
Appendix

Broader Impact

Our work attacks both the labeling and computational costs of machine learning and will hopefully
make machine learning much more affordable. Instead of being limited to a small number of large
teams and organizations with the budget to label data and the computational resources to train on it,
SEALS dramatically reduces the barrier to machine learning, enabling small teams or individuals to
build accurate classifiers. SEALS does, however, introduce another system component, a similarity
search index, which adds some additional engineering complexity to build, tune, and maintain.
Fortunately, several highly optimized implementations like Annoy 2 and Faiss 3 work reasonably well
out of the box. There is a risk that poor embeddings will lead to disjointed components for a given
concept. This failure mode may prevent SEALS from reaching all fragments of a concept or take a
longer time to do so, as mentioned in Section 6. However, active learning and search methods often
involve humans in the loop, which could detect biases and correct them by adding more examples.

Proof of SEALS under idealized conditions

To begin, we introduce the mathematical setting. Assume the input space is a convex set X ⊂ Rd
and that the optimal linear classifier w∗ ∈ Rd satisfies ‖w∗‖2 = 1. We assume the homogenous
setting whereH∗ = {x ∈ Rd : w>∗ x = 0} is the hyperplane defining the optimal classification. For
each x ∈ X , let yx denote its associated label and assume that yx = 1 if w>∗ x ≥ 0 and yx = −1 if
w>∗ x < 0. Define X+ = {x ∈ X : w>∗ x ≥ 0} and X− = {x ∈ X : w>∗ x < 0}. Let δ > 0 and let
G = (X , E) be a nearest-neighbor graph where we assume that for each x, x′ ∈ X , if ‖x− x′‖2 ≤ δ,
then (x, x′) ∈ E.

Our analysis makes two key assumptions. First, we assume that the classes are linearly separable.
Since the SEALS algorithm uses feature embedding, often extracted from a deep neural network,
the classes are likely to be almost linearly separable in many applications. Second, we assume a
membership query model where the algorithm can query any point belonging to the input space
X . Since SEALS is typically applied to datasets with billions of examples, this query model is a
reasonable approximation of practice. It should be possible to extend our analysis to the pool-based
active learning setting. Suppose there are enough points so that for every possible direction there is at
least one point in every δ-nearest neighborhood with a component of size cδ, for some 0 < c < 1, in
that direction. Then we believe that a bound like that in Theorem 1 should hold by replacing δ with
cδ. Relaxing these two assumptions is left to future theory work.

The main goal of our theory is to quantify the effect of the nearest neighbor restriction. Our analysis
considers the modified SEALS procedure described in Algorithm 3. It differs from original SEALS
in some minor ways that make it more amenable to analysis, but crucially it too is based on nearest
neighbor graph search. First, we introduce some notation. We let Sr ⊂ X × {−1, 1} consist of
the examples and their labels queried until round r. We let S1

r = {x ∈ S1 : (x, 1) ∈ Sr} denote
the positive examples queried until round r and S−1

r = {x ∈ S1 : (x,−1) ∈ Sr} the negative
examples queried until round r. Let A,B ⊂ Rd. The subroutine MaxMarginSeparator(A,B) finds
a maximum margin separator of A and B and returns the hyperplane H and margin γ: (H, γ)←−
MaxMarginSeparator(A,B). This is a support vector machine.

Now, we present Algorithm 3. We suppose that the algorithm has an initial set of seed points
{x1,0, . . . , xd−1,0}, with which it initiates d−1 nearest neighbor searches. We note that the algorithm
could perform n nearest neighbor searches and the analysis would still go through provided that
d − 1 ≤ n = O(d), and that the initial set of labeled points Sr may be larger than d − 1. At each
round r, Algorithm 3 queries one unlabeled neighbor from each set Ci,r, i = 1, . . . , d− 1 (at r = 0
these sets are the seed points themselves). The decision rule is as follows: first, for each x ∈ Ci,r, the
algorithm computes a max-margin separating hyperplane Hx separating x from the examples with
opposing labels. Second, the algorithm selects the example with the smallest margin x̄i,r and queries
a neighbor of x̄i,r that is closest to Hx̄i,r

. This is similar to using MaxEnt uncertainty sampling

2https://github.com/spotify/annoy
3https://github.com/facebookresearch/faiss



in SEALS. In Algorithm 3, arg minx′:(x̄i,r,x′)∈E dist(x′, Hx̄i,r,r) may contain several examples if
dist(x̄i,r, Hx̄i,r,r) ≤ δ. In this case, we tiebreak by letting x̃i,r be the projection of x̄i,r onto Hx̄i,r,r.

Algorithm 3 Modified SEALS

1: Input: seed labeled examples S1 ⊂ X × {−1, 1}
2: r = 1
3: Initialize the clusters Ci,r = {xi,0} for i = 1, . . . , d− 1
4: for r = 1, 2, . . . do
5: for i = 1, . . . , d− 1 do
6: (Hx,r, γx,r) = MaxMarginSeparator(S−yxr , x) for all x ∈ Ci,r
7: Let x̄i,r ∈ arg minx∈Ci,r

γx,r and x̃i,r ∈ arg minx′:(x̄i,r,x′)∈E dist(x′, Hx̄i,r,r)

8: Query x̃i,r
9: Update Sr+1 = Sr ∪ {(x̃i,r, yx̃i,r

)} and Ci,r+1 = Ci,r ∪ {x̃i,r}
10: end for
11: Fit a homogenous max-margin separator with normal vector ŵr+1 to Sr+1

12: end for

We actually restate the Theorem 1 a bit more formally in Theorem 2, below.

Theorem 2. Let ε > 0. Let x1,0, . . . , xd−1,0 denote the seed points. Define γi =

dist(xi,0, conv(S
−yxi,0

1 )) for i ∈ [d − 1], where conv(S
−yxi,0

1 ) is the convex hull of the points

S
−yxi,0

1 . Then, after Algorithm 3 makes maxi∈[d−1] d(γiδ +2 log( 2dδ
εmin(σ,1) ))) queries, ‖ŵr − w∗‖ ≤

ε.

The constant σ is a measure of the diversity of the initial seed examples, which we now define. For
i ∈ [d− 1], define the set

Zi = {z ∈ Rd : ‖z − xi,0‖ ≤ γi + 2δ + ε and dist(z, {x ∈ Rd : x>w∗ = 0}) ≤ ε}.

Define

σ := min
zi∈Zi:∀i∈[d−1]

σd−1([z1 . . . zd−1]).

where σd−1 denotes the (d− 1)th singular value of the matrix [z1 . . . zd−1].

Here we give a simple example where σ = Ω(1) so as to provide intuition, although there are a wide
variety of such cases.

Example 1. Let ε ∈ (0, 1). Let X = Rd, w∗ = e1, δ = 1/2. Let M ≥ 6
√
d− 1. Suppose the seed

examples are xi,0 = e1 + Mei+1 for i ∈ [d − 1] and suppose the algorithm is given additional
examples vi = −e1 +Mei+1 ∈ S−1

0 for i ∈ [d− 1]. Then, σ ≥ 1.

Proof of Example 1. Note that γi = 2 for all i ∈ [d− 1]. Define the matrix

Z =

 z>1
...

z>d−1


such that ‖zi − xi,0‖ ≤ γi + 2δ + ε, ∀i ∈ [d − 1]. We may write zi = xi,0 + vi
where ‖vi‖ ≤ γi + 2δ + ε. Courant-Fisher’s min-max theorem implies that sd−1(Z) =
maxdimE=d−1 minu∈span(E):‖u‖=1 ‖Zu‖ where E ⊂ Rd. Therefore, taking E = {e2, . . . , ed},
it suffices to lower bound ‖Zu‖ for any u ∈ span(e2, . . . , ed) with ‖u‖ = 1. Since ‖u‖ = 1, there
exists j ∈ {2, . . . , d} such that |uj | ≥ 1√

d−1
. Suppose wlog that uj ≥ 1√

d−1
(the other case is



similar). Then, by Cauchy-Schwarz,

‖Zu‖ ≥ max
i∈[d−1]

|z>i u|

≥ (e1 +Mej + vj−1)>u

≥M 1√
d
− 1− γi − 2δ − ε

≥ M√
d
− 5

≥ 1.

Now, we turn to the proof of Theorem 2. In the interest of using more compact notation, we define
for all i ∈ [d− 1] and r ∈ N

ρi,r := dist(x̄i,r, conv(S
−yx̄i,r
r )).

In words, ρi,r is the distance of the example queried in nearest neighbor search i and at round r, x̄i,r,

to the convex hull of S
−yx̄i,r
r , the examples with opposite labels from x̄i,r.

Proof of Theorem 2. Step 1: Bounding the number of queries to find points near the decision
boundary. Define ε̄ = min(σ,1)ε2

2
√
d

, where σ is defined as in the Theorem statement. We assume σ > 0

for the remainder of the proof. Let Ci,r = {xi,0, xi,1, . . . , xi,r} where xi,l is the queried example in
the lth round. We show that for all r ≥ maxi∈[d−1]

γi
δ + log( 2δ

ε̄ ) , for all i ∈ [d− 1], ρi,r ≤ ε̄.

Fix i ∈ [d− 1]. Define

Er = {at round r, ρi,r ≤ ε̄}.
We have that ∑

r∈N
1{Ecr} =

∑
r∈N

1{Ecr ∩ {ρi,r ≥ 2δ}}

+ 1{Ecr ∩ {ρi,r < 2δ}}
If ρi,r ≥ 2δ, we have by Lemma 1 that

ρi,r+1 ≤ ρi,r − δ.
This implies that ∑

r∈N
1{Ecr ∩ {ρi,r ≥ 2δ}} ≤ γi

δ
.

Now, suppose that ρi,r < 2δ. Then, by Lemma 1, we have that

ρi,r+1 ≤
ρi,r
2
.

Unrolling this recurrence implies that∑
r∈N

1{Ecr ∩ {ρi,r < 2δ}} ≤ log(
2δ

ε̄
).

Putting it altogether, we have that ∑
r∈N

1{Ecr} ≤
γi
δ

+ log(
2δ

ε̄
).

This implies that after maxi∈[d−1]
γi
δ + log( 2δ

ε̄ ) queries, we have that for all i ∈ [d − 1], ρi,r :=

dist(x̄i,r, conv(S
−yxi,r
r )) ≤ ε̄.



Step 2: Showing ‖xi,0 − xi,r‖ ≤ γi + 2δ for all i ∈ [d − 1]. Fix i ∈ [d − 1]. Let Ci,r =
{xi,0, xi,1, . . . , xi,r} where xi,l is the queried example in the lth round. Note there exists a path of
length at most r in the nearest neighbor graph on the nodes in Ci,r between xi,0 and xi,r. In the
worst case, this path consists of xi,0, xi,2, . . . , xi,r with xi,s being the child of xi,s−1 and thus we
suppose that this is the case wlog.

By the argument in step 1 of the proof, we have that after at most k̄ = γi
δ rounds,

dist(xi,k̄, conv(S
−yxi,k̄
r )) ≤ 2δ.

For s ≤ k̄, we have that ‖xi,s − xi,s−1‖ ≤ δ by definition of the nearest neighbor graph. Now,
consider s ≥ k̄. By Lemma 2, we have that ‖xi,s+1 − xi,s‖ ≤ ‖xi,s−xi,s−1‖

2 and
∥∥xi,k̄+1 − xi,k̄

∥∥ ≤
δ. Therefore,

‖xi,r − xi,0‖ =

∥∥∥∥∥
r−1∑
s=1

xi,s+1 − xi,s

∥∥∥∥∥
≤

r−1∑
s=1

‖xi,s+1 − xi,s‖

≤ k̄max
s≤k̄
‖xi,s+1 − xi,s‖+

r−1∑
s=k̄+1

‖xi,s+1 − xi,s‖

≤ γi
δ
δ + δ

r−1∑
s=k̄+1

1

2−s

≤ γi + 2δ.

Step 3: for all i ∈ [d− 1], there exists zi ∈ Zi such that ŵ>r zi = 0. We have that ρi,r ≤ ε̄ for all
i ∈ [d− 1] and ‖xi,0 − xi,r‖ ≤ γi + 2δ for all i ∈ [d− 1]. Now, we show that there exists zi ∈ Zi
such that ŵ>r zi = 0. Fix i ∈ [d− 1]. Suppose ŵ>r x̄i,r > 0 (the other case is similar). Then, ρi,r ≤ ε̄
implies that there exists x̄ ∈ conv(S−1

r ) such that ‖x̄i,r − x̄‖ ≤ ε̄. Then, since ŵr separates S−1
r and

S1
r , ŵ>r x̄ ≤ 0. Now, there exists zi ∈ conv(x̄i,r, x̄) such that z>i ŵr = 0. By the triangle inequality,

we have that ‖xi,0 − zi‖ ≤ γi + 2δ + ε, and dist(zi, {x : w>∗ x = 0}) ≤ ε̄ ≤ ε, thus, zi ∈ Zi for all
i ∈ [d− 1], completing this step.

Step 4: Pinning down w∗. Since σ > 0, and each zi ∈ Zi, we have that z1, . . . , zd−1 are
linearly independent. Then, we can write w∗ =

∑d−1
i=1 βizi + βdŵr for β1, . . . , βd ∈ R where

we used that ŵr is orthogonal to z1, . . . , zd−1 by construction of z1, . . . , zd−1. Note that ŵ>r w∗ =

ŵ>r (
∑d−1
i=1 βizi + βdŵr) = βd. Let Pw∗ denote the projection of w∗ onto span(z1, . . . , zd−1).

Defining the matrix Z = [z1 z2 . . . zd−1] and β = (β1 . . . , βd−1)>, we can write Pw∗ = Zβ. Let
Z = UΣV > denote the SVD of Z and Z† = V Σ†U> the pseudoinverse. Note that Z†Pw∗ = β.
Then,

‖β‖ =
∥∥Z†Pw∗∥∥ ≤ max

i=1,2,...,d−1
σi(Z

†) =
1

σd−1(Z)
. (1)



We note that dist(zi, {x : w>∗ x = 0}) ≤ ε̄ implies that |w>∗ zi| ≤ ε̄ for i = 1, 2, . . . , d− 1. Then, we
have that

1 = w>∗ w∗

=

d−1∑
i=1

βiw
>
∗ xi + βdw

>
∗ ŵr

=

d−1∑
i=1

βiw
>
∗ xi + (w>∗ ŵr)

2 (2)

≤ ‖β‖1 ε̄+ (w>∗ ŵr)
2 (3)

≤
√
d ‖β‖2 ε̄+ (w>∗ ŵr)

2 (4)

≤
√
dε̄

σd−1([z1 . . . zd−1])
+ (w>∗ ŵr)

2 (5)

≤
√
dε̄

σ
+ (w>∗ ŵr)

2 (6)

where equation 2 follows by plugging in the previously derived βd = w>∗ ŵr, equation 3 follows by
Holder’s inequality, equation 4 follows by ‖·‖1 ≤

√
d ‖·‖2, equation 5 follows by equation 1, and

equation 6 follows by the definition of σ. Rearranging, we have that

w>∗ ŵr = |w>∗ ŵr| (7)

≥

√
1−
√
dε̄

σ

≥ 1−
√
dε̄

σ
(8)

≥ 1− ε2

2
(9)

where equation 7 follows by the definition of ŵr, in equation 8 we use that fact that 1−
√
dε̄
σ ≤ 1 and

in equation 9 we use the definition of ε̄. Now, we have that

‖ŵr − w∗‖2 = 2(1− ŵ>r w∗) ≤ ε2,
proving the result.

In Lemma 1, we show that at each round x̄i,r moves closer to the labeled examples of the opposite
class. The main idea behind the proof is that the algorithm can always choose a point x̃i,r in the
direction orthogonal to the hyperplane Hx̄i,r,r, thus guaranteeing a reduction in ρi,r. Early in the
execution of Algorithm 3, the nearest neighbor graph constrains which points are chosen, leading to a
reduction in ρi,r of δ. However, once x̄i,r is close enough to the labeled examples of the opposite
class, precisely once ρi,r < 2δ, the algorithm begins selecting points that lie on Hx̄i,r,r at each round,
halving ρi,r at each round.
Lemma 1. Fix i ∈ [d− 1]. Fix r ∈ N.

1. If ρi,r ≥ 2δ, then

ρi,r+1 ≤ ρi,r − δ.

2. If ρi,r < 2δ, then

ρi,r+1 ≤
ρi,r
2
.

Proof. 1. Let x̄i,r = minx∈Ci,r γx,r as defined in the algorithm. Wlog, suppose that x̄i,r ∈ X+. By
Lemma 2, there exists z ∈ conv(S−1

r ) such that x̃i,r = x̄i,r + α
(z−x̄i,r)
‖z−x̄i,r‖ for some α ≤ δ.



Let β = α
‖z−x̄i,r‖ . Then,

‖x̃i,r − z‖ = ‖x̄i,r + β(z − x̄i,r)− z‖
= ‖(1− β)x̄i,r − z‖
= (1− β) ‖x̄i,r − z‖
= ‖x̄i,r − z‖ − α.

If dist(x̄i,r,S−1
r ) ≥ 2δ, Lemma 2 implies that α = δ and we have that

‖x̃i,r − z‖ = ‖x̄i,r − z‖ − δ = dist(x̄i,r, conv(S−1
r ))− δ

Thus, if x̃i,r ∈ X+, using the definition of x̄i,r+1, we have that

ρi,r+1 = dist(x̄i,r+1, conv(S
−yx̄i,r+1

r+1 ))

≤ dist(x̃i,r, conv(S−1
r ))

≤ dist(x̄i,r, conv(S−1
r ))− δ

= ρi,r − δ.

On the other hand, if x̃i,r ∈ X−, we have that

ρi,r+1 = dist(x̄i,r+1, conv(S
−yx̄i,r+1

r+1 ))

≤ dist(x̃i,r, conv(S1
r ))

≤ δ
≤ dist(x̄i,r, conv(S−1

r ))− δ

which also shows the claim.

2. Now, suppose that dist(x̄i,r, conv(S−1
r+1)) < 2δ. Then, by Lemma 2, we have that α =

‖z−x̄i,r+1‖
2 < δ, implying that

ρi,r+1 = dist(x̄i,r+1, conv(S
−yx̄i,r+1
r )

≤ ‖x̃i,r − z‖
= ‖x̃i,r − x̄i,r‖
= ‖x̄i,r − z‖ /2

=
dist(x̄i,r, conv(S−1

r ))

2

=
ρi,r
2

and therefore the result.

Lemma 2 characterizes the example, x̃i,r, queried by Algorithm 3. It shows that x̃i,r always belongs
to a line segment connecting x̄i,r to some point, z, in the convex hull of labeled points of the opposite

class, conv(S
−yx̄i,r

r+1 ). If ρi,r ≥ 2δ, then x̃i,r moves δ along this line segment towards z and if
ρi,r < 2δ, x̃i,r is the midpoint of this line segment.

Lemma 2. Fix round r ∈ N. There exists z ∈ conv(S
−yx̄i,r

r+1 ) such that the following holds. If
ρi,r ≥ 2δ, then x̃i,r = x̄i,r + δ

(z−x̄i,r)
‖z−x̄i,r‖ . If ρi,r < 2δ, then x̃i,r =

x̄i,r+z
2 .

Proof. Step 1: A formula for the max-margin separator.



Without loss of generality, suppose that x̄i,r ∈ X+ (the other case is similar). Let w̄ ∈ Rd, b̄ ∈ R,
and t̄ ∈ R denote the optimal solutions of the optimization problem

max
w∈Rd,b∈R,t∈R

t (10)

s.t. x̄>i,rw − b ≤ −t
x>w − b ≥ t∀x ∈ S−1

r+1

‖w‖2 ≤ 1.

Then, w̄ ∈ Rd and b̄ ∈ R define the max-margin separator separating x̄i,r from S−1
r+1. We note that

by Lemma 3, w̄ and b̄ are the unique solutions up to scaling. By Section 8.6.1. in [8], equation 10 has
the same value as

min
αj

1

2

∥∥∥∥∥∥∥
∑

j:xj∈S−1
r+1

αjxj − x̄i,r

∥∥∥∥∥∥∥ (11)

s.t. αj ≥ 0∀j∑
j

αj = 1

Let {α̃j} attain the maximum in the above optimization problem, which exists since the domain is
compact and the objective function is continuous. Define x̃ =

∑
j:xj∈S−1

r+1
α̃jxj and

w̃ =
x̃− x̄i,r
‖x̃− x̄i,r‖

b̃ =
‖x̃‖2 − ‖x̄i,r‖2

2 ‖x̃− x̄i,r‖

We claim that w̃ = w̄ and b̃ = b̄. First, we show that that there exists t̃ ∈ R such that (w̃, b̃, t̃) satisfy
the constraints in equation 10. Arithmetic shows that w̃>x̃− b̃ > 0 and w̃>x̄i,r − b̃ < 0. Since x̃ is
the projection of x̄i,r onto conv(S+

r ), by the Projection Lemma, we have that

(x̃− x̄i,r)>x ≥ (x̃− x̄i,r)>x̃

for all x ∈ conv(S+
r ). Thus, for all x ∈ conv(S+

r ), we have that

w̃>x− b̃ ≥ w̃>x̃− b̃ > 0.

We conclude that there exists t̃ ∈ R such that (w̃, b̃, t̃) satisfy the constraints in equation 10.

We have that

w̃>x̄i,r − b̃ =
1

‖x̃− x̄i,r‖
(x̄>i,r(x̃− x̄i,r)−

‖x̃‖2 −
∥∥x̄2

i,r

∥∥
2

) = −1

2
‖x̄i,r − x̃‖ .

A similar calculation shows that w̃>x − b̃ ≥ 1
2 ‖x̄i,r − x̃‖ for all x ∈ conv(S+

r ). Thus, putting
t̃ = 1

2 ‖x̃− x̄i,r‖, (w̃, b̃, t̃) is feasible to equation 10. By the equivalence in value of equation 10 and
equation 11 and the definition of x̃, we have that 1

2 ‖x̃− x̄i,r‖ = t̄. Thus, by uniqueness of w̄ and b̄,
we have that w̃ = w̄ and b̃ = b̄.

Step 2: Putting it together. We have shown that w̃ and b̃ define the max-margin separator. Let Px̄i,r
denote the projection of x̄i,r onto H := {z ∈ Rd : w̃>z = b̃}. We have that

Px̄i,r = x̄i,r + (
‖x̃‖2 − ‖x̄i,r‖2

2 ‖x̃− x̄i,r‖
− (

x̃− x̄i,r
‖x̃− x̄i,r‖

)>x̄i,r
x̃− x̄i,r
‖x̃− x̄i,r‖

=
x̃+ x̄i,r

2
.



Suppose that dist(x̄i,r, conv(S
−yx̄i,r

r+1 )) ≥ 2δ. Then, we have that dist(x̄i,r, H) > 2δ. It can be easily
seen that x̃i,r = arg minx:‖x−x̄i,r‖≤δ dist(x,H) = x̄i,r+δ

x̃−x̄i,r

‖x̃−x̄i,r‖ . Note that x̄i,r+δ
x̃−x̄i,r

‖x̃−x̄i,r‖ ∈ X ,
since x̄i,r, x̃ ∈ X and X is convex.

Similarly, if dist(x̄i,r, conv(S
−yx̄i,r

r+1 )) < 2δ, Then, we have that dist(x̄i,r, H) < δ. Then, by
definition of x̃i,r we have that x̃i,r =

x̃+x̄i,r

2 ∈ X , where we have that x̃+x̄i,r

2 ∈ X by convexity of
X .

The following result shows that the max-margin separator is unique, and is a standard result on SVMs.
Lemma 3. Let A,B ⊂ Rd be disjoint, closed, and convex. The max-margin separator separating A
and B is unique.

Proof. There exists a separating hyperplane between A and B by the separating hyperplane Theorem.
By a standard argument, the optimization problem for the max-margin separator can be stated as

min
w∈Rd,b∈R

‖w‖2

s.t. w>x+ b ≥ 1∀x ∈ A
w>x+ b ≤ −1 ∀x ∈ B.

This is a convex optimization problem with a strongly convex objective and, therefore, has a unique
solution.

SEALS with Querying Anywhere Capability

Algorithm 4 Modified SEALS: Project onto Hyperplane

1: Input: seed labeled points S1 ⊂ X × {−1, 1} r = 1
2: Initialize the clusters Ci,r = {xi,0} for i = 1, . . . , d− 1
3: for r = 1, 2, . . . do
4: for i = 1, . . . , d− 1 do
5: (Hx,r, γx,r) = MaxMarginSeparator(S−yxr , x) for all x ∈ Ci,r
6: Let x̄i,r ∈ arg minx∈Ci,r

γx,r and x̃i,r ∈ arg minx′ dist(x′, Hx̄i,r,r)

7: Query x̃i,r
8: Update Sr+1 = Sr ∪ {(x̃i,r, yx̃i,r

)} and Ci,r+1 = Ci,r ∪ {x̃i,r}
9: end for

10: Fit a homogenous max-margin separator with normal vector ŵr+1 to Sr+1

11: end for

The data structure used in SEALS enables queries of the k-nearest neighbors of any point in the input
space. Therefore, a natural question is whether we can leverage this querying capability to improve
the sample complexity of Algorithm 3, at the cost of being less generic than SEALS. To address this
question, we consider the Algorithm 4, which queries the nearest neighbor of the projection onto the
max-margin separator. The key takeaway is that this modification of the algorithm removes the slow
phase in the sample complexity of SEALS. The analysis requires a slightly different definition of Zi:

Zi = {z ∈ Rd : ‖z − xi,0‖ ≤ 2γi + ε and dist(z, {x ∈ Rd : x>w∗ = 0}) ≤ ε}.

Theorem 3. Let ε > 0. Let x1,0, . . . , xd−1,0 denote the seed points. Define γi =

dist(xi,0, conv(S
−yxi,0

1 )) for i ∈ [d − 1], where conv(S
−yxi,0

1 ) is the convex hull of the points

S
−yxi,0

1 . Then, after Algorithm 4 makes maxi∈[d−1] d(2 log( 2dγi
εmin(σ,1) ))) queries, we have that

‖ŵr − w∗‖ ≤ ε.

Proof Sketch. The proof is very similar to the of Theorem 2. Step 1 of Theorem 2 is essentially the
same, but it does not matter whether ρi,r ≥ 2δ since the algorithm is not constrained by the nearest



neighbor graph. A similar argument shows that after maxi∈[d−1] log( 2γi
ε̄ ) queries, we have that for

all i ∈ [d− 1], ρi,r := dist(x̄i,r, conv(S
−yxi,r
r )) ≤ ε̄.

Step 2 is also quite similar, except that we now have using a similar argument about the geometric
series that

‖xi,r − xi,0‖ ≤ 2γi.

Step 3 is exactly the same.



Impact of Embedding model (Gz) on SEALS
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Figure 4: Active learning on ImageNet with varying embedding models (ResNet-18 or ResNet-50)
and dimensions (128, 256, or 512). Performance increases with larger models and higher dimensional
embeddings. However, SEALS achieves similar performance to the baseline approach regardless of
the choice of model and dimension, empirically demonstrating SEALS’ robustness to the embedding
function.
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Figure 5: Active learning on ImageNet with 256-dimensional ResNet-50 embeddings and varying
k-NN indices. Different embeddings might be used for learning rare concepts than the embeddings
used for similarity search in practice. Fortunately, SEALS performs similarly for varying k-NN
indices, as shown above. This can also be exploited to reduce further the cost of constructing the
index by using a smaller, cheaper model to generate the embedding for similarity search and only
applying the larger model to examples added to the candidate pool.



Impact of k on SEALS
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Figure 6: Impact of increasing k on ImageNet (|U |=639,906). Larger values of k help to close the
gap between SEALS and the baseline approach for active learning (top) and active search (middle).
However, increasing k also increases the candidate pool size (bottom), presenting a trade-off between
labeling efficiency and computational efficiency.
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Figure 7: Impact of increasing k on OpenImages (|U |=6,816,296). Larger values of k help to
close the gap between SEALS and the baseline approach for active learning (top) and active search
(middle). However, increasing k also increases the candidate pool size (bottom), presenting a trade-off
between labeling efficiency and computational efficiency.



Impact of the number of initial positives on SEALS
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(a) ImageNet (|U |=639,906)
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(b) OpenImages (|U |=6,816,296)

Figure 8: Active learning and search with 20 positive seed examples and a labeling budget of
10,000 examples on ImageNet (top) and OpenImages (bottom). Across datasets and strategies,
SEALS with k = 100 performs similarly to the baseline approach in terms of both the error the
model achieves for active learning (left) and the recall of positive examples for active search (right),
while only considering a fraction of the unlabeled data U (middle).
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(a) ImageNet (|U |=639,906)
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(b) OpenImages (|U |=6,816,296)

Figure 9: Active learning and search with 50 positive seed examples and a labeling budget of
10,000 examples on ImageNet (top) and OpenImages (bottom). Across datasets and strategies,
SEALS with k = 100 performs similarly to the baseline approach in terms of both the error the
model achieves for active learning (left) and the recall of positive examples for active search (right),
while only considering a fraction of the unlabeled data U (middle).



Latent structure
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(a) ImageNet
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Figure 10: Measurements of the latent structure of unseen concepts in ImageNet and OpenImages.
The 10B images dataset was excluded because only a few thousand examples were labeled. The
largest connected component gives a sense of how much of the concept SEALS can reach, while the
average shortest path serves as a proxy for how long it will take to explore.
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Figure 11: The per-class APs of SEALS (k = 100) were highly correlated to the baseline approaches
(*-All) for active learning on ImageNet (right) and OpenImages (left). On OpenImages with a
budget of 2,000 labels, the Pearson’s correlation (ρ) between the baseline and SEALS for the average
precision of individual classes was 0.986 for MaxEnt and 0.987 for MLP. The least-squares fit had a
slope of 0.99 and y-intercept of -0.01. On ImageNet, the correlations were even higher.



Comparison to pool of randomly selected examples
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(b) OpenImages (|U |=6,816,296)

Figure 12: MaxEnt-SEALS (k = 100) versus MaxEnt applied to a candidate pool of randomly
selected examples (RandPool). Because the concepts we considered were so rare, as is often the
case in practice, randomly chosen examples are unlikely to be close to the decision boundary, and a
much larger pool is required to match SEALS. On ImageNet (top), MaxEnt-SEALS outperformed
MaxEnt-RandPool in terms of both the error the model achieves for active learning (left) and the
recall of positive examples for active search (right) even with a pool containing 10% of the data
(middle). On Openimages (bottom), MaxEnt-RandPool needed at least 5× as much data to match
MaxEnt-SEALS for active learning and failed to achieve similar recall even with 10× the data.
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Figure 13: MLP-SEALS (k = 100) versus MLP applied to a candidate pool of randomly selected
examples (RandPool). Because the concepts we considered were so rare, as is often the case in
practice, randomly chosen examples are unlikely to be close to the decision boundary, and a much
larger pool is required to match SEALS. On ImageNet (top), MLP-SEALS outperformed MLP-
RandPool in terms of both the error the model achieves for active learning (left) and the recall of
positive examples for active search (right) even with a pool containing 10% of the data (middle). On
Openimages (bottom), MLP-RandPool needed at least 5× as much data to match MLP-SEALS for
active learning and failed to achieve similar recall even with 10× the data.
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Figure 14: ID-SEALS (k = 100) versus ID applied to a candidate pool of randomly selected
examples (RandPool). Because the concepts we considered were so rare, as is often the case in
practice, randomly chosen examples are unlikely to be close to the decision boundary, and a much
larger pool is required to match SEALS. On ImageNet (top), ID-SEALS outperformed ID-RandPool
in terms of both the error the model achieves for active learning (left) and the recall of positive
examples for active search (right) even with a pool containing 10% of the data (middle). On
Openimages (bottom), ID-RandPool needed at least 5× as much data to match ID-SEALS for active
learning and failed to achieve similar recall even with 10× the data.



Active learning on each selected class from OpenImages

Table 3: Top 1
3 of classes from Openimages for active learning. (1 of 3) Average precision and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MaxEnt-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MaxEnt
(SEALS)

MaxEnt
(All)

Full
Supervision

Citrus 796 65 3.34 0.34 0.87 0.87 0.87
Cargo ship 219 84 2.85 0.70 0.83 0.83 0.86
Blackberry 245 87 2.64 0.67 0.80 0.80 0.79
Galliformes 674 82 3.98 0.72 0.80 0.82 0.92
Rope 618 59 3.48 0.29 0.80 0.81 0.74
Hurdling 269 92 2.48 0.26 0.80 0.79 0.80
Roman temple 345 89 2.72 0.63 0.79 0.79 0.82
Monster truck 286 84 2.84 0.41 0.79 0.80 0.81
Pasta 954 91 3.21 0.42 0.75 0.75 0.79
Chess 740 83 3.39 0.53 0.73 0.74 0.86
Bowed string instrument 728 78 3.05 0.72 0.72 0.74 0.79
Parrot 1546 89 2.85 0.59 0.72 0.76 0.92
Calabaza 870 82 3.15 0.50 0.71 0.75 0.81
Superhero 968 58 5.28 0.17 0.70 0.70 0.67
Drums 741 69 3.30 0.52 0.70 0.72 0.83
Shooting range 189 57 3.06 0.38 0.69 0.69 0.68
Ancient roman architecture 589 76 3.34 0.61 0.68 0.70 0.77
Cupboard 898 88 3.41 0.53 0.68 0.69 0.75
Ibis 259 93 2.53 0.29 0.68 0.69 0.66
Cattle 5995 93 3.22 0.37 0.67 0.68 0.74
Galleon 182 74 2.54 0.45 0.66 0.66 0.61
Kitchen knife 360 63 3.52 0.32 0.66 0.65 0.66
Grapefruit 506 83 3.06 0.50 0.65 0.65 0.69
Deacon 341 80 2.80 0.48 0.64 0.64 0.67
Rye 128 75 2.63 0.51 0.64 0.64 0.65
Chartreux 147 91 2.59 0.50 0.63 0.63 0.69
San Pedro cactus 318 76 3.32 0.17 0.62 0.63 0.71
Skateboarding Equipment 862 57 5.92 0.20 0.62 0.66 0.66
Electric piano 345 56 4.15 0.24 0.61 0.60 0.48
Straw 547 65 2.85 0.33 0.61 0.62 0.61
Berry 874 82 3.78 0.30 0.61 0.61 0.69
East-european shepherd 206 86 2.16 0.61 0.61 0.62 0.65
Ring 676 75 3.87 0.15 0.61 0.64 0.64
Rat 1151 94 2.50 0.32 0.60 0.60 0.61
Coral reef fish 434 90 3.07 0.51 0.60 0.64 0.79
Concert dance 357 61 3.91 0.37 0.60 0.60 0.70
Whole food 708 73 3.66 0.18 0.58 0.60 0.57
Modern pentathlon 772 43 2.59 0.13 0.58 0.47 0.51
Gymnast 235 77 2.39 0.39 0.57 0.59 0.65
California roll 368 84 3.49 0.05 0.56 0.56 0.58
Shrimp 907 85 3.82 0.07 0.56 0.56 0.58
Log cabin 448 70 3.62 0.44 0.55 0.55 0.62
Formula racing 351 88 3.38 0.33 0.55 0.54 0.60
Herd 648 75 3.88 0.42 0.54 0.55 0.67
Embroidery 356 81 3.41 0.32 0.53 0.53 0.60
Shelving 810 66 3.41 0.27 0.53 0.53 0.51
Downhill 194 84 2.64 0.42 0.53 0.51 0.59
Daylily 391 87 3.25 0.20 0.51 0.50 0.49
Automotive exterior 1060 23 2.74 0.65 0.49 0.54 0.69
Ciconiiformes 426 88 3.47 0.33 0.49 0.51 0.48
Monoplane 756 81 4.70 0.13 0.48 0.43 0.48



Table 4: Middle 1
3 of classes from Openimages for active learning. (2 of 3) Average precision and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MaxEnt-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MaxEnt
(SEALS)

MaxEnt
(All)

Full
Supervision

Seafood boil 322 85 2.73 0.31 0.48 0.49 0.51
Landscaping 789 32 4.71 0.26 0.48 0.51 0.63
Skating 561 77 4.04 0.17 0.48 0.43 0.40
Floodplain 567 50 4.81 0.61 0.47 0.52 0.66
Knitting 409 71 3.10 0.61 0.46 0.50 0.73
Elk 353 84 2.40 0.15 0.46 0.48 0.45
Bilberry 228 75 3.77 0.10 0.45 0.45 0.32
Goat 1190 88 3.72 0.17 0.44 0.45 0.61
Fortification 287 66 3.96 0.43 0.44 0.46 0.52
Annual plant 677 38 6.07 0.39 0.44 0.43 0.58
Mcdonnell douglas f/a-18 hornet 160 88 3.51 0.11 0.44 0.47 0.37
Tooth 976 49 4.77 0.16 0.44 0.48 0.56
Briefs 539 78 3.68 0.15 0.43 0.44 0.46
Sirloin steak 297 60 4.97 0.14 0.42 0.42 0.46
Smoothie 330 78 3.22 0.15 0.41 0.41 0.38
Glider 393 82 3.94 0.08 0.40 0.40 0.48
Bathroom cabinet 368 95 2.39 0.29 0.40 0.39 0.37
White-tailed deer 238 87 3.24 0.34 0.40 0.43 0.43
Bird of prey 712 78 3.81 0.76 0.40 0.50 0.91
Egg (Food) 1193 85 4.31 0.14 0.40 0.37 0.63
Soldier 1032 74 3.80 0.62 0.40 0.41 0.72
Cranberry 450 63 4.10 0.13 0.39 0.39 0.37
Estate 667 51 4.03 0.47 0.39 0.40 0.54
Chocolate truffle 288 58 5.47 0.10 0.39 0.40 0.42
Town square 617 58 3.69 0.31 0.38 0.36 0.47
Bakmi 191 76 3.34 0.27 0.37 0.37 0.36
Trail riding 679 90 3.15 0.21 0.37 0.37 0.38
Aerial photography 931 63 3.99 0.39 0.37 0.37 0.66
Lugger 103 62 3.14 0.35 0.37 0.37 0.42
Paddy field 468 70 4.02 0.17 0.36 0.36 0.43
Pavlova 195 86 2.60 0.19 0.36 0.36 0.34
Steamed rice 580 75 4.54 0.10 0.35 0.37 0.48
Pancit 385 86 3.16 0.21 0.33 0.33 0.31
Factory 333 61 5.59 0.17 0.33 0.34 0.35
Fur 834 42 4.31 0.08 0.33 0.33 0.31
Stallion 598 70 3.58 0.32 0.33 0.40 0.64
Optical instrument 649 79 3.91 0.15 0.33 0.33 0.28
Thumb 895 26 4.18 0.07 0.32 0.39 0.41
Meal 1250 60 5.68 0.52 0.32 0.38 0.59
American shorthair 2084 94 3.32 0.12 0.32 0.32 0.24
Bracelet 770 46 4.13 0.09 0.31 0.33 0.24
Vehicle registration plate 5697 76 5.89 0.28 0.31 0.33 0.53
Ice 682 50 4.87 0.23 0.30 0.32 0.55
Lamian 257 80 3.57 0.23 0.29 0.32 0.28
Multimedia 741 46 4.12 0.45 0.29 0.31 0.53
Belt 467 41 3.26 0.06 0.29 0.31 0.31
Prairie 792 44 3.92 0.37 0.29 0.26 0.57
Boardsport 673 62 4.08 0.26 0.29 0.29 0.53
Asphalt 1026 40 4.53 0.23 0.29 0.29 0.45
Costume design 818 52 3.44 0.07 0.26 0.26 0.28
Cottage 670 51 4.13 0.36 0.26 0.36 0.61



Table 5: Bottom 1
3 of classes from Openimages for active learning. (3 of 3) Average precision and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MaxEnt-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MaxEnt
(SEALS)

MaxEnt
(All)

Full
Supervision

Stele 450 70 3.74 0.12 0.26 0.25 0.35
Mode of transport 1387 24 4.50 0.15 0.26 0.16 0.54
Temperate coniferous forest 328 59 4.23 0.30 0.26 0.29 0.40
Bumper 985 37 6.65 0.49 0.25 0.38 0.64
Interaction 924 15 6.05 0.04 0.24 0.25 0.37
Plumbing fixture 2124 89 3.19 0.31 0.24 0.27 0.38
Shorebird 234 80 2.76 0.32 0.23 0.26 0.37
Icing 1118 74 4.20 0.13 0.23 0.25 0.46
Wilderness 1225 30 4.12 0.29 0.23 0.24 0.39
Construction 515 63 4.99 0.13 0.23 0.26 0.34
Carpet 644 50 6.98 0.05 0.23 0.28 0.43
Maple 2301 90 4.19 0.06 0.22 0.21 0.36
Rural area 921 41 4.63 0.33 0.22 0.28 0.50
Singer 604 56 4.06 0.12 0.21 0.21 0.40
Delicatessen 196 52 2.80 0.14 0.21 0.22 0.27
Canal 726 62 4.78 0.22 0.21 0.26 0.46
Organ (Biology) 1156 25 3.80 0.23 0.19 0.07 0.44
Laugh 750 19 6.22 0.06 0.18 0.17 0.26
Plateau 452 37 3.88 0.41 0.18 0.24 0.46
Algae 426 57 4.52 0.15 0.18 0.19 0.26
Cactus 377 51 4.11 0.05 0.17 0.18 0.22
Engine 656 82 3.43 0.16 0.17 0.17 0.26
Marine mammal 2954 91 3.58 0.19 0.16 0.15 0.21
Frost 483 60 4.73 0.20 0.15 0.21 0.47
Paper 969 23 3.18 0.16 0.15 0.14 0.41
Cirque 347 29 5.77 0.43 0.15 0.40 0.55
Pork 464 64 4.44 0.06 0.14 0.14 0.15
Antenna 545 73 3.66 0.10 0.14 0.13 0.29
Portrait 2510 67 6.38 0.23 0.13 0.18 0.43
Flooring 814 38 3.87 0.10 0.13 0.14 0.20
Cycling 794 63 5.00 0.53 0.13 0.28 0.66
Chevrolet silverado 115 62 4.82 0.05 0.09 0.08 0.12
Tool 1549 64 4.51 0.08 0.09 0.10 0.13
Liqueur 539 51 5.98 0.26 0.09 0.14 0.38
Pleurotus eryngii 140 84 3.10 0.11 0.08 0.08 0.14
Organism 1148 21 3.49 0.05 0.07 0.13 0.26
Pelecaniformes 457 85 3.96 0.30 0.07 0.09 0.32
Icon 186 15 3.26 0.05 0.07 0.07 0.16
Stadium 1654 77 5.77 0.35 0.06 0.10 0.48
Space 1006 23 4.63 0.03 0.06 0.03 0.14
Performing arts 1030 29 6.97 0.12 0.05 0.06 0.53
Mural 649 41 5.24 0.13 0.05 0.07 0.34
Brown 1427 16 3.49 0.02 0.05 0.07 0.20
Wall 1218 27 3.13 0.11 0.05 0.05 0.27
Tournament 841 47 9.90 0.15 0.05 0.07 0.16
White 1494 3 2.79 0.02 0.03 0.01 0.10
Mitsubishi 511 37 5.14 0.01 0.02 0.02 0.04
Exhibition 513 40 3.87 0.03 0.02 0.02 0.14
Scale model 667 45 5.64 0.05 0.02 0.02 0.13
Teal 975 16 4.08 0.01 0.01 0.01 0.04
Electric blue 1180 19 3.70 0.01 0.00 0.01 0.06



Active search on each selected class from OpenImages

Table 6: Top 1
3 of classes from Openimages for active search. (1 of 3) Recall (%) of positives and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MLP-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MLP
(SEALS)

MLP
(All)

Chartreux 147 91 2.59 3.5 83.9 84.6
Ibis 259 93 2.53 2.0 83.9 83.9
Hurdling 269 92 2.48 1.9 83.5 86.2
East-european shepherd 206 86 2.16 2.4 78.2 78.3
Blackberry 245 87 2.64 2.0 77.5 78.5
Bathroom cabinet 368 95 2.39 1.4 76.8 77.1
Rat 1151 94 2.50 0.5 75.1 75.2
Rye 128 75 2.63 3.9 74.7 74.5
Elk 353 84 2.40 1.5 73.4 74.3
Pavlova 195 86 2.60 2.6 70.8 71.3
Seafood boil 322 85 2.73 1.6 70.4 70.6
Roman temple 345 89 2.72 1.5 69.2 68.3
Monster truck 286 84 2.84 1.7 68.1 67.8
Downhill 194 84 2.64 2.6 67.2 69.0
Shorebird 234 80 2.76 2.1 66.8 66.4
Mcdonnell douglas f/a-18 hornet 160 88 3.51 3.2 66.0 67.9
San Pedro cactus 318 76 3.32 1.6 65.8 64.9
Pleurotus eryngii 140 84 3.10 3.6 65.7 66.1
California roll 368 84 3.49 1.4 65.3 68.0
Gymnast 235 77 2.39 2.2 64.0 64.0
Galleon 182 74 2.54 2.7 62.4 61.5
Cargo ship 219 84 2.85 2.3 61.1 61.7
Trail riding 679 90 3.15 0.8 59.7 60.7
Daylily 391 87 3.25 1.3 59.4 59.5
Grapefruit 506 83 3.06 1.0 59.4 60.4
Bilberry 228 75 3.77 2.2 58.9 55.2
Smoothie 330 78 3.22 1.5 58.0 59.8
Embroidery 356 81 3.41 1.5 57.6 57.2
Deacon 341 80 2.80 1.5 57.1 57.9
Shooting range 189 57 3.06 2.6 56.3 55.6
Glider 393 82 3.94 1.3 55.8 57.6
White-tailed deer 238 87 3.24 2.2 55.8 55.9
Coral reef fish 434 90 3.07 1.3 54.8 54.9
Chevrolet silverado 115 62 4.82 4.3 54.1 54.6
Lugger 103 62 3.14 4.9 53.8 53.8
Pancit 385 86 3.16 1.3 52.8 53.1
Chess 740 83 3.39 0.7 51.9 50.9
Bakmi 191 76 3.34 2.6 51.8 51.2
Kitchen knife 360 63 3.52 1.5 50.9 53.9
Straw 547 65 2.85 1.0 50.3 51.0
Ancient roman architecture 589 76 3.34 0.8 48.5 47.1
Lamian 257 80 3.57 1.9 47.8 48.2
Antenna 545 73 3.66 1.0 47.4 48.0
Calabaza 870 82 3.15 0.6 46.0 45.8
Ring 676 75 3.87 0.7 45.2 45.4
Ciconiiformes 426 88 3.47 1.2 45.2 45.2
Log cabin 448 70 3.62 1.1 44.9 45.7
Bowed string instrument 728 78 3.05 0.7 44.4 44.7
Pasta 954 91 3.21 0.5 43.7 43.8
Knitting 409 71 3.10 1.3 43.5 42.8
Rope 618 59 3.48 0.8 43.0 42.8



Table 7: Middle 1
3 of classes from Openimages for active search. (2 of 3) Recall (%) of positives

and measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MLP-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MLP
(SEALS)

MLP
(All)

Formula racing 351 88 3.38 1.4 42.6 41.4
Paddy field 468 70 4.02 1.1 42.6 44.2
Engine 656 82 3.43 0.8 41.7 40.6
Electric piano 345 56 4.15 1.5 40.9 42.1
Shrimp 907 85 3.82 0.6 40.4 40.8
Goat 1190 88 3.72 0.4 39.6 39.6
Chocolate truffle 288 58 5.47 1.8 39.6 39.9
Cupboard 898 88 3.41 0.6 39.6 39.6
Citrus 796 65 3.34 0.7 39.3 39.6
Parrot 1546 89 2.85 0.4 39.2 38.8
Delicatessen 196 52 2.80 2.6 38.2 39.0
Berry 874 82 3.78 0.6 37.8 37.6
Briefs 539 78 3.68 1.0 37.1 37.2
Concert dance 357 61 3.91 1.4 36.6 36.1
Modern pentathlon 772 43 2.59 0.6 35.9 32.6
Fortification 287 66 3.96 1.7 35.7 37.6
Stallion 598 70 3.58 0.9 35.7 36.3
Belt 467 41 3.26 1.1 35.2 34.9
Sirloin steak 297 60 4.97 1.8 33.9 32.7
Stele 450 70 3.74 1.1 33.9 32.7
Galliformes 674 82 3.98 0.7 33.9 33.9
Algae 426 57 4.52 1.2 33.8 33.1
Herd 648 75 3.88 0.8 33.5 33.7
Pelecaniformes 457 85 3.96 1.1 33.4 37.5
Cactus 377 51 4.11 1.3 33.4 35.2
Shelving 810 66 3.41 0.7 33.2 33.3
Drums 741 69 3.30 0.7 32.9 32.7
Cranberry 450 63 4.10 1.2 32.9 33.7
Factory 333 61 5.59 1.5 32.0 31.7
Costume design 818 52 3.44 0.6 30.9 30.6
Optical instrument 649 79 3.91 0.8 30.3 32.8
Construction 515 63 4.99 1.0 30.1 31.1
Temperate coniferous forest 328 59 4.23 1.5 30.1 27.6
Skating 561 77 4.04 1.0 28.8 30.4
Egg (Food) 1193 85 4.31 0.4 28.8 28.6
Steamed rice 580 75 4.54 0.9 28.1 30.2
Plumbing fixture 2124 89 3.19 0.3 27.9 27.9
Whole food 708 73 3.66 0.7 27.7 27.5
Boardsport 673 62 4.08 0.8 26.8 26.5
Pork 464 64 4.44 1.1 26.3 26.6
Aerial photography 931 63 3.99 0.6 25.8 26.1
Town square 617 58 3.69 0.8 25.7 26.1
Estate 667 51 4.03 0.9 24.8 25.9
Maple 2301 90 4.19 0.2 24.3 24.4
Cattle 5995 93 3.22 0.1 23.8 23.6
Superhero 968 58 5.28 0.6 23.4 23.3
Bracelet 770 46 4.13 0.6 23.2 24.8
Frost 483 60 4.73 1.0 23.1 22.5
Scale model 667 45 5.64 0.8 22.9 23.7
Plateau 452 37 3.88 1.1 22.7 19.1
Bird of prey 712 78 3.81 0.7 22.4 22.0



Table 8: Bottom 1
3 of classes from Openimages for active search. (3 of 3) Recall (%) of positives

and measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MLP-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MLP
(SEALS)

MLP
(All)

Canal 726 62 4.78 0.7 22.4 20.9
Exhibition 513 40 3.87 1.0 21.9 23.1
Carpet 644 50 6.98 0.8 21.9 22.7
Monoplane 756 81 4.70 0.7 21.8 20.1
Ice 682 50 4.87 0.8 21.6 23.1
Fur 834 42 4.31 0.6 21.2 17.3
Icing 1118 74 4.20 0.4 20.5 20.1
Flooring 814 38 3.87 0.6 20.4 16.9
Icon 186 15 3.26 2.7 19.9 17.2
Prairie 792 44 3.92 0.6 19.0 19.2
Tooth 976 49 4.77 0.5 18.6 18.0
Skateboarding Equipment 862 57 5.92 0.6 18.1 19.3
Automotive exterior 1060 23 2.74 0.5 17.7 11.9
Cottage 670 51 4.13 0.7 17.6 17.3
Soldier 1032 74 3.80 0.5 17.3 16.8
Marine mammal 2954 91 3.58 0.2 17.3 17.2
Tool 1549 64 4.51 0.3 17.0 16.9
Multimedia 741 46 4.12 0.7 16.8 17.1
American shorthair 2084 94 3.32 0.3 16.5 16.7
Asphalt 1026 40 4.53 0.5 15.1 11.5
Singer 604 56 4.06 0.9 14.6 13.6
Floodplain 567 50 4.81 0.9 14.6 14.0
Rural area 921 41 4.63 0.6 14.2 13.2
Mitsubishi 511 37 5.14 1.0 12.6 11.8
Organ (Biology) 1156 25 3.80 0.5 12.1 15.9
Paper 969 23 3.18 0.5 12.0 14.8
Annual plant 677 38 6.07 0.7 11.8 10.7
Electric blue 1180 19 3.70 0.5 11.5 9.4
Stadium 1654 77 5.77 0.3 10.8 9.3
Mural 649 41 5.24 0.8 10.4 10.3
Teal 975 16 4.08 0.5 9.9 10.4
Cirque 347 29 5.77 1.5 9.9 9.8
Wall 1218 27 3.13 0.4 9.3 12.0
Thumb 895 26 4.18 0.6 9.3 13.8
Landscaping 789 32 4.71 0.7 9.2 9.3
Vehicle registration plate 5697 76 5.89 0.1 8.7 8.3
Meal 1250 60 5.68 0.4 8.5 9.1
Wilderness 1225 30 4.12 0.4 8.5 9.8
Liqueur 539 51 5.98 1.0 8.0 12.8
Space 1006 23 4.63 0.5 7.8 6.3
Cycling 794 63 5.00 0.6 7.3 7.8
Brown 1427 16 3.49 0.4 7.2 2.6
Organism 1148 21 3.49 0.4 6.8 2.0
Laugh 750 19 6.22 0.7 6.6 8.6
Bumper 985 37 6.65 0.5 5.9 8.3
Portrait 2510 67 6.38 0.2 5.8 5.3
Mode of transport 1387 24 4.50 0.4 5.1 3.6
Interaction 924 15 6.05 0.6 4.5 4.6
Tournament 841 47 9.90 0.6 4.3 5.1
Performing arts 1030 29 6.97 0.5 2.3 2.5
White 1494 3 2.79 0.3 2.0 0.5



Self-supervised embeddings (SimCLR) on ImageNet
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Figure 15: Active learning and search on ImageNet with self-supervised embeddings from Sim-
CLR [11]. Because the self-supervised training for the embeddings did not use the labels, results are
average across all 1,000 classes and |U |=1,281,167. To compensate for the larger unlabeled pool, we
extended the total labeling budget to 4,000 compared to the 2,000 used in Figure 1. Across strategies,
SEALS with k = 100 substantially outperforms random sampling in terms of both the mAP the
model achieves for active learning (left) and the recall of positive examples for active search (right),
while only considering a fraction of the data U (middle). For active learning, the gap between the
baseline and SEALS approaches is slightly larger than in Figure 1, which is likely due to the larger
pool size and increased average shortest paths (see Figure 16).
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Figure 16: Measurements of the latent structure of unseen concepts in ImageNet with self-supervised
embeddings from SimCLR [11]. In comparison to Figure 10a, the k-nearest neighbor graph for unseen
concepts was still well connected, forming large connected components (left) for even moderate
values of k, but the average shortest path between examples was slightly longer (right). The increased
path length is not too surprising considering the fully supervised model still outperformed the linear
evaluation of the self-supervised embeddings in Chen et al. [11].



Self-supervised embedding (Sentence-BERT) on Goodreads

We followed the same general procedure described in Section 5.1, aside from the dataset specific
details below. Goodreads spoiler detection [46] had 17.67 million sentences with binary spoiler
annotations. Spoilers made up 3.224% of the data, making them much more common than the
rare concepts we evaluated in the other datasets. Following Wan et al. [46], we used 3.53 million
sentences for testing (20%), 10,000 sentences as the validation set, and the remaining 14.13 million
sentences as the unlabeled pool. We also switched to the area under the ROC curve (AUC) as our
primary evaluation metric for active learning to be consistent with Wan et al. [46]. For Gz , we used a
pre-trained Sentence-BERT model (SBERT-NLI-base) [36], applied PCA whitening to reduce the
dimension to 256, and performed l2 normalization.

Active search

SEALS achieved the same recall as the baseline approaches, but only considered less than 1% of the
unlabeled data in the candidate pool, as shown in Figure 17. At a labeling budget of 2,000, MLP-
ALL and MLP-SEALS recalled 0.15± 0.02% and 0.17± 0.05%, respectively, while MaxEnt-All
and MaxEnt-SEALS achieved 0.14± 0.04% and 0.11± 0.06% recall respectively. Increasing the
labeling budget to 50,000 examples, increased recall to ~3.7% for MaxEnt and MLP but maintained
a similar relative improvement over random sampling, as shown in Figure 18. ID-SEALS performed
worse than the other strategies. However, all of the active selection strategies outperformed random
sampling by up to an order of magnitude.
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Figure 17: Active learning and search on Goodreads with Sentence-BERT embeddings. Across
datasets and strategies, SEALS with k = 100 performs similarly to the baseline approach in terms
of both the error the model achieves for active learning (left) and the recall of positive examples for
active search (right), while only considering a fraction of the data U (middle).

Active learning

At a labeling budget of 2,000 examples, all the selection strategies were indistinguishable from
random sampling. Increasing the labeling budget did not help, as shown in Figure 18. Unlike
ImageNet and OpenImages, Goodreads had a much higher fraction of positive examples (3.224%),
and the examples were not tightly clustered as described in Section 6.
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Figure 18: Active learning and search on Goodreads with a labeling budget of 100,000 examples.
Across strategies, SEALS with k = 100 performed similarly to the baseline approach in terms of
both the error the model achieved for active learning (left) and the recall of positive examples for
active search (right), while only considering a fraction of the data U (middle). ID was excluded
because of the growing pool size and computation. For active search, MaxEnt and MLP continued
to improve recall. For active learning, all the selection strategies (both with and without SEALS)
performed worse than random sampling despite the larger labeling budget. This gap was likely due
to spoilers being book specific and the higher fraction of positive examples in the unlabeled pool,
causing relevant examples to be spread almost uniformly across the space (see Section 6).

Latent structure

The large number of positive examples in the Goodreads dataset limited the analysis we could
perform. We could only calculate the size of the largest connected component in the nearest neighbor
graph (Figure 19). For k = 10, only 28.4% of the positive examples could be reached directly, but
increasing k to 100 improved that dramatically to 96.7%. For such a large connected component, one
might have expected active learning to perform better in Section 6. By analyzing the embeddings,
however, we found that examples are spread almost uniformly across the space with an average
cosine similarity of 0.004. For comparison, the average cosine similarity for concepts in ImageNet
and OpenImages was 0.453± 0.077 and 0.361± 0.105 respectively. This uniformity was likely due
to the higher fraction of positive examples and spoilers being book specific while Sentence-BERT
is trained on generic data. As a result, even if spoilers were tightly clustered within each book, the
books were spread across a range of topics and consequently across the embedding space, illustrating
a limitation and opportunity for future work.
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Figure 19: Cumulative distribution function (CDF) for the largest connected component in the
Goodreads dataset with varying values of k.


