
Counterfactual Explanations for Models of Code
Jürgen Cito

TU Wien and Meta Platforms, Inc.
Austria

Isil Dillig
UT Austin†

U.S.A.

Vijayaraghavan Murali
Meta Platforms, Inc.

U.S.A.

Satish Chandra
Meta Platforms, Inc.

U.S.A.

ABSTRACT
Machine learning (ML) models play an increasingly prevalent role
in many software engineering tasks. However, because most models
are now powered by opaque deep neural networks, it can be diffi-
cult for developers to understand why the model came to a certain
conclusion and how to act upon the model’s prediction. Motivated
by this problem, this paper explores counterfactual explanations
for models of source code. Such counterfactual explanations consti-
tute minimal changes to the source code under which the model
“changes its mind". We integrate counterfactual explanation genera-
tion to models of source code in a real-world setting. We describe
considerations that impact both the ability to find realistic and plau-
sible counterfactual explanations, as well as the usefulness of such
explanation to the user of the model. In a series of experiments we
investigate the efficacy of our approach on three different models,
each based on a BERT-like architecture operating over source code.

1 INTRODUCTION
With the rapid advances in deep learning over the last decade,
complex machine learning models have increasingly made their
way into software engineering. In particular, models based on deep
neural networks are now routinely used in code-related tasks such
as bug detection [29], auto-completion [3], type inference [28], code
summarization [1, 48], and more.

While deep learning models are remarkably accurate and gen-
erally quite effective, one growing concern about their adoption
is interpretability. In particular, because deep neural networks are
extremely complex, it is often very difficult to understand why they
make the predictions that they do. This issue of interpretability is
a particularly relevant concern in software engineering since the
outputs of machine learning models are routinely used to make
predictions about code quality and non-functional properties of
code. Even worse, because the predictions of these models are often
consumed by software developers to change or improve an existing

†Work done at Meta as visiting scientist.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

code base, it is particularly important that developers are able to
understand why machine learning models make certain predictions.

To provide a more concrete illustration, consider a machine
learning model that has been trained to detect whether some piece
of code contains a security vulnerability [37]. If the developer does
not understand why the model thinks a piece of code is vulnerable,
they may fail to take a true vulnerability seriously. Furthermore,
even when they do take the model prediction seriously, they might
not be able to take remedial action if they cannot understand why
something is considered to be a vulnerability.

This paper takes a step towards improving the interpretability
of machine learning models used in code for practical downstream
applications.Motivated by the shortcomings of existing methods
like LIME [34], SHAP [17], and attention-based methods [44] in the
context of source code, we develop a new technique for generating
counterfactual explanations for models of code. Such explanations
demonstrate how the model’s prediction would have changed had
the program been modified—or, perturbed—in a certain way. We
believe that counterfactual explanations are particularly useful
in the context of software engineering, as they reveal not only
which parts of the code the model is paying attention to, but they
also how to change the code so that the model makes a different
prediction. This mode of so-called contrastive reasoning through
counterfactuals is also aligned with how humans explain complex
decisions [24].

In order to generate useful counterfactual explanations for code,
we have conducted a formative study involving software engineers
using different machine learning models at Meta. Informed by the
findings from this formative study, we then formalize what a coun-
terfactual explanation entails in the context of code and present
an algorithm for generating such explanations. At the heart of
our technique lies a mechanism for modifying the program such
that the resulting code is “natural". This ability is extremely im-
portant because perturbations that result in “unnatural" code can
confuse the model by generating programs that come from a differ-
ent distribution that the model has not been trained on. Thus, such
modifications often reveal robustness problems in the model as op-
posed to yielding useful counterfactual explanations. Furthermore,
counterfactual explanations that result in “unnatural code" are also
not useful to developers because they do not provide meaningful
insights on what a proper contrastive example looks like that flips
the model prediction. We show an example of this in Section 2.

In this paper, we propose using masked language models (MLMs)
as a way of generating meaningful counterfactual explanations.
Our proposed technique “masks" a small set 𝑆 of tokens in the orig-
inal program and uses an MLM to predict a new set of tokens 𝑆 ′

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra

that can be used to replace 𝑆 . This results in a “natural”-looking
perturbation of the original program for which the model can make
meaningful predictions, as the perturbed program comes from the
same distribution that the model has been trained on. Our method
then systematically builds a search space of perturbations and tests
whether they result in a change of prediction for the relevant down-
stream task, and if so, returns it as a counterfactual explanation.

We conduct a series of experiments in the context of three ma-
chine learning models at Meta that are applied to source code diffs:
performance regression prediction, testplan screenshot prediction,
and taint propagation detection. We conduct a user study with 3
software engineers and research scientists at Meta to see whether
counterfactual explanations help them discern true positive from
false positive predictions (they can in 86% of cases), and how useful
they think these explanations are (83% of cases). We also assess
how our explanations aligns with human rationales for prediction
provided by domain experts. For our study sample, our generated
counterfactual explanations correspond to human rationale in over
90%.

Contributions. This paper makes the following contributions:

• We present a method of generating counterfactual explana-
tions for ML models that predict certain properties of code
or code changes. These properties are typically checked by
humans during code review, so if ML models were to be used
in place of humans, an explanation of the model predictions
is necessary.

• We present desiderata for counterfactual explanations in the
context of source code that are useful to the end user who
has to consume the predictions of the ML models, as well as
the counterfactual explanation offered along with it.

• We have applied counterfactual explanations for predictions
generated by models for three distinct real-world code qual-
ity machine learning models. We show empirical results on
the usefulness of these explanations to the users of these
models. We also show, quantitatively, that counterfactual
explanations have a better correspondence with human-
generated explanation, compared to a previously presented
perturbation-based explanation technique [23].

The paper is organized as follows. Section 2 gives the context of
this work in terms of themodel familywe use, as well as the tasks for
which these models are trained. We walk the reader through exam-
ples of counterfactual explanations. Section 3 describes informally
the requirements from useful counterfactual explanations; these
are based on interactions with prospective users. Section 4 tackles
the problem of explanation generation formally, and presents our
core algorithm. Section 5 describes our experimental setting and
the results.

2 CONTEXT OF THIS WORK
BERT-basedmodels of code. Deep-learning architectures drawn

from NLP have become commonplace in software engineering [1,
2, 48]. Among these, recently large-scale language models such
as BERT [10] have shown state-of-the-art performance in NLP
tasks, and correspondingly, the software engineering community
has adopted these architectures for code-related purposes, e.g. in

1 private async function storeAndDisplayDialog(

2 SomeContext $vc,

3 SomeContent $content,

4 -): Awaitable<SomethingStoreHandle> {

5 +): Awaitable<SomeUIElement> {

6 - $store_handle = await SomethingStore::genStoreHandle($vc);

7 + $store_handle = await SomethingStore::genHandle($vc);

8 + ... other code ...

9 + $store_success = await $store_handle->store(

10 + $store_handle,

11 + $content,

12 +);

13 - return $store_handle;

14 + return await $store_success->genUIElementToRender();

15 }

Listing 1: A code change that we use as running example.
The added lines are marked with a "+" and the deleted lines
with a "-"

CodeBERT [14]. Since our models fall in this category, we give a
very brief background here.

The idea behind BERT (and CodeBERT) is to pre-train a sequence
model using self-supervision. This is done by giving a neural net-
work the training task of predicting one or more tokens in the
sequence that are purposely masked out. The network’s training
objective is to predict the masked-out tokens correctly. This is
known popularly as a masked language model, or MLM. The pur-
pose of the MLM pre-training is to learn a generic embedding of a
token sequence; as in LSTMs, the hidden state after the last token
in a sequence is taken to be the embedding of the entire sequence.

While pre-training is generic, a second step, called fine tuning,
is applied to customize the network to a specific task at hand. Here
one uses a supervised dataset (i.e., a language fragment as well as
a label that a human associates with the fragment), to fine-tune a
classifier for a specific task. For instance, in a sentiment analysis
application, a (binary) label could be whether the token sequence
reflects a positive sentiment.

Automated code review. At companies small and large (includ-
ing Meta), there is considerable interest in more thorough and more
automated code review with the hope of giving feedback to devel-
opers early. Whenever a developer submits a code commit (aka a
“diff”), a series of automated analyses are carried out in addition to
a human code review. These automated analyses try to find both
stylistic inconsistencies, and to the extent possible, functional and
non-functional issues in code.

Complementing traditional code analyses are ML-based analyses
for a variety of purposes, and are increasingly being used in soft-
ware engineering tasks in industrial practice [4]. Here we illustrate
three of these analyses (models), using a common small example.
Our models are based on BERT, described above.

Listing 1 represents a code change that could be made in a diff
(for simplicity, we omit other features such as the commit message).
It implements a function that stores a piece of content in a data
store and returns a UI dialog element to signify that the operation

Counterfactual Explanations for Models of Code ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

- $store_handle = await SomethingStore::genStoreHandle($vc);

+ $store_handle = await SomethingStore::genHandle($vc) ;

SomethingStore::genSimple($vc)

+ ... other code ...

Listing 2: Counterfactual explanation of the model’s predic-
tion that the code change in Listing 1 will cause a perfor-
mance regression. The explanation says that if we replace
the red part with green, the model will no longer make that
prediction. We refer to such replacements as perturbations.

has been successful. By convention, the added lines are shown with
a "+" and the deleted lines are shown with a "-". The unchanged
lines are shown for context, which is also important for the model
to train well.

We now discuss the three downstream tasks while referring to
Listing 1. We illustrate several aspects of counterfactual explana-
tions in the first of these tasks, and keep the other two brief.

Performance Prediction. In the diff shown above, replacing
line 6 (an optimized operation for store handles) with line 7 (an
unoptimized version for generic handles) could cause a performance
problem. Lines 9-12 are also added, which could independently
cause performance problems. It is not known at code review time
whether or not this diff will cause a performance regression for
sure, because the code has not been deployed in a real environment
yet.

In support of an intelligent, automated code review, a BERT-
based predictive model (trained on a curated set of past perfor-
mance regressions) provides an educated guess at whether this
diff is a likely performance regression. In this example, suppose
that the model’s prediction is “yes". In the current status quo, the
developer has to start a complex investigation process that involves
hypothesis building, statically inspecting potential culprits, and ex-
pensive testing with delta-debugging that involves benchmarks [5].
If it then turns out that the machine learning prediction was a
false positive, it could lead to frustration, as is well-known from
existing experiences with deploying any kind of uncertain program
analysis [7, 38].

To help the developer gain better insight about the model’s
prediction, our system automatically generates a counterfactual
explanation, as shown in Listing 2. This counterfactual states that
had genStoreHandle been replaced with genSimple instead of
genHandle, then themodel would not have predicted a performance
regression. Such feedback is useful to the developer, as it highlights
that genHandle is the likely culprit and allows them to ignore
changes to the other parts of the code. Thus, the part elided as "...
other code ..." can be ignored by the developer when trying to figure
out how to address this automated feedback.

Multiple Blame Points. In many cases, the model’s prediction
does not depend on a single line of the diff, of even a consecutive
fragment of code. Rather, there may be multiple parts of the diff that
cause the model to make a certain prediction. For instance, Listing 3
shows a scenario where the counterfactual involves multiple parts

- $store_handle = await SomethingStore::genStoreHandle($vc);

+ $store_handle = await SomethingStore::genHandle($vc) ;

SomethingStore::genSimple($vc)

+ ... other code ...

+ $store_success = await $store_handle->store (

$store_handle->probe

+ $store_handle,

+ $content,

+);

Listing 3: A counterfactual with two changes that must be
made together for the model to change its prediction.

of the diff. For example, if the procedure store relies on an opti-
mization performed by genStoreHandle, then it would make sense
that the model’s prediction is informed by both of these function
calls. Observe that techniques based on delta debugging [31] might
not be able to pinpoint blame points in non-contiguous pieces of
code, for example, due to the "...other code..." in this example.

Preserving in-distribution. As illustrated by the previous two ex-
amples, our method produces counterfactuals that look “natural"
— that is, the replacements proposed by our technique could have
plausibly occurred in the diff. This is an important aspect of this
work, as candidate explanations that are implausible often cause
the model to “change its mind" due to robustness issues in the
model. For example, consider the candidate explanation shown in
Listing 4. In this case, replacing the return value by await 5 yields
a non-sensical code snippet that comes from a different distribution
than the one our model has been trained on. Thus, the model is
not expected to make reliable predictions for such code and can
erroneously predict that the diff (after perturbation) does not have
a performance regression. In this case, the out-of-distribution na-
ture of the perturbation results in an “explanation" that does not
blame the true culprit. We want to avoid such out-of-distribution
perturbations.

Testplan Screenshot Prediction. So far, we highlighted salient
aspects of our approach in the context of a model for performance
prediction. However, such counterfactuals are more broadly useful
across different downstream tasks. Next, we illustrate how explana-
tions can be useful in the context of testplan screenshot prediction.

When submitting a diff for review, the developer also has to
provide a testplan that details how exactly that particular diff should
be tested. The testplan usually includes instructions on how to run

+ ... other code ...

- return $store_handle;

+ return await $store_success->genUIElementToRender(); ;

5

Listing 4: A counterfactual based on an out-of-distribution
code change.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra

+ $store_handle = await SomethingStore::genHandle($vc);

+ ... other code ...

+ $store_success = await $store_handle->store(

+ $store_handle,

+ $content,

+);

- return $store_handle;

+ return await $store_success-> genUIElementToRender ();

getValue

}

Listing 5: A counterfactual for testplan screenshot predic-
tion model

private async function storeAndDisplayDialog(

SomeContext $vc,

SomeContent $content ,

$count

...

+ ... other code ...

+ $store_success = await $store_handle->store(

+ $store_handle,

+ $content ,

$count

+);

Listing 6: A counterfactual for taint propagation detection
model

automated tests that exercise the code change as well as the results
of those tests. A testplan that has to do with UI functionality should
also include a screenshot; otherwise it is not a very good quality
test plan. Calling out poor quality test plans is another check that
code review is expected to do.

At Meta, we use a predictive model for testplan quality that
indicates whether a testplan should contain a screenshot of the
introduced functionality. Such a model is trained over a curated
dataset of diffs with manually-specified binary labels. For instance,
in our running example, the model might predict that the testplan
should require a screenshot, possibly because the functionality that
is being changed involves displaying and rendering UI elements
(line 14 in the original example). Our proposed method also helps
justify such testplan-related predictions by producing the counter-
factual explanation shown in Listing 5. With such an explanation,
the developer gets a clear indication that the prediction is related to
the call to genUIElementToRender, absolving her from the burden
of manually inspecting irrelevant parts of a (potentially very large)
diff.

Taint Propagation Detection. Next, we discuss the usefulness
of counterfactuals in the context of a model that predicts whether
a diff introduces data flow that may propagate tainted information.
Going back to our running example, a model trained for this task
might flag the diff as suspect because the added code stores some

content in a data store (line 9-12 in the original code example).
However, given that the diff makes many other changes, it may not
be apparent to the developer why the model makes this prediction.
Our technique could also be useful in this context by producing
the counterfactual shown in Listing 6. This explanation informs
the developer that the model based its decision on the use of the
variable name content.

3 DESIDERATA FOR COUNTERFACTUAL
EXPLANATIONS FOR CODE

The series of examples presented in Section 2 hopefully convey the
idea that the results of ML models can be made more useful, persua-
sive, and actionable if accompanied by a counterfactual explanation.
However, when designing explanatory systems, there are several
criteria and pitfalls to consider, some of which have been discussed
in the literature [25]. Additionally, since our method targets models
of code, we need to take into account specific considerations of
software engineers submitting their changes for code review. For
this purpose, we conduct a formative study with three software
engineers who are domain experts in the downstream tasks that we
investigate in this paper. Our goal is to understand the desiderata
of explanation systems as part of the software engineering process.

In this study, we present users with the predictions of the model
for specific tasks and ask them to provide human rationale for each
prediction. We also show them different counterfactual explana-
tions and ask them for feedback. Overall, we discuss around 10
predictions with each participant. At this point of our research,
we were mostly interested in open-ended, qualitative feedback to
understand the frustrations and confusions of software engineers
and assess overall room for improvement. This study informed our
design decisions that in turn influenced our problem formulation,
implementation, and experiments. In what follows, we briefly sum-
marize our findings, many of which are consistent with similar
findings in different (non-code related) contexts.

Plausibility and actionability. Plausibility and actionability
are regularly mentioned terms in the literature on counterfactual
explanations [27, 39] and algorithmic recourse [18, 33]. Plausibility
means that we should not generate counterfactuals that are nei-
ther realistic nor believably part of the original input. Similarly to
plausibility constraints in other domains, a code counterfactual is
plausible if the code retains its naturalness as a result of the mod-
ification. We showed Listing 2 as a plausible counterfactual, and
Listing 4 as one that is implausible.

Another concern frequently brought up in our study is that of
actionability, i.e., does the explanation show actionable recourse
options? Pragmatically, we could take into account actionability
constraints in our problem formulation and only allow counterfac-
tuals that modify actionable features of the input. For example, in
the case of code diffs, we could restrict modifications to be only
applied to the added lines in the diff. However, after more discus-
sions with our formative study participants, we realized that deleted
lines and context matter just as much to the model — otherwise we
could have trained the model only on added lines in the first place,
making it a lot more myopic and consequently imprecise. There-
fore we decided to not restrict which parts of the input to perturb,
with the rationale that the model designer can always later apply

Counterfactual Explanations for Models of Code ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

a filter to the generated counterfactuals in a post-processing step.
Listing 6 showed a counterfactual in which one of the perturbations
is outside the lines changed in the diff.

Consistency. Another important finding from our formative
study is that counterfactuals that modify different occurrences of
the same identifier are neither particularly useful nor plausible. For
example, consider a diff involving a class called “SomethingStore".
If the modification renames this class in the import statement but
not elsewhere in the code, the modified code neither makes sense
nor leads to useful counterfactuals. Based on this finding, we de-
cided to restrict code modifications we consider when generating
counterfactuals to those that are consistent. That is, our approach
only allows input modifications that change the same identifier
consistently throughout the code diff.

Proximity. Multiple formative study participants brought up
that the distance between multiple perturbations matters to the
comprehensibility of explanations. Perturbations that were part
of the explanation of one instance, but that were “too spread out"
were confusing and not really helpful (e.g., an explanation that
added perturbations in the beginning of the diff and at the far
end of the diff). We use this finding to design a heuristic to select
between multiple candidate counterfactuals. In particular, when
our method finds multiple explanations, we prefer those where the
modifications are not too far apart.

4 COUNTERFACTUAL EXPLANATIONS FOR
MODELS OF CODE

In this section, we formalize the problem of generating counterfac-
tual explanations for code and describe our algorithm.

4.1 Problem Formulation
Our problem formulation utilizes the concept of perturbation which
is a transformation 𝜋 that can be applied to a program. Given a pro-
gram 𝑃 and perturbation 𝜋 , we write 𝜋 (𝑃) to denote the resulting
program obtained by applying 𝜋 to 𝑃 .

Given a machine learning model M trained on set 𝑆 ∼ D for
some task 𝑡 and a program 𝑃 ∼ D, a counterfactual explanation is a
perturbation 𝜋 of 𝑃 satisfying the following criteria:

(1) The model makes different predictions for the original pro-
gram and the perturbed version, i.e.,M(𝑃) ≠ M(𝜋 (𝑃))

(2) The ground truth for 𝑃 and 𝜋 (𝑃) are different for task 𝑡 , i.e.,
G(𝑃) ≠ G(𝜋 (𝑃))

(3) The perturbed program 𝜋 (𝑃) is “natural", meaning that it
comes from the same distribution as the original program 𝑃

(i.e., 𝜋 (𝑃) ∼ D)
Note that our definition of counterfactual explanation is quite

similar to adversarial examples [32, 47] in that both are defined as
small perturbations 𝜋 that cause the model to “change its mind" (i.e.,
condition (1) from above). However, there are two key differences
between counterfactual explanations and adversarial examples that
are outlined in conditions (2) and (3) in the above definition. First,
adversarial examples are inputs that are designed to intentionally
fool the model – that is, from a human’s perspective, the prediction
result for 𝑃 and 𝜋 (𝑃) should be exactly the same. In contrast, a
perturbation only makes sense as a counterfactual explanation if

𝑃 and 𝜋 (𝑃) are semantically different for task 𝑡 from the user’s
perspective. That is, the ground truth prediction for 𝑃 and 𝜋 (𝑃), de-
noted by G(𝑃) and G(𝜋 (𝑃)) resp., should be different, as stipulated
in condition (2) of our definition.

In addition, a second key difference between counterfactual ex-
planations and adversarial examples is whether they are “natural".
In particular, since adversarial examples are specifically crafted to
fool the model, there is no requirement that they are drawn from
the same distribution that the model has been trained on. On the
other hand, for a perturbation 𝜋 to make sense as an explanation
of the model’s behavior as opposed to a robustness issue, the per-
turbed program needs to be drawn from the same distribution as
the training data, as stipulated in condition (3).

We illustrate the differences between counterfactuals and adver-
sarial examples in Figure 1 in the context of a classification problem
with four classes, depicted by different colors. As we go out from
the center, the data gets increasingly out of distribution. If we want
to show an adversarial example, we try a perturbation that pulls the
input out of distribution to make the model mispredict, but we want
to retain the same ground truth. If we want to find a counterfactual,
we try to perturb such that the ground truth label does change (as
well as the model prediction) while staying within distribution.

Discussion. While our problem formulation stipulates that a
counterfactual should flip the ground truth prediction, our algorithm
for generating counterfactuals can never enforce condition (2), as
we do not have access to the ground truth. In fact, an explanation
generated by any technique (including ours) could violate condition
(2). However, assuming that the model is quite accurate for inputs
drawn from the target distribution (i.e., 𝑃 ∼ D), we haveM(𝑃) ≈
G(𝑃), so conditions (1) and (2) become interchangeable. Thus, for
models with high accuracy, an algorithm that ensures conditions
(1) and (3) is unlikely to generate counterfactual explanations that
violate condition (2).

Additionally, the contrapositive of the above observation sug-
gests a way of using counterfactuals to diagnose a model’s mis-
predictions. In particular, suppose that an algorithm produces a
counterfactual 𝜋 where the user thinks G(𝑃) should be the same as
G(𝜋 (𝑃)). In this case, assuming that the counterfactual generation
algorithm enforces conditions (1) and (3), the above assumption
thatM(𝑃) ≈ G(𝑃) is violated. Thus, in practice, we have observed
a strong correlation between “non-sensical" counterfactuals and
model mispredictions. Said differently, if the algorithm produces a
counterfactual that does not make sense to users, this can serve as
a strong hint that the model’s prediction is wrong.

As an example of this way of diagnosing model mispredictions,
revisit Listing 1. Suppose, hypothetically, that Listing 5 were offered
as the (only) counterfactual for the performance model’s prediction
of a potential regression. Suppose further that a human judge im-
mediately sees that the unperturbed and the perturbed code should
have the same ground truth, because the UI-related call has nothing
to do with performance. In that case, we can conclude the model’s
prediction of a performance regression was a misprediction.

4.2 MLM-Based Perturbations for Code
Our problem formulation does not specify the exact nature of per-
turbations; however, a counterfactual generation algorithm needs

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra

Out of distribution

Perturbation shows lack
of robustness

Perturbation for counterfactual
explanation

Training
data

Figure 1: The two colors show different classes. As we go out
from the center, the data gets more out of distribution. Two
perturbations are shown: one that exposes a robustness is-
sue, and the other that is useful for counterfactual explana-
tion. The colors of the small circles show the class that the
model predicts.

to consider a universe of possible modifications to a given code
snippet. To ensure that our counterfactual explanations satisfy the
naturalness criterion (i.e., condition (3)), we propose generating
perturbations using masked language modeling (MLM) [10]. At a
high level, the idea is to replace each token with a blank (“mask")
and use MLM to come up with a plausible replacement for the
original token. In more detail, our approach first tokenizes the in-
put program 𝑃 and produces an indexed sequential representation
T (𝑃) = {𝑝𝑖 }𝑁𝑖=1. Then, given a specific token 𝑝 𝑗 that we want to per-
turb, we produce a new sequence T (𝑃 ′) = ⟨𝑝1, . . . , 𝑝 𝑗−1, [MASK]
, 𝑝 𝑗+1, . . . 𝑝𝑁 ⟩ and use MLM to produce a probability distribution
for possible instantiations of [MASK]. Since MLM leverages all
other tokens in the sequence to make predictions, it can produce
more natural perturbations than other (more traditional) language
models that only leverage preceding tokens in the sequence.

4.3 Algorithm for Generating Counterfactuals
We now describe our algorithm for generating counterfactual expla-
nations. Our algorithm takes as input a program 𝑃 and a machine
learning model M and returns a set of counterfactual explanations
𝐸. Each explanation 𝑒 ∈ 𝐸 is a mapping from a token 𝑡𝑖 ∈ 𝑃 to a
new token 𝑡 ′

𝑖
such that replacing every 𝑡𝑖 with 𝑡 ′𝑖 causes the model

M to change its prediction.
At a high level, our algorithm explores explanations of increas-

ing size, where the size of an explanation is the number of replaced
tokens. Specifically, Algorithm 1 maintains a set (called explore) of
candidate replacements, where each candidate is a set of tokens to be
replaced. Then, in each iteration, it grows the most promising can-
didate replacement (determined by the score differential between
candidate counterfactual and the original input – Line 5) by an ad-
ditional token that is not yet part of the explanation set to generate
a new set of candidate replacements called new_candidates (Line 6).
Then, for each candidate 𝑐 in this set (Line 7), Algorithm 2 invokes
a procedure called FindCounterfactual to test whether there exists
a counterfactual explanation whose domain is exactly 𝑐 . If so, all
explanations returned by FindCounterfactual are added to set ex-
planations (Line 11). On the other hand, if there is no counterfactual
whose domain is 𝑐 , we add 𝑐 to set explore so that the domain of
the explanation is grown in subsequent iterations (line 13). Note

Algorithm 1: GenerateCounterfactualExplanations
Input : Input program 𝑃 , Model M: D ↦→ {𝑇, 𝐹 } × R

returning a classification and a score, iteration
count ITER

Output :List of counterfactuals that lead to prediction
changes

1 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 = ∅
2 𝑡𝑜𝑘𝑒𝑛𝑠 = {𝑡𝑖 | 𝑡𝑖 ∈ T (𝑃)}
3 explanations = ∅
4 for _ in ITER+1 do
5 𝑐𝑏𝑒𝑠𝑡 = Choose(𝑒𝑥𝑝𝑙𝑜𝑟𝑒)
6 new_candidates =

{(𝑐𝑏𝑒𝑠𝑡 , 𝑡𝑖) | 𝑡𝑖 ∈ (𝑡𝑜𝑘𝑒𝑛𝑠 \ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠)}
7 for 𝑐 in new_candidates do
8 𝐸 = FindCounterfactual(𝑃,M, 𝑐)
9 if 𝐸 ≠ ∅ then
10 explanations.add(𝐸)
11 else
12 explore.add(𝑐)

13 return explanations

Algorithm 2: FindCounterfactual
Input : Input program 𝑃 , Model M, Token or token

combination to perturb ⟨𝑝1, . . . , 𝑝𝑘 ⟩ where
𝑝𝑖 ∈ T (𝑃)

Output :Whether counterfactual exists (boolean), Score
after perturbation, Counterfactual 𝑃 ′ (input after
perturbation)

1 𝐸 = ∅
2 𝑆 = MLM(𝑃, ⟨𝑝1, . . . , 𝑝𝑘 ⟩)
3 for ⟨𝑝 ′1, . . . , 𝑝

′
𝑘
⟩ ∈ 𝑆 do

4 𝑃 ′ = 𝑃 [𝑝 ′1/𝑝1, . . . , 𝑝
′
𝑘
/𝑝𝑘]

5 if M(𝑃) ≠ M(𝑃 ′) then
6 𝐸 = 𝐸 ∪ [𝑝1 ↦→ 𝑝 ′1, . . . , 𝑝𝑘 ↦→ 𝑝 ′

𝑘
]

7 return 𝐸

that, since smaller counterfactual explanations are always prefer-
able, there is no point in adding 𝑐 to explore if FindCounterfactual
returns a non-empty set.

Algorithm 2 shows the implementation of the FindCounterfac-
tual procedure. At a high level, this method uses the masked lan-
guage modeling technique described in Section 4.2 to find plausible
replacements for all tokens in 𝑐 (Line 4). That is, given a set of to-
kens 𝑝1, . . . , 𝑝𝑛 , we replace each 𝑝𝑖 in this set with a mask and ask
the language model to generate a set 𝑆 of plausible replacements
for the tokens 𝑝1, . . . , 𝑝𝑛 . Then, for each replacement ⟨𝑝 ′1, . . . , 𝑝

′
𝑛⟩

in set 𝑆 , we check whether substituting each 𝑝𝑖 with 𝑝 ′
𝑖
actually

causes the modelM to change its prediction (Line 7). If so, we then
add the mapping [𝑝1 ↦→ 𝑝 ′1, . . . , 𝑝𝑘 ↦→ 𝑝 ′

𝑘
] to the set of generated

counterfactual explanations (line 8).

Counterfactual Explanations for Models of Code ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

5 EXPERIMENTS
To explore the effectiveness of our proposed approach, we perform
a series of experiments based on models and tasks in the context of
a large deployment scenario at Meta. In what follows, we provide
a brief description of the underlying setting, including machine
learning models and downstream tasks, and then describe the ex-
periment methodology to answer our research questions.

5.1 Setting
The models and tasks we employ in our experiments take as input
a diff (e.g., akin to pull-requests in open source projects) and as-
sign a task-dependent probability about the code changes (context,
additions, deletions) of that diff. Each model has been pre-trained
on millions of diffs at Meta (with no particular downstream task in
mind) and then fine-tuned for specific tasks.

To evaluate our approach, we focus on the downstream tasks
described in Section 2, namely predicting a performance regression,
assessing test plan quality (whether a screenshot is warranted), and
detecting whether there is a taint propagation issue.

5.2 Research Questions and Methodology
The goal of our experimental evaluation is to address the following
research questions.

RQ1: How often do users find counterfactual explanations
for models of code helpful? We conduct a nstudy with 3 software
engineers and research scientists (we will collectively call them
“users" going forward) from different stakeholder teamswithinMeta.
We randomly sample 30 instances from the validation dataset used
during training of these models. For each instance, we produce
counterfactual explanations using our approach. We then ask the
participants whether they found the explanation to be useful to
understand the prediction.

RQ2: How do users utilize counterfactual explanations to
discern between true-positive and false-positive predictions
in models of code? We also ask the study participants to assess
whether they think prediction is a true-positive or false-positive.
They follow a think-aloud protocol in which they are encouraged
to verbalize their thought process such that we can capture the
rationale of their decision. We qualitatively analyze their responses
and report on their experience with utilizing explanations.

RQ3: Are counterfactual explanations for models of code
aligned with human rationales provided by domain experts?
We perform a case study based on an internal dataset where a
team of domain experts for the taint propagation detection task had
provided human rationales for code changes that we compare to our
generated counterfactual explanations.We randomly sample a set of
30 diffs and filter out instances where we cannot find counterfactual
explanations perturbing at most 5 tokens1. We are eventually left
with 11 instances for our analysis.

Since our research questions involve human assessment of the
counterfactual explanations, we use up to 5 explanations per diff re-
gardless of the number of explanations generated. The ones shown

1Anecdotally, we can say that perturbing any more than 5 tokens will make an expla-
nation practically useless

to users are chosen based on the model’s prediction likelihood
for the counterfactual. That is, the lower the probability of the
positive label from the model, the bigger was the influence of the
perturbation, and the better is the explanation.

5.3 Results
RQ1: Usefulness. Our users found the explanations useful or very
useful in 83.3% (25/30) of cases. Very useful explanations made up
30% (9/30) of cases. They only found 16.6% (5/30) of the explana-
tions not useful (or were indifferent about them). When analyzing
these cases together with rationales given by the participants, we
found that this mostly had to do with explanations that introduced
irrational perturbations. There are several kinds of perturbations
that were considered irrational in the study. For instance, it was
noted that a perturbation did not make sense because a method
invocation on a class was perturbed into method that does not exist
as part of that class. A particular explanation was considered not
very useful because the counterfactual introduced too many per-
turbations. Even though we aim for sparse explanations, this can
happen due to our goal of consistency (see Section 3.) If we perturb
one particular token (e.g., a type) and it occurs multiple times in
the input, we perturb all instances of it. Perturbations that occurred
in non-actionable parts of the input were also initially dismissed
and deemed not useful. However, upon reflection, users noted that
it is still useful for models where contextual cues (i.e., where a
change occurs) is sometimes more important than the change itself.
This reinforces the perspective on feasibility and actionability we
observed in our formative study (Section 3).

RQ2: Discerning TP vs FP. In addition to eliciting usefulness
signals, we wanted to observe how our explanations can help dis-
cerning whether a prediction is a true-positive or a false-positive.
Our users were able to accurately determine the underlying ground
truth in 86.6% (26/30) of cases. We noticed a distinction in how
participants came to the conclusion on how to interpret their ex-
planation. In true-positive instances, participants noted that the
explanation guided them to parts of the code that were aligned with
their mental model. More specifically, the explanation reinforced
their hypothesis that had been induced through the prediction. (One
participant did note that while this line of reasoning seems sound,
it could be prone to confirmation bias.) In false-positive instances,
participants noted that the strongest signal not to trust the predic-
tion was the level of unreasonableness of the explanation. If the
explanation pointed to irrelevant parts of the input or introduced
an irrational perturbation, it was a sign that the prediction could
probably not be trusted.

Overall, our qualitative analysis showed that the counterfactual
explanations provided our study participants with intuition and
confidence in understanding exactly where the model is picking up
its signal. Whether that signal was reasonable or not helped them
decide to trust or discard the prediction.

RQ3: Correspondence with Human Rationale. We investigate
to what extent generated explanations align with rationale provided
by human experts. To determine this alignment, two of the authors
compare the generated explanations to the rationales. Specifically,
we map the natural language description to tokens of the source

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra

Table 1: Experiment overview summarizing the quantitative
results of RQ1 and 2

User Study TP/FP Guess Usefulness

Overall 86.6% Accuracy 83.3% useful / 16.6% not
Performance 85% Accuracy 85% useful / 15% not
Testplan Screenshot 90% Accuracy 80% useful / 20% not

code. We consider an explanation to match the rationale if their
token attributions overlap at least 50%. In our sample, ∼90% (10/11)
of the instance explanations (at least one of the top 5 offered) aligned
with the human rationale. Even in the one case we deemed to not
align entirely, while the top 5 explanations by our scoring did not
align with the human rationale, two among the top 10 did.

In addition to analyzing alignment, we wanted to see how our
approach compares to a representative baseline from the literature.
Thus, we also generate explanations that are based on occlusion
(i.e., token removal instead of replacement) using the SEDC algo-
rithm [23], a greedy approach that successively removes token
combinations from the input until the prediction flips. Occlusion
has been used as a simple, yet effective, baseline in related work in
NLP [12, 13, 20].

Table 2 provides a quantitative overview on the results of our
approach (CFEX) with the baseline (SEDC) including: number of ex-
planations generated (#Exp), size of the diff measured in number of
tokens (Size), and summary statistics on the size of explanations in
number of tokens (Avg, Min, Max). We compare both approaches
by determining a winner (Wins) based on the following criteria:
First, the approach needs to produce an explanation that aligns
with the human rationale. If both approaches generate aligning ex-
planations, the shorter explanation wins (less number of attributive
tokens). If the explanation size is the same, it is considered a tie. In
our results, we observe wins or ties in ∼90% (10/11) for CFEX and
∼19% (2/11) for SEDC.

This indicates that CEFX produces explanations that are more
aligned with human explanation while also producing shorter ex-
planations than the baseline technique does. Overall, we were able
to see that counterfactual explanations generated through pertur-
bations proposed by MLM are useful, can help users discern false-
and true-positives, and seem likely to align human rationale.

6 DISCUSSION
Deployment Considerations. While most research on explana-
tory systems discusses how to provide faithful explanations to
predictions, they implicitly require that prediction to be a true-
positive. Most research papers discussing explanations do not even
consider false-positives in their evaluation scenarios. However, in
the context of deploying explanations as part of large-scale ma-
chine learning deployments, considering false-positives is vital to
the success of the model. This is especially true in the context of
learned models for code quality, where developers are rightly dis-
illusioned with the lack of certainty and soundness of developer
tools, leading them to chase ghosts in the light of wrong predictions.
That is why we put an emphasis on evaluating our approach not
only on a subjective consideration of “usefulness", but also whether

Table 2: Overview of generated counterfactual explana-
tions (CFEX) and explanations generated by token removal
(SEDC)

Exp Size Avg Min Max Wins
1 CFEX 1 234 4 4 4 x

SEDC -
2 CFEX 7 143 5 5 5 x

SEDC 2 143 4.5 4 5 x
3 CFEX 23 274 3.83 3 4

SEDC 13 274 4 4 4 x
4 CFEX 11 307 2.91 2 3 x

SEDC 11 307 3.64 1 4
5 CFEX 8 48 2.75 2 3 x

SEDC 2 48 3 3 3
6 CFEX 75 315 4 4 4 x

SEDC -
7 CFEX 13 96 3.62 3 4 x

SEDC -
8 CFEX 27 219 2.96 2 3 x

SEDC 22 219 3.95 3 4
9 CFEX 88 292 2.77 2 3 x

SEDC 30 292 3 3 3
10 CFEX 124 301 2.95 2 3 x

SEDC -
11 CFEX 15 117 2.27 1 3 x

SEDC 22 117 2.23 1 3

(and how) an explanation instills trust in both correct and wrong
predictions. Another aspect we want to consider for deployment
is enabling interactive use with our generated counterfactuals to
allow for exploration of decision boundaries (Figure 1).

InteractiveCounterfactual Exploration. Using generativemod-
els to produce counterfactuals incurs non-negligeble runtime costs
that ranges in the order of 30 seconds for smaller diffs to up to
10 minutes on the very large side of the diff size spectrum. In our
current setting (Section 2), we can allow ourselves to process coun-
terfactual generation offline and attach it as part of the code review.
However, we envision counterfactual explanations to become part
of an interactive exploration process. While part of making such
an interactive experience possible is certainly performance engi-
neering, we may have to think of other creative ways to make
counterfactual generation with language models more instant. A
possibility we want to explore is leveraging the traces of token
replacements produced in the offline search to learn a neural model
that mimics the MLM filling with much faster inference times.

Limitations and Scope. We developed and applied the proposed
approach in the context of workflows and tools within Meta. While
nuances of the internal workflowmay have specific peculiarities, we
generally think that the mode of submitting diffs for code review is
widely established both in wider industry and open-source projects.
Also, while we run our experiments on large transformer, i.e. BERT-
like, models, our approach and algorithm are model-agnostic and
only require repeated access to label and score information that
most statistical learning models provide. Nevertheless, other kinds

Counterfactual Explanations for Models of Code ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

of models could exhibit other characteristics when it comes to the
kinds of counterfactuals that are produced.

7 RELATEDWORK
There has been significant recent interest in improving the inter-
pretability of machine learning models. Efforts in this space can
be broadly classified into two categories, namely local and global
interpretability. Local explanability techniques aim to provide justi-
fication for predictions on a specific input [17, 34, 35]. On the other
hand, global explanability techniques try to explain the behavior of
the whole model, for instance by constructing a simpler surrogate
model that emulates the original model [11, 19]. Since our goal in
this work is to provide justifications for individual predictions, this
work falls under local explanation techniques. In what follows, we
give a more detailed overview of relevant work in this space.

White-box techniques for local explanations. Techniques for gen-
erating local explanations can be further classified as being either
white-box or black-box. As their name indicates, white-box tech-
niques are customized to specific ML models and exploit the inter-
nals of model when generating explanations. A common approach
to white-box interpretability of deep learning is through so-called
attention mechanisms where the idea is to use weights of atten-
tion layers inside the network to determine the importance of each
input token [9, 15, 21, 43]. However, recent work has shown that
different weights can lead to the same prediction and has called
into question whether attention-based mechanisms are actually
meaningful as explanations [16]. Similarly, other work has shown
that it is possible to systematically manipulate attention while still
retaining the same prediction [30].

Another popular white-box technique for generating local ex-
planations is integrated gradients [40]. The high-level idea behind
this method is to create interpolations of the input and evaluate
the model on those interpolated inputs. Unfortunately, unlike im-
age data, code does not lend itself easily to such interpolation. For
instance, there is no meaningful token that can be obtained by
combining the embedding of a pad token and that of a keyword to-
ken. In fact, we initially investigated using integrated gradients for
generating local explanations for models of code, but we were not
successful in generating useful explanations. This is, presumably,
because unlike images, there is no natural interpolation between a
zero token and the token in the input text.

Perturbation-based explanation mechanisms. Another common
approach for generating local explanations is through perturbation-
based mechanisms such as LIME [34] and SHAP [17]. These tech-
niques remove or replace a subset of the features in the input space
and track the score differential of the model’s prediction. The ag-
gregated score difference over many samples is then attributed to
features involved in the perturbation. While these techniques can
be applied to multiple types of ML models, they do not generate
counterfactual explanations. Instead, they highlight input features
that are most important for the model’s prediction.

In the realm of understanding for source code models, recent
work uses delta-debugging techniques to reduce a program to a
set of statements that is minimal and still preserves the initial
model prediction [31, 42]. The intuition here is that essentially the

remaining statements are the important signal being picked up by
the model. Another effort empirically show that attention scores
in neural networks are highly correlated with code perturbations
(statement removals in the source code input) [6]. However, these
works have not investigated (or considered) the effects of token
removal that may lead to out-of-distribution inputs. These in turn
can lead to unreliable prediction outcomes [26] and misleading
attention scores [16].

Counterfactual explanations. Another common approach to local
interpretability is through the generation of counterfactuals. These
techniques are very related to the previously discussed perturbation-
basedmechanisms, but they comewith a stronger guarantee, namely
that the perturbations are guaranteed to change the model’s predic-
tion. The generation of counterfactual explanations has received
significant attention in the NLP community [22, 23, 36, 45, 46]. In
the simplest case, these counterfactuals can be generated by delet-
ing words from the input text [23] or via rewrite-rules such as
adding negations or shuffling words [45]. Similar to our goal of
generating natural-looking programs, these techniques also aim
to generate fluent text that is grammatically correct. Among the
counterfactual generation techniques, perhaps the most relevant
to ours is the minimal contrastive editing (MiCE) technique of [36].
Specifically, they train an editor to predict words to edit and use a
generative model (called predictor) to predict replacements for the
chosen words.

Interpretability of SE models. There has also been recent interest
in improving interpretability of models used in software engineer-
ing [6, 8, 31, 41]. Two of these efforts [31, 41] propose to simplify
the code while retaining the model prediction. Another effort called
AutoFocus [6] aims to rate and visualize the relative importance
of different code elements by using a combination of attention lay-
ers in the neural network and deleting statements in the program.
Another recent effort [8] aims for global interpretability and helps
model developers by identifying which types of inputs the model
performs poorly on. We believe that the counterfactual explanation
generation technique proposed in this paper complements all of
these efforts on improving SE model interpretability.

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A

Transformer-based Approach for Source Code Summarization. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019).

[3] G. Aye, S. Kim, and H. Li. 2021. Learning Autocompletion from Real-World
Datasets. , 131-139 pages. https://doi.org/10.1109/icse-seip52600.2021.00022

[4] Johannes Bader, Seohyun Kim, Sifei Luan, Erik Meijer, and Satish Chandra. 2021.
AI in Software Engineering at Facebook. IEEE Software (2021).

[5] Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan Diehl. 2015. Navi-
gate, understand, communicate: How developers locate performance bugs. In
2015 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 1–10.

[6] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. Autofocus: interpreting
attention-based neural networks by code perturbation. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 38–41.

[7] Maria Christakis and Christian Bird. 2016. What developers want and need
from program analysis: an empirical study. In Proceedings of the 31st IEEE/ACM
international conference on automated software engineering. 332–343.

[8] Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chan-
dra. 2021. Explaining Mispredictions of Machine Learning Models Using Rule

https://doi.org/10.1109/icse-seip52600.2021.00022

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra

Induction. In Proceedings of the 29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 716–727. https://doi.org/10.1145/3468264.3468614

[9] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. 2019.
What Does BERT Look at? An Analysis of BERT’s Attention. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP. 276–286.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT (1).

[11] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint (2017).

[12] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-
Box Adversarial Examples for Text Classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). 31–36.

[13] Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, and
Jordan Boyd-Graber. 2018. Pathologies of Neural Models Make Interpretations
Difficult. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. 3719–3728.

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings.

[15] Andrea Galassi, Marco Lippi, and Paolo Torroni. 2020. Attention in natural
language processing. IEEE Transactions on Neural Networks and Learning Systems
(2020).

[16] Sarthak Jain and Byron C Wallace. 2019. Attention is not Explanation. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 3543–3556.

[17] Ehud Kalai and Dov Samet. 1987. On weighted Shapley values. International
journal of game theory 16, 3 (1987), 205–222.

[18] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. 2021. Algorithmic
recourse: from counterfactual explanations to interventions. In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency. 353–362.

[19] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. 2017. In-
terpretable & explorable approximations of black box models. arXiv preprint
arXiv:1707.01154 (2017).

[20] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. 2016. Visualizing and
Understanding Neural Models in NLP. In Proceedings of NAACL-HLT. 681–691.

[21] Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Understanding neural networks
through representation erasure. arXiv preprint arXiv:1612.08220 (2016).

[22] Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Diptikalyan Saha. 2021. Gen-
erate Your Counterfactuals: Towards Controlled Counterfactual Generation for
Text. arXiv:2012.04698 [cs.CL]

[23] David Martens and Foster Provost. 2014. Explaining data-driven document
classifications. MIS quarterly 38, 1 (2014), 73–100.

[24] Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social
sciences. Artificial intelligence 267 (2019), 1–38.

[25] Christoph Molnar, Gunnar König, Julia Herbinger, Timo Freiesleben, Susanne
Dandl, Christian A Scholbeck, Giuseppe Casalicchio, Moritz Grosse-Wentrup,
and Bernd Bischl. 2020. General pitfalls of model-agnostic interpretation methods
for machine learning models. arXiv preprint arXiv:2007.04131 (2020).

[26] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla,
and Francisco Herrera. 2012. A unifying view on dataset shift in classification.
Pattern recognition 45, 1 (2012), 521–530.

[27] Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach.
2020. FACE: Feasible and actionable counterfactual explanations. In Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society. 344–350.

[28] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
writer: Neural type prediction with search-based validation. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 209–220.

[29] Michael Pradel and Koushik Sen. 2018. Deepbugs: A learning approach to name-
based bug detection. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–25.

[30] Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C
Lipton. 2020. Learning to Deceive with Attention-Based Explanations. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics.

[31] Md Rafiqul Islam Rabin, Vincent J. Hellendoorn, and Mohammad Amin Alipour.
2021. Understanding Neural Code Intelligence through Program Simplification.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 441–452. https://doi.org/10.1145/3468264.3468539

[32] Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi, Somesh
Jha, and Thomas Reps. 2020. Semantic robustness of models of source code. arXiv
preprint arXiv:2002.03043 (2020).

[33] Kaivalya Rawal and Himabindu Lakkaraju. 2020. Beyond Individualized Recourse:
Interpretable and Interactive Summaries of Actionable Recourses. Advances in
Neural Information Processing Systems 33 (2020).

[34] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144. https://doi.org/10.1145/2939672.2939778

[35] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
Precision Model-Agnostic Explanations. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI-18).

[36] Alexis Ross, AnaMarasović, andMatthew E. Peters. 2021. Explaining NLPModels
via Minimal Contrastive Editing (MiCE). arXiv:2012.13985 [cs.CL]

[37] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. 2018. Automated vulnerability
detection in source code using deep representation learning. In 2018 17th IEEE
international conference on machine learning and applications (ICMLA). IEEE.

[38] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from building static analysis tools at google. Commun.
ACM 61, 4 (2018), 58–66.

[39] Ilia Stepin, Jose M Alonso, Alejandro Catala, and Martín Pereira-Fariña. 2021. A
survey of contrastive and counterfactual explanation generation methods for
explainable artificial intelligence. IEEE Access 9 (2021), 11974–12001.

[40] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In International Conference on Machine Learning. PMLR, 3319–
3328.

[41] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim Laredo, and Alessandro Morari.
2021. Probing Model Signal-Awareness via Prediction-Preserving Input Mini-
mization. arXiv:2011.14934 [cs.SE]

[42] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim A Laredo, and Alessandro Morari.
2021. Probing model signal-awareness via prediction-preserving input minimiza-
tion. In Proceedings of the 29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering.

[43] Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, and Manaal Faruqui.
2019. Attention interpretability across nlp tasks. arXiv preprint arXiv:1909.11218
(2019).

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[45] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S. Weld. 2021.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving
Models. arXiv:2101.00288 [cs.CL]

[46] Fan Yang, Ninghao Liu, Mengnan Du, and Xia Hu. 2021. Generative
Counterfactuals for Neural Networks via Attribute-Informed Perturbation.
arXiv:2101.06930 [cs.LG]

[47] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models
of code. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1–30.

[48] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 1385–1397.

https://doi.org/10.1145/3468264.3468614
https://arxiv.org/abs/2012.04698
https://doi.org/10.1145/3468264.3468539
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/2012.13985
https://arxiv.org/abs/2011.14934
https://arxiv.org/abs/2101.00288
https://arxiv.org/abs/2101.06930

	Abstract
	1 Introduction
	2 Context of this work
	3 Desiderata for Counterfactual Explanations for Code
	4 Counterfactual Explanations for Models of Code
	4.1 Problem Formulation
	4.2 MLM-Based Perturbations for Code
	4.3 Algorithm for Generating Counterfactuals

	5 Experiments
	5.1 Setting
	5.2 Research Questions and Methodology
	5.3 Results

	6 Discussion
	7 Related Work
	References

