complex conjugate.
By substituting the explicit expression of (33) into (35) the
following is obtained:

h̃k =
dk · s∗k
∥sk∥22

+
nk · s∗k
∥sk∥22

. (36)

The first component of (36), namely dk·s∗k
∥sk∥2

2

, is the estimate of
(15), which may suffer from error due to the limited window
length of the STFT and due to other numerical errors. The
second component of (36) is the cross term between s and
n, which diminishes because s and n are assumed to be
uncorrelated. However, because of the finite number of time
frames this cross term will not be completely eliminated.
Therefore, (35) may also suffer from this cross term residual
error. In total (35) can be approximated by:

h̃k ≈ Emk · hk + Erk, (37)

where Emk is a multiplicative error representation of the first
term in (36), Erk represents the cross term residual error and
hk represents the true ATF at frequency index k. These errors
also occur when the MTF approximation is used to estimate
(16).

In terms of spatial perception, when (37) is multiplied by
the desired source signal to estimate d, the cross term residual
error that is multiplied by the desired source signal will be
shown to have a significant effect that dramatically deteri-
orates the auditory experience. Moreover, this phenomenon
may damage the spatial cues available in the estimate of d.
The cross term residual error becomes less significant as the
number of available time frames increases [29].

In order to overcome the effect of the cross term residual
error for signals with a short time duration, the following
assumptions are used. First, the cross term residual error, Er,
at the frequency index k is assumed to be uncorrelated with
Er at the different frequency indices. The second assumption
is based on the perceptual insight that frequency smoothing
of the ATF may not lead to a significant change in auditory
perception [36]. Therefore, frequency smoothing is used as
follows: for K = 2 · LF + 1 frequency indices around the
frequency index k, the band observation matrix:

Xk = [x(k−LF ),x(k−LF+1), ...,x(k+LF )], (38)

and the band desired signal vector:

Sk = [sT(k−LF ), s
T
(k−LF+1), ..., s

T
(k+LF )]

T , (39)

are defined, where LF is the number of frequency indices
which are used in the band. When k < LF or k > LF only
the available frequency indices are used, namely, 1, 2, ..., k +
LF and k − LF , k − LF + 1, ..., F , respectively, where F is
the number of frequency indices that are available. Then, the
estimate of the ATF at the frequency index k using frequency
smoothing is given by:

h̃k =
XkS

∗
k

∥Sk∥22
. (40)

The solution given in (40) may be understood as a weighted
arithmetic mean of the ATF h in the frequency band K around

the frequency index k. As a larger K is used, the cross term
residual error decreases, but, because the ATF is averaged
over more frequencies, the multiplicative error may increase.
As mentioned above, for some values of K this frequency
smoothing may not deteriorate the auditory perception. On
the other hand, due to the extra averaging over the additional
K−1 frequency indices, the cross term residual error may be
attenuated.

Therefore, in order to implement the proposed approach,
first the source signal is estimated using a beamformer, as
presented in Sec. IV-A, and then, the ATF is estimated as
suggested in (40) for a specific value of K. Finally, these two
estimates are multiplied as follows:

y = ŝ · h̃ŝ, (41)

where ŝ represents the desired source signal estimate and h̃ŝ

is the ATF estimation as presented in (40), where instead of
using the true desired source signal, its estimate is used (the
frequency index k was omitted for brevity). The estimate in
(41) is an approximation of (28) (for the considered acoustic
scene), which, besides the noise and the distortion components
that were presented in (28), also suffers from multiplicative
and cross term residual errors as presented above.

VII. OBJECTIVE MEASURES OF PERFORMANCE

In this section, objective measures are formulated in order
to evaluate the proposed approach.

First, a measure which calculates the distortion of a vector
in comparison with a reference vector is proposed in order
to evaluate the distortion in the estimated source signal and
ATF, as mentioned in the previous sections. Given vector z
and a reference vector zref , where both are presented in the
frequency domain, the normalized average over F frequency
points of the squared Euclidean distance between these vectors
is defined as:

Dist(z, zref ) =

∑F
f=1

∥∥z− zref
∥∥2∑F

f=1

∥∥zref∥∥2 . (42)

As Dist becomes smaller, the distortion level in z is reduced,
which means that z becomes more similar to zref .

The first measure defined using Dist is the total distortion
of the desired microphone signal estimate y. Recall from Sec.
VI that (41) suffers from theoretical distortion due to ys and
ys phantom, and practical distortion due to the multiplicative and
cross term residual errors as detailed in Sec. VI. In order
to quantify this distortion, the desired microphone signal, d,
is taken as a reference. As the computation of y involves
beamforming (in the first stage of estimating s, see Sec. IV-A),
this distortion measure is defined for a given beamformer.
First, the total distortion of the MVDR is given by:

TDMVDR = Dist(ŝ · h̃ŝ|u1=0,d), (43)
where ŝ is computed using an MVDR beamformer as in (13).
The total distortion of the Bartlet based processing, namely
TDBartlet, is defined similarly.

Another variation of the measure Dist is used to assess
the distortion due to the practical estimation of the ATF as



7

mentioned in Sec. VI. Further, as presented in Sec. VI, the
ATF estimate using the MTF approximation may suffer from
multiplicative and cross term residual errors. Therefore, the
model of y from 28 may suffer from additional errors. In
order to determine the source of the error, a reference method
is used that assumes that the source is given, and the ATF is
estimated by using (35). Then, the desired microphone signals
for this case are given by:

yknown s = s · h̃ = s · Em · h+ s · Er. (44)

Therefore, in order to assess the distortion in yknown s due
to the practical estimation process of the ATF, the following
measure is used:

TDknown s = Dist(yknown s,d). (45)

Then, in order to segregate between the contributions of the
different errors (Er and Em), the following measures are used:

Mult error = Dist(s · Em · h,d), (46)

and

Res error = Dist(d+ s · Er,d)

=

∑F
f=1∥s · Er∥2∑F

f=1∥d∥
2

.
(47)

Finally, in order to quantify the noise reduction in the pro-
cessed signal using the MVDR based processing, the following
noise gain measure is used:

NGMVDR =

∑F
f=1

∥∥∥ŝ · h̃ŝ|s=0

∥∥∥2∑F
f=1∥n∥

2
, (48)

where ŝ is computed using an MVDR beamformer as in (13).
The noise gain for the processed signals using Bartlet based
processing, namely NGBartlet, is calculated similarly. The noise
component of yknown h from (9) is used as a reference method
for the noise gain performance of the proposed approach:

NGknown h =

∑F
f=1∥yknown h∥2∑F

f=1∥n∥
2

∣∣∣∣∣
s=0

. (49)

As NG becomes smaller, the noise components are better
attenuated.

VIII. SIMULATION STUDY

In this section, a comprehensive Monte Carlo simulating,
validating some of the theories using the objective measures
of performance, is reported. Some prior information about the
acoustic scene and microphone array will be used to prevent
errors from auxiliary algorithms:

• The DOA of the desired source is assumed to be given.
In practice, for the case of a reverberant environment, the
DOA should be estimated, for example, using [37], [38]

• The noise covariance matrix is assumed to be given. In
practice, this matrix should be estimated. In the case of
stationary noise source, voice activity detector (VAD) can
be used to detect speech absence time segments, and then
time averaging can be applied to estimate this matrix

(as presented in [1]). In the case of a non-stationary
interfering source, e.g. a speaker, association methods can
be used to detect the time segments of the interfering
speaker [31].

• The time duration of the room impulse response is
assumed to be given. In practice it can be estimated using
[39], [40].

Each acoustic scene in this study was constructed as presented
next. In addition, all the values of the parameters that will be
presented next are reported in Table. I.

A. Setup

The acoustic scene simulated using the image method
[41] consists of a desired point source, with source signal
s(t), and an interfering point source, with source signal u(t)
(where t represents the time index), which are located in
a rectangular room with reverberation time T60 and critical
distance rc. A microphone array is also located in the room,
and the ATFs h and r, representing the transfer functions from
the desired source and the interference, respectively, to the
microphone array, are also simulated. The length of h in the
time domain is denoted as Lh. The microphone array is located
at (x0, y0, z0) in the room, with microphone signals sampling
the sound pressure with a sampling frequency of 16 kHz. The
microphone array, the desired source and the interference have
the same position on the z-axis (z = 1.7m), and the locations
of the sources in the x − y plane are presented by using the
couple (rs,Φs) and (ru,Φu), which represent the distance and
the angle of the sources relative to the microphone array’s
position, as shown in Fig. 1. Two additional noise sources were
also simulated. The first one is sensor noise, simulated as white
noise, with ñsn representing the microphone noise signals in
the time domain. The second one is reverberant noise, i.e.,
noise whose reverberant part is much more dominant than its
direct part as they are captured at the array’s microphones.
This reverberant noise is generated by a pink noise source
that is located at the point (x, y, z) in the room that is most
distant from the origin, where ñpn represents the reverberant
noise signals as they are captured at the microphone array in
the frequency domain.

B. Methodology

Having generated microphone signals as presented in Sec.
VIII-A, the spatial correlation matrices are computed as fol-
lows. The matrix P from (3) for every frequency f can be de-
scribed as composed of three matrices: P = Ppn+Psn+Pu,
where matrices Psn, Ppn and Pu are the correlation matrices
of the microphone sensor noise, the reverberant noise and the
interference at frequency f , respectively, and are assumed to
be uncorrelated. In order to estimate the matrices Psn and
Ppn for each frequency f , each entry of the vectors ñsn

and ñpn is presented in the time-frequency domain (using a
Hanning window of length 512 samples, 50% overlap, FFT of
length L2 and sampling frequency of 16 kHz). Then, for each
frequency f , the outer products of these vectors are averaged
over all the available time frames (assuming 5 seconds are
available for averaging). The matrix Pu is calculated using the
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Fig. 1. Top projection of the acoustic scene, showing the two sources and
the semi circular array.

model Pu = Su1u1
· r1rH1 for each frequency f , where Su1u1

is the average auto spectrum of the undesired source signal
calculated in the STFT domain with similarity as mentioned
above.

In order to set the level of the microphone sensor noise and
the reverberant noise, the following observations are made.
First, ñsn satisfies E{ñsnñ

H
sn} = σ2

nII , where σ2
n is the

variance of the noise at each microphone of the array. Second,
the correlation matrix of the reverberant noise is a non diagonal
matrix in general. Hence, to effectively set the reverberant
noise level, only the mean of the matrix diagonal (namely the
mean over diag(E{ñpnñ

H
pn})), is used and denoted as σ2

pn.
Following these definitions, three different measures for the
noise power ratio were defined: signal to interference ratio
(SIR), defined as SIR =

∑T
t=1 s2(t)∑T
t=1 u2(t)

, signal to sensor noise ratio

(SSNR), defined as SSNR =
1
T

∑T
t=1 s2(t)

σ2
sn

, and signal to rever-

berant noise ratio (SRNR), defined as SRNR =
1
T

∑T
t=1 s2(t)

σ2
pn

.
Having defined the levels of all the signal and room param-

eters for each realization of the Monte Carlo simulation (see
details below), the microphone signals can be computed. From
the microphone signals, the desired source is estimated using
the MVDR, the Bartlet and the oracle beamformers as detailed
in (13), (14) and (7), respectively. In the next stage, the ATF
is estimated using (40) (with a Hanning window of length
L1 samples, 75 % overlap, FFT of length L2 and sampling
frequency of 16 kHz), where the beamformers’ outputs were
used instead of s. The source estimate and the corresponding
estimate of the ATF were multiplied as presented in (23) in
order to calculate the estimate of the desired microphone signal
y for the case of the Bartlet and the MVDR beamformers.

In order to compute yknown h from (9) the output of the
oracle beamformer and the true ATF h were multiplied. The
reference computation yknown s from (44) was also calculated
using (40).

The fixed and the varying parameters for this Monte Carlo
simulation are presented in Table. I. The Monte Carlo simula-
tion includes the following varying parameters: three different
rooms, four different source positions and two different array
configurations, which lead to 24 realizations in total. In

TABLE I
DETAILS AND PARAMETERS OF THE MONTE CARLO

SIMULATION.

Independent
variable

Description

Desired
source signal
(s(t))

A 10 seconds speech utterance taken from the TIMIT
corpus [42].

Interference
signal (u(t))

A 10 seconds speech utterance taken from the TIMIT
corpus [42].

SSNR SSNR = 30 dB
SIR SIR = 0 dB
SRNR SRNR = 20 dB
Room
parameters

Three different rooms:
The first room: dimensions x × y × z = 8m ×
6.5m × 3m, T60 = 0.4 s, rc = 0.86m, Lh =
0.4 s.
The second room: dimensions x × y × z = 6m ×
5m×3m, T60 = 0.6 s, rc = 0.51m, Lh = 0.6 s.
The third room: dimensions x × y × z = 10m ×
8m×3m, T60 = 0.8 s, rc = 0.73m, Lh = 0.8 s

Array
position

(x0, y0, z0) = (2, 2, 1.7)m

Source posi-
tions

Four different source positions: for all the positions
rs = ru = 1m and the angles are: (Φs,Φu) =
(0◦,−45◦), (Φs,Φu) = (0◦,−90◦), (Φs,Φu) =
(45◦,−45◦) and (Φs,Φu) = (45◦,−90◦).

FFT length
L2

L2 = 4 · Lh

Window
length L1

L1 = 2 · Lh

Array con-
figurations

The first array:
spherical microphone array with 36 microphones
positioned nearly-uniformly around a rigid sphere
with radius 0.042m.
The second array:
semi-circular array with radius 0.042m and 10
microphones in free field.

each realization the objective measures from Sec. VII were
calculated for K = 2 · LF + 1 where LF = 1, 2, 3, ..., 30.

C. Distortion analysis

In Fig. 2, the total distortion of the MVDR, the Bartlet and
the reference method (which assumes that the desired source
is known) are presented for K = 1, namely, no frequency
smoothing is used. These results are given by averaging
over all the realizations of the Monte-Carlo simulation. As
presented in this figure, the total distortion of yknown s is not
zero (i.e., not minus infinity in dB). This means that there
are some errors in the ATF estimate as mentioned in Sec.
VI. Later in this analysis, these errors will be investigated
as a function of the frequency smoothing coefficient (K). The
total distortion of the MVDR almost attains the total distortion
of yknown s for both array configurations. It can therefore be
concluded from this result that the total distortion of the
MVDR beamformer is dominated by the errors due to the
ATF estimation process, rather than the distortion due to the
estimation of s (SNRBF dependent). It can also be seen that
the Bartlet beamformer displays relatively high total distortion
compared to the total distortion of yknown s. This result implies
that the error in the ATF estimation using the output of the
Bartlet beamformer is relatively low compared to the distortion
due to the estimation of s in this case. In the next sections a
deeper investigation is conducted in order to determine the



9

Fig. 2. The total distortion in dB of the different methods, computed using
(43) and (45) for both array configurations and averaged over all other Monte
Carlo simulation conditions. The median line in the box represents the median;
the bottom and top edges represent the 25th and 75th percentiles, respectively.

source of the errors in the MVDR method and the known s
reference method.

D. The trade-off between the multiplicative and the cross term
residual errors

As presented in (37), the estimate of the ATF using the
MTF approximation may suffer from multiplicative and cross
term residual errors. The results of the Monte Carlo simulation
which investigates these errors, assuming that the desired
source signal is known, are presented in Fig. 3. As shown
in this figure, for K = 1, namely, no frequency smoothing
is used, the total distortion under the conditions of this
experiment is mostly dominated by the cross term residual
error, where the multiplicative error is significantly smaller.
Therefore, it can be concluded that the total distortion, which
is presented in Fig. 2 for the reference method, is mostly
dominated by the cross term residual error. As K increases,
the weighted arithmetic mean of the ATF h, as detailed in Sec.
VI, uses more frequencies for averaging, which may lead to a
less accurate ATF estimate. On the other hand, as K increases,
the cross term residual error may diminish as also explained
in Sec. VI. These phenomena are clearly shown in Fig. 3.
The results shown in Fig. 3 are presented for the spherical
array, while the results of the semi-circular array are similar,
because the ideal and not the estimated source signal is used
for both cases. The analysis presented here clearly shows the
potential benefit of frequency smoothing for reducing the total
distortion in the estimation of the ATF. This is studied further
next.

E. The effect of frequency smoothing on distortion

In Fig. 4 the total distortion of the MVDR, the Bartlet and
the reference method, where the desired signal is known, are
presented as a function of the frequency smoothing parameter
K. As shown in this figure, the graphs for the different meth-
ods have the same trend as a function of K, which presents
a decrease of the total distortion up to an optimal K (K = 9
in this case), and then an increase of the total distortion. This
trend implies that the trade-off between the multiplicative error
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Fig. 3. The measures TDknowns, Res error and Mult error represented in dB
as a function of K for the spherical array. The results for the semi-circular
array are similar. The solid lines represent the median of the Monte Carlo
simulation results and the upper and the lower edges of the transparent filled
areas represent the 25th and 75th percentiles, respectively.
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Fig. 4. The total distortion of the Bartlet, MVDR and known s methods
presented in dB as a function of K for the spherical array. The results for
the semi-circular array are similar.

and the cross term error also occurs in the MVDR and the
Bartlet methods. This result reinforces the conclusion that the
total distortion of the MVDR method is mostly dominated by
the cross term residual error for K = 1. For large values of K
the figure shows that there is a significant difference between
the MVDR method and the known s reference method. This
difference could be the result of two effects: the first one
is the different multiplicative error in each method, and the
second one could stem from the insight that the cross term
residual error is not dominant in comparison to the error due
to the ys phantom component, from (28), of the MVDR output,
with the latter providing an additional distortion to the MVDR
in comparison to the known s reference method. The Bartlet
method seems to be more indifferent to the changes in K. This
could be due to two reasons: the dominant phantom component
(ys phantom) as explained above (for small values of K), and low
multiplicative error. The results shown in Fig. 4 are presented
for the spherical array, while the results of the semi-circular
array are similar.



10

Fig. 5. Monte Carlo simulation results: NG in dB of the different methods.

F. Noise reduction analysis

Figure 5 presents the noise gain results for the two array
configurations for K = 1. As shown in this figure, the
Bartlet beamformer barely manages to attenuate the noise. On
the other hand, the MVDR beamformer achieves substantial
attenuation of the noise components for both arrays. Better
attenuation is achieved when using the spherical array due to
the larger number of microphones in this array. This can also
be seen in the case of yknown h, where the oracle beamformer
(with weights woracle) better attenuates the noise in the case of
the spherical array. The difference between the noise gain of
the MVDR beamformer and yknown h is due to two reasons.
While the MVDR beamformer includes the components yu

and yu phantom, as shown in (28), yknown h contains only a
single noise component that is similar to yu phantom from (28),
leading to less noise in yknown h. The second reason is the
multiplication of the residual noise at the beamformer’s output
with the cross term residual error from the ATF estimation
process. The latter reason will be investigated in the next
section.

G. The effect of frequency smoothing on noise reduction

In Figs. 6 and 7 the noise reduction of the MVDR method,
the Bartlet method and the reference method that assumes the
ATF h is known are presented as a function of K for the
two arrays. As shown in these figures, the noise reduction
that the Bartlet method presents only slightly decreases as
a function of K. This implies that the components yu and
yu phantom of the Bartlet method are more dominant than
the cross term residual error in the ATF estimate which is
multiplied by the undesired component of (24), when the
Bartlet beamformer is used. On the other hand, the MVDR
method provides significant noise attenuation for both arrays.
As K increases, the noise attenuation of the MVDR, for
both array configurations, decreases due to the attenuation of
the cross term residual error. This shows that the frequency
smoothing can also be useful for reducing noise, in addition
to reducing distortion.

IX. LISTENING TESTS

In the previous section, the distortion and the noise reduc-
tion that were attained at the output of the proposed method
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Fig. 6. The noise gain of the Bartlet method, the MVDR method and the
reference method that assumes the ATF is known presented in dB as a function
of K for the semi-circular array.
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Fig. 7. The noise gain of the Bartlet method, the MVDR method and the
reference method that assumes the ATF is known presented in dB as a function
of K for the spherical array.

were evaluated using objective measures. In this section, the
results of a listening test to evaluate the perceptual quality of
the processed signals are reported. This subjective evaluation
takes into account spatial aspects as well as spectro-temporal
aspects.

A. Experimental setup

The listening test was based on a single acoustic scene
which was selected from the multiple scenes generated for the
objective analysis in the previous section. The selected scene
parameters were chosen from Table I as follows: the second
room from Table I, and sources position rs = ru = 1m,
(Φs,Φu) = (−45◦, 45◦). For this acoustic scene, both micro-
phone arrays were used.

B. Methodology

The simulation provides the observed signals x and the
desired microphone signals d from (2). Then, in order to
estimate the desired source signal, the Bartlet, (14), and the
MVDR, (13), beamformers were applied. Next, the ATF was
estimated using the desired source estimates in (40) with
different values of parameter K for each beamformer output.
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Three different values of parameter K were used; K = 1,
which is the conventional method for ATF estimation (no
frequency smoothing is used), K = 9, which leads to the min-
imum of the total distortion for both beamformers (according
to Fig. 4), and K = 61, which was chosen to reduce further
the residual estimation error at the cost of increased distortion.
The latter was found to be preferable in an informal listening
test. In order to evaluate the distortion as a function of the
frequency smoothing parameter, only the desired component
of the desired source estimate was employed, separated from
the estimated signal as in (11). These signals were used in
the first listening test, which aimed to study the impact of K
on perception. The listening test, based on Recommendation
ITU-R BS.1534-1 (MUSHRA, MUltiple Stimuli with Hidden
Reference and Anchor) [43], was conducted and included
three MUSHRA screens for each microphone array. For each
array, the effect of the frequency smoothing parameter, K,
was investigated. Therefore, the MUSHRA screen included
the following signals:

• Ref: a binaural signal generated only from the desired
microphone signals (d).

• MVDR K = 1: a binaural signal generated from the out-
put of the MVDR process without the noise components
with K = 1 (namely, the binaural reproduction due to
ŝ · h̃ŝ|u1=0 with K = 1).

• MVDR K = 9: a binaural signal generated from the out-
put of the MVDR process without the noise components
with K = 9.

• MVDR K = 61: a binaural signal generated from the
output of the MVDR process without the noise compo-
nents with K = 61.

A similar test was conducted for the Bartlet beamformer. In
this test no anchor was used.

Next, the desired source estimate was multiplied with
the corresponding ATF to reproduce the desired microphone
signals, but only for K = 61. In addition to the proposed
approach two reference methods were also used for this
listening test. The first method was the TFS method from [44],
where the SNR at each time-frequency bin was estimated as
suggested in [22]. The second method was the Bilateral filter
from [14]. For both reference methods the required statistics
regarding the noise was assumed to be given. Both reference
methods were applied to the observed signals in order to
estimate the desired microphone signals. Note that the TFS
method was used only for the spherical array according to
the method’s requirements. This test evaluated the quality
of all the processed signals. For this evaluation the two
reference methods which were mentioned above were used.
The MUSHRA screen included the following signals:

• Ref: a binaural signal generated only from the desired
microphone signals (d).

• MVDR K = 61: a binaural signal generated from the
output of the MVDR process, y from (41), with K = 61.

• Bartlet K = 61: a binaural signal generated from the
output of the Bartlet process, y from (41), with K = 61.

• TFS: a binaural signal generated from applying the TFS
method on the observed signals x.

• Bilateral: a bilateral filter was applied to the binaural
signals generated from the observed signals x.

• Anchor: a binaural signal generated from the unpro-
cessed observed signals x.

In order to reproduce the binaural signals for all the signals
which were mentioned above, for the case of the spherical
microphone array and for the semi-circular array, the methods
from [45] and [46] were used, respectively. For these methods,
the head related transfer function (HRTF) compilation of the
Neumann KU-100 [26] was used. Then, the binaural signals
were equalized for a specific set of headphones that were used.
12 normal hearing subjects participated in this experiment.
In total, the listening test included six MUSHRA screens
(three screens for each microphone array). All signals were
played back using the Matlab (MATLAB R2021a) audio
recorder. In all MUSHRA screens the participants were asked
to rate the overall quality of the signals with respect to the
reference signal, on a scale from 0 to 100. Before rating, the
participants performed a training task in order to ensure that
the instructions were clearly understood and to familiarize the
participants with the stimuli.

C. Results

In Fig. 8 the results of the listening tests that investigated the
effect of the frequency smoothing parameter K are presented
for each beamformer and microphone array. While the partici-
pants were asked to rate the overall quality of the signals, due
to the fact that these signals included only the desired signal
components, the actual results present the amount of distortion
that each signal contains in terms of auditory perception. As
shown in this figure, for both arrays and beamformers, as K
increases the signals were rated higher. For both arrays and
beamformers the median score of the processed signal with
K = 61 significantly differs (p < 0.05) from the other values
of K. This result shows that the multiplicative error is more
tolerated (in terms of auditory perception) than the cross term
residual error.

In Fig. 9 the results of the listening tests which investigate
the overall quality of the processed signals are presented. As
shown in this figure, for both arrays the MVDR with K = 61
achieved a higher score than the other reference methods and
the anchor (p < 0.05), demonstrating the superior quality of
the proposed method.

X. CONCLUSIONS

In this paper, an approach for spatial signal enhancement
was presented. This approach is based on desired source
signal estimation and ATF estimation. The theoretical analysis
assumed a simplified scenario with a single interfering source
and the absence of diffuse or spatially uncorrelated noise.
Under this case, the theoretical analysis showed no trade-
off between noise reduction and signal distortion. In addition,
frequency smoothing has been proposed, and was shown to
control the trade-off between the multiplicative error and
the cross term residual error in the ATF estimate. While
the objective results showed that the error increases with
frequency smoothing, the listening test results showed that the
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Fig. 8. Ratings as a function of frequency smoothing parameter. (a) MVDR
beamformer for the spherical array; (b) Bartlet beamformer for the spherical
array; (c) MVDR beamformer for the semi-circular array; (d) Bartlet beam-
former for the semi-circular array; Box plot visualization: the median is the
middle line; the bottom and top edges represent the 25th and 75th percentiles;
the whiskers represent the extreme values, excluding outliers; the notches have
been calculated such that boxes with non-overlapping notches have medians
which are different at the 95% significance level. Outliers are marked with a
red “+”.

Fig. 9. The results of the overall quality test - (a) presents the results of the
spherical array and (b) presents the results of the semi-circular array.

frequency smoothing helps improve the auditory experience.
Determination of the frequency smoothing amount for each
scenario and frequency index and the effect of errors in noise
covariance matrix estimation are proposed for future work.
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