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Figure 1: Left: Light sources cause specular reflections on the cornea, which appear as visible glints on an image sensor.
These glints can be used to locate the corneal sphere for gaze estimation. Center: The light sources are pulsed in a binary
sequence at high frequency. To prevent stimulating events across the entire scene, each light source is paired with a compen-
sating light, so that the net illumination remains constant, but the specular cornea produces events. Right: The binary patterns
in the event stream are decoded for kHz glint tracking. Red and cyan boxes show 0 and 1 bit glints for one bit sequence. The
glint traces are shown in HSV color in this real-eye saccadic sequence, with events overlayed as red and blue points.

Abstract

Pixels in an event camera operate asynchronously and
independently, reporting changes in intensity as events - tu-
ples of (x, y) position, polarity s and timestamp t at mi-
crosecond resolution. Event cameras operate at low power
(≈ 5 mW) and respond to changes in the scene with a la-
tency on the order of microseconds. These properties make
event cameras an exciting candidate for eye tracking sen-
sors on mobile platforms such as Augmented/Virtual Real-
ity (AR/VR) headsets, since these systems have hard real-
time and power constraints. One proven method for eye
tracking and gaze estimation is corneal glint detection. We
exploit the fact that corneal glint tracking only requires a
sparse set of pixels in the image, by making use of the natu-
ral sparsity of event cameras, which only detect changes in
the scene. To enhance this effect, we design an illumination
scheme, Coded Differential Lighting, which enhances spec-
ular reflections, suppresses all other events, and solves the
light-to-glint correspondence. This is the first purely event-
based corneal glint detection and tracking algorithm, which
operates on standard hardware at kHz sampling rate.

1. Introduction
Instead of sampling all pixels at a fixed frame rate as in

conventional cameras, the pixels of an event camera [17] in-
dependently report changes in log intensity. Events, repre-

sented as a tuple of (x, y) position, polarity s and timestamp
t, trigger whenever the measured log intensity changes by
more than a preset threshold. This allows event data to be
efficient and sparse, since only scene changes are recorded.
Event cameras have high dynamic range (≈ 120 dB), al-
most no motion blur, draw less power than conventional
cameras, and report events at sub-millisecond latency [6].

Eye tracking is a key task in AR/VR headsets, facilitating
user interactions, allowing for performance improvements
through foveated rendering, and for eye-tracking analytics.
State of the Art (SotA) display technologies such as Focal
Surface Displays [13] or varifocal displays [15], also rely
on eye tracking to determine the appropriate focal plane in
real time.

Event cameras are a good fit for eye tracking sensors
in AR/VR headsets, since they fulfil key requirements on
power and latency. Head-Mounted Displays (HMDs) used
in AR/VR must be low power, both to extend the battery life
of mobile systems and to reduce the amount of heat gener-
ated by the headset. Further, eye tracking needs to operate at
high sampling rate, to allow adaptive display technologies
to operate seamlessly, and for applications like user authen-
tication which can require up to 1 kHz sampling [12].

Many modern video based eye-tracking systems use
Pupil Center Corneal Reflection (PCCR) [14]. This ap-
proach works by shining light sources (usually in the in-
frared spectrum) at the eye. This induces specular reflec-
tions, known as glints, on the surface of the cornea, which
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can be detected by the camera as bright peaks and then used
to estimate the position of the corneal sphere. At the same
time the pupil, which appears as a dark ellipse, is detected.
The gaze vector can be estimated by computing a vector
between the centers of the pupil ellipse and corneal sphere.

We propose a novel event-based glint detection algo-
rithm which is lightweight, operates at 1 kHz sampling
rate, and efficiently solves the light-to-glint correspondence
problem. By pulsing the illumination at high frequency
the event camera produces events at the glint reflections,
as desired. However, rapidly changing illumination also
causes events in the rest of the image (skin, iris, sclera, etc.)
which can exceed the event-rate of the camera and elimi-
nate the power benefits of the sensor. We demonstrate that a
new lighting scheme for event cameras, Coded Differential
Lighting, preserves the events at specular reflections while
suppressing events from diffuse parts of the scene. By using
a compensatory paired-LED stimulus in which one light in
the pair turns off as the other turns on, the net illumination
remains approximately constant, while specular reflections
move slightly. This enhances the glint signal while sup-
pressing non-glint events.

While increasing the number of corneal glints improves
gaze vector estimates [14], it introduces the challenging
problem of robustly finding the correspondence between
light sources and corneal glints. Our method works by puls-
ing the light sources for two known periods, with each pe-
riod encoding either 1 or 0 bits. Each glint is identified
through a unique binary pattern of these pulses. By fre-
quency filtering the event stream, we not only remove un-
wanted sources of noise (such as events caused by changes
in background lighting), but unambiguously identify each
glint w.r.t. the corresponding light source.

Contributions

• The first fully event-based glint tracker, which is robust
to background disturbances, uses only ≈ 35 mW of
power, and has a sampling rate of 1 kHz.

• Coded Differential Lighting, a novel dual-LED design
which enhances event camera detection of specular re-
flections while suppressing non-specular background
events, which we apply to corneal glint detection.

• A binary encoding scheme for Active LED Markers
(ALMs) that supports arbitrarily many light sources.

In the following sections, we review literature on event
sensors and eye tracking (Section 2), describe our proposed
lighting, filtering and tracking approach (Section 3), and
give an experimental evaluation of the method with a proto-
type hardware implementation (Section 4).

2. Literature

Model-based Eye Tracking Recent work in eye tracking
has largely followed one of two approaches: i) 3D-model-
based eye tracking, where image keypoints corresponding
to geometrical features of the image are found and fitted to
a 3D eye model using optimisation [7] and ii) appearance-
based methods, in which the eye is tracked using the raw
image of the eye, typically using CNNs or other ML models
trained end-to-end to directly output gaze directions [21, 16,
10]. See [8] for a survey on eye tracking methods.

In this work, we follow the 3D-model-based tracking ap-
proach: specifically, we track the cornea of the eye using the
reflection of a set of known illuminators (LEDs in our pro-
totype) off the front surface of the cornea. Multiple of these
reflections, called the first Purkinje reflection, or glints can
be combined with a calibrated camera to estimate the loca-
tion of the cornea relative to the camera. This is the one-
camera, multiple-light sources case of Guestrin [7].

The advantage of model-based eye tracking over end-to-
end methods is that model-based trackers can be quite pre-
cise. Glints can be estimated to sub-pixel accuracy in the
image, and the resulting model fit can achieve < 1° of gaze
tracking error [14]. However, compared to ML methods,
model-based trackers can be sensitive to outliers, such as
blinks and misidentified glints. By removing much of the
non-glint signal from the image, we simplify glint detection
and minimise the weaknesses of model-based trackers.

Event Based Eye Tracking The only previous work on
event-based eye tracking (to our knowledge) combined
events and standard frames from a hybrid event camera to
perform eye tracking [1]. The frames were used to initialise
parametric ellipse, parabola, and circle models to the pupil,
eyelid, and a single corneal glint respectively. Events found
within a preset distance of the parametric model estimates
were then used to asynchronously update the models be-
tween frames. Only the pupil estimate was used to estimate
the gaze vector. This approach has several key downsides
compared to our method. First, it relies on frames (not pro-
vided by most SotA event sensors), which eliminates the
key event sensor advantages of reduced motion blur and low
power. Second, the method is fragile to sensor noise or ex-
ternal changes in brightness: since events used to update the
parametric eye model are chosen based on a distance thresh-
old, any unwanted events within that threshold threaten to
update the model incorrectly. Our method improves on both
of these points - we do not use frames at all and can there-
fore demonstrate the first purely event-based system. Since
we directly filter the events from each glint out of a high fre-
quency signal, our method is resistant to both sensor noise
and spurious events caused by unwanted background mo-
tions or changes in lighting (Section 4.4).
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Figure 2: Various intra-LED spacings vs Signal-to-Noise Ratio (SNR) and event rate. Bottom row shows a close up image
(formed by integrating events) of the corneal glints for each data point in the plot. Notice that the best SNR occurs at the point
where the lower and upper glint begin to separate. For reference, an unpaired LED had a SNR of 0.018 and an event-rate of
875 kev/s. Thus, dual LEDs represent substantial savings in spurious events.

Active LED Markers Tracking flashing reflected glints
on the cornea is conceptually similar to tracking ALMs
which has been done with event sensors for a variety of ap-
plications. Censi et al. [3] detected LEDs flashing at a fixed,
known frequency to perform 3D localization of a drone. By
using a lightweight frequency filter (see Section 3.2) for
each LED frequency, they were able to track the drone at
kHz sample rates. More recently, [4] used the same ap-
proach to create a local positioning system which achieves
3 cm accuracy when the camera is within 1 m of the light
source. [5] used a set of five ALMs to localise LEDs em-
bedded in a glove for hand gesture recognition. Finally, [9]
present an event sensor model which they use to discover
the high frequency characteristics of event sensors. The au-
thors validate their model by improving the performance of
ALMs. ALMs are also commonly used to calibrate event
cameras, in products such as the Propheshield [19] or the
Dynamic Vision Sensor (DVS) calibration software [20].
To achieve this, LEDs are arranged in a predetermined grid
pattern and flashed at fixed frequencies. LED locations on
the image sensor can be determined through frequency fil-
tering, facilitating calibration.

We could find no examples in the literature of tracking
more than four ALMs at ≥ 1 kHz frequency. We posit that
this is due to bandwidth limitations of events sensors (Sec-
tion 4.5), which motivates our introduction of binary codes
to identify stimuli (allowing arbitrarily many ALMs).

3. Method
Our aim is to perform high sampling-rate, low power

corneal sphere localization via glint detection with an event
camera. Our method combines the following ideas: We
produce glints on the cornea with flashing lights (beacons),

whose arrangement is designed to enhance specular com-
ponents of the image (Section 3.1). The events triggered by
the beacons are filtered from the background and used to
update calculated glint locations at high frequency (Section
3.2). Each beacon is flashed with a unique binary sequence
of pulses (Section 3.3). By associating each calculated glint
with a particular binary sequence, we find the beacon-to-
glint correspondence and infer the position of the corneal
sphere w.r.t. the camera on every pulse (Section 3.4).

3.1. Differential Lighting

We want to sample the eye’s position at high temporal
rate, ideally without relying on the motion of the scene to
generate events. One strategy to accomplish this is to flash
a light source at high rate. However, a scene illuminated
by a flashing light source will typically saturate an event
sensor, as brightness changes are reported across the entire
scene. So, instead of flashing individual lights, we instead
toggle pairs of nearby LEDs (that is, when one light toggles
off the other toggles on), with the aim of keeping overall
illumination roughly constant.

We make use of the fact that the eye is generally com-
posed of two kinds of surfaces: specular surfaces like the
cornea which produce a mirror-like reflection of the light
sources; and (approximately) lambertian surfaces like the
skin, iris, and sclera which scatter light diffusely. Using
the language of BRDFs [2] to describe these surfaces, for a
constant viewing angle θr, the amount of reflected light as a
function of angle θi of incoming light for a diffuse surface
is approximately cos(θi), whereas a specular surface will
have a sharp peak around θi = θr.

Notably, the derivative of the amount of reflected light
w.r.t. changing angle of incoming light is much greater
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on specular surfaces than diffuse surfaces. In our lighting
scheme, when we toggle from one light of a pair being on
to the other, we take a small step ∆θi in the direction of
incoming light for each pixel in the image, which produces
a correspondingly large or small change in the amount of
reflected light for specular or diffuse surfaces respectively.

Experimentally, we confirm that this allows us to reduce
the number of events generated and increase the SNR by
an order of magnitude (see Figure 2). The reflected glints
are a few pixels wide, as opposed to being perfect point re-
flections, due to the nonzero size of the LED emitters and
effects like optical blur. We find that the best intra-LED
distance for the pairs of LEDs is at the point where the two
glints just touch without overlapping. At lower intra-LED
distances, the two glints cancel out where they intersect,
causing a net brightness change of zero and reducing the
number of ‘signal’ events at glint locations. Thus, glints at
low spacings appear hollow (Figure 2). After the glints sep-
arate, the signal ceases to improve with further separation,
but the amount of noise due to intra-LED distance induced
brightness disparity increases.

There is nothing unique to the cornea in this analysis,
except that it is a specular object-of-interest in an otherwise
predominantly diffuse scene. We expect this differential il-
lumination scheme to apply more generally to specular ob-
ject imaging with event cameras.

3.2. Frequency Filtering

Cheap frequency filtering of the event stream is key to
our method. Given a stream of events e = {(x, y), t, s}
from a set of events E , we wish to locate the subset Ef on
the image plane, produced by a beacon switching with pe-
riod T = 1

2f . Previous methods [3] detect the transition

Events

Figure 3: One bit of a four-LED bit sequence. Events in
the cyan box are from a short 0 pulse, events in the purple
box from a long 1 pulse. For an event in the purple box with
time dt0, the weight for the 0-bit filter,w0, (equal to the nor-
mal pdf P (dt0|f0)) is much larger than the corresponding
weight for the 1-bit filter, w1, allowing per-pixel filtering of
the 0 and 1 frequency bands. Note the delay between lights
switching ON at t0 and subsequent event generation.

period at each pixel dt by measuring the time between the
first event of polarity s to the first event of opposite polarity
s̄. The likelihood (or weight) w of each dt being explained
by the target frequency is modeled by a normal distribution:

w = P (dt|f) = N (dt;
1

2f
, σ2) (1)

The standard deviation of the distribution σ is a tunable pa-
rameter which sets the bandwidth of the frequency filtering
and is dependent on the properties of the event camera used.
We found a value of 80 Hz to work well (see Section 4.5).

Leveraging electronic synchronisation between LEDs
and camera, we modify the formulation for dt as the period
between the synchronisation pulse t0 and the first event of
polarity sp. This allows for more accurate filtering, since
the variation in event timestamps from the initial LED state
change is eliminated (see Figure 3), and provides a mech-
anism for separating glints from the primary and compen-
satory LEDs (sp = −1 for primary and sp = 1 for compen-
satory glints). For additional robustness to noise, we intro-
duce a threshold such that at least λc=2 successive events of
polarity sp need to be detected to count as a transition.

The result is a Frequency Filter (FF) image, formed by
summing the transition weights w at each pixel location.

3.3. Binary Glint Encoding and Tracking

Code One option to encode glint (or more generally,
beacon) identity is to assign a unique frequency to each
[3, 4, 5]. However, in the case of current SotA event cam-
eras, this limits the number of glints that can be robustly
tracked at ≥ 1 kHz to ≈ 5. This is because the actual tran-
sition periods implied by the event camera fall into a dis-
tribution that spans several hundred Hz, while frequencies
above 2 kHz exceed sensor capabilities (see Section 4.5).

This motivates our introduction of a binary coding
scheme, in which each LED flashes a unique binary se-
quence in which 0 is represented as a short pulse of period
T0 and 1 as a longer pulse of period T1 (Figure 5). This
allows us to support arbitrarily many beacons while only
requiring two frequencies to be filtered, which the 1-2kHz
band can easily support (Figure 3). This may appear to re-
duce the sampling-rate for each beacon, since log2(N) bits
are needed for N beacons; however, since we track each
beacon over time, we can update the location on every bit,
once the beacon tracker is initialised. The sampling-rate is
equal to the clock frequency, 1 kHz in our case.

Tracking For an overview of the tracking algorithm see
Figure 4. Using the events in each base clock period, two
FF images for the 1 and 0 frequency bands (Section 3.2)
and an event-image are formed. By masking the event im-
age (which contains density information) with a FF image
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find_glint(prior) update() clear_glint()
Freq Filter 0

Freq Filter 1

Event Image

Glint-Map 0

Glint-Map 1
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Figure 4: Our method takes as input the events from a single clock cycle: an initial burst of events as all primary LEDs turn
on, then a burst as the 0 bit LEDs turn off, then a burst as the 1 bit LEDs turn off. These events feed into two frequency
filters for 1 and 0 , which are used to mask an image of the events, giving the glint-maps. Fully initialised trackers (1 0) and
(1 1) have a prior on location and bit; half initialised trackers (0 ?) have a prior on location and uninitialised trackers (??)
have no prior. We iterate through the trackers in order of initialisation, searching the appropriate glint image/s and locations
(based on prior) for glints. Located glints are used to update the trackers and then cleared from the glint-maps.

(which indicates which pixels belong to the desired fre-
quency) we gain a glint-map, which contains the event den-
sity at the desired frequency. Since glints appear as Gaus-
sian blobs, glint-maps allow more robust centroiding than
the FFs.

Each glint is tracked by its own Binary Glint (BG)
tracker object. A BG can be in one of 3 states. A fully ini-
tialized BG has both an expected location x (tracked from
the previous clock) and an expected next symbol b ∈ {0, 1}
(the next sequentially in the binary pattern for this BG).
When tracking is lost or at the beginning, BGs are uninitial-
ized, with no prior position or symbol to track. Bright peaks
in the event image not corresponding to an already tracked
BG are assigned to uninitialized glints, at which point they
become semi-initialized. Semi-initialized BGs have an ex-
pected location from tracking the peak, and fill in one bit of
their binary pattern each clock according to the 0- and 1-bit

LED0 [00]

LED1 [01]

LED2 [10]

CLK [1kHz]

Figure 5: In our method, each LED is encoded by a unique
binary code. To represent each bit, the base frequency f
(1 kHz) is divided into three segments, with 1 represented
by a long pulse of 2

3f s and 0 by a short pulse of 1
3f s.

FFs. Accordingly we do:

1. For each initialised BG, which tracks location x, bit b
− Search glint-map b for peak in λp × λp patch

around x and update x with the new peak.

2. For each semi-initialised BG, which tracks location x
− Search λp × λp patch around x in both 0- and

1-maps. Append brighter bit to binary pattern.

3. For each uninitialised BG (tracking nothing)
− Search entirety of both glint-maps for brightest

glint, begin tracking as new x.

In these updates, the centroid of the detected glint is
found as the weighted mean pixel coordinates µp of the
patch and used to update the location and next bit of the
BG. The patch around µp in the FF is then set to 0, prevent-
ing subsequent BGs from finding previously located glints.
We considered using a constant-jerk, kinematic Kalman fil-
ter to track glints on the image plane, but found that this
didn’t improve results (Figure 7) relative to raw detections.

3.4. Corneal Sphere Regression

We model the the corneal glints as ideal specular reflec-
tions on a perfect sphere. Under these assumptions, there is
exactly one ray which passes from each light source to the
corresponding glint and from each glint to the correspond-
ing point on the image plane (see Figure 1). Since the light
locations in camera coordinates are fixed and known from
device calibration, we can determine the corneal sphere di-
mensions and location by optimising the reprojection error
of the lights onto the image plane. That is, we solve the

5



problem:

θ∗ = arg max
θ

nled∑
n=1

(xrn − xen)2 (2)

where θ is the optimization variable represented as a vector
[xc, yc, zc, rc]

ᵀ of the cornea sphere position xc, yc, zc and
radius r in camera coordinates, nled is the number of LEDs,
xrn is the reprojected location on the camera plane of LED
n, and xen is the detected location of the glint caused by
LED n. We solve this problem using line-search based gra-
dient decent using numeric derivatives.

4. Experiments
The following experiments are designed to demonstrate

key aspects of our method and prove the claims made in the
introduction. 4.1 demonstrates that our algorithm provides
sub-pixel accurate glint estimates at rotational velocities far
beyond the capabilities of human eyes. We show the per-
formance of our method on real eye motions, as well as the
model eyes used in other experiments. 4.2 demonstrates
the frequency limits of our particular sensor and validates
our choice of 1 kHz base frequency. 4.3 demonstrates the
low power requirements of the camera and our setup. 4.4
shows that our method is robust against background sources
of events and sensor noise. 4.5 illustrates the importance of
our binary coding scheme by demonstrating the limitations
of SotA one-frequency-per-beacon encoding.

Experiments were performed using a 640x480 resolution
Prophesee EVK Gen3.1 event camera. The camera biases
were tuned to suit our application; all figures quoting event
rates need to be considered in this light. Biases are listed in
Table 1. For the following experiments, 10 LED pairs were
placed on an annular PCB (see Figure 6) around the camera
lens (16 mm f/2.8 C-Mount). Experiments involving ocular
motions are capped to 1000 ° s−1, informed by the fact that
human eye motions rarely go above 500 ° s−1 [11]. Unless
otherwise indicated, we show results using raw glint detec-
tions without additional filtering

4.1. Detection Accuracy

In order to measure detection accuracy vs angular veloc-
ity, we place an eye model on a rotation stage and rotate it at
various angular velocities. Ground truth glint positions are
found by moving the eye model to discrete 1° intervals be-
tween [−30°, 30°] and recording static sequences to form
event images of the eye at each location. Glint locations

Table 1: Camera biases [18] used throughout experiments.

diff off on fo hpf pr refr

299 185 404 1438 1300 1250 1450

LED0_B

LED0_A

Figure 6: In our experimental setup, the event camera views
the model eye through an annular arrangement of paired
LEDs (intra-pair distance = 3 mm). Each pair bordered by
a different color, with closeup of one pair.

for these static locations are then interpolated using cubic
splines, to fill the range between samples. As can be seen
in Figure 7, our method is able to detect corneal glints with
below 0.5 pix error even at the upper limit of human ocular
motions. Results also show that raw detections are compet-
itive with Kalman filtering of the detections, and raw detec-
tions are used in all other experiments.
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Figure 7: Mean of glint detection L2 error at various angular
velocities of the model eye (raw and Kalman filtered). Ver-
tical line indicates limit of human ocular velocity (500 °/s).

Real Eye Motions To demonstrate the capabilities of our
method on real eyes, we recorded sequences of both sac-
cadic and smooth-pursuit motions from a human. The par-
ticipant was seated in front of the device, with head station-
ary relative to the device, and asked to perform random sac-
cades and smooth pursuits. Ground truth was collected by
randomly selecting event frames from the event sequence
and hand-labelling 100 sets of glint centroids (1000 labels
overall) per sequence. We measured a mean L2 glint detec-
tion error of 0.342 pix for saccadic motions and 0.497 pix
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for smooth-pursuit. While these results reflect positively on
our method, errors in the hand-annotated ground truth la-
belling may increase the size of the errors. For qualitative
results of eye tracking at 1 kHz, please see the accompany-
ing video.

4.2. Sampling Rate

The sampling-rate of our method is determined by the
base clock frequency. As a result, a higher sampling-rate
can be easily achieved by pulsing lights at higher frequen-
cies. However, high frequencies may begin to exhaust the
capabilities of the event sensor and its particular biases. At
the limit, the sensor may produce few or no events at all.
The trade-off between sampling-rate and glint detection ac-
curacy is dependent on hardware and biases, however for
our camera there is a sharp deterioration in detection accu-
racy above 1 kHz (Figure 8). Note that we were unable to
find biases that would permit a faster sampling-rate.

0 200 400 600 800 1000
Angular Velocity (deg/s)

0.5

1.0

1.5

2.0

2.5

L2
 E

rr
o
r 

[p
ix

]

250 Hz

500 Hz

1000 Hz

1500 Hz

Figure 8: Mean glint detection L2 error [pixels] at various
angular velocities of the model eye over a range of base fre-
quencies. Detection error increases with the base frequency,
since faster motion causes transitions to fail to generate suf-
ficient events given the camera capabilities. Note that 1 kHz
performs best - this is because the camera biases were tuned
for this base frequency. In general though, higher base fre-
quency results in lower latency and higher error. Vertical
line indicates limit of human ocular velocity (500 °/s).

4.3. Power Usage

Camera Power Low power consumption is a primary
concern in many applications of near-eye gaze tracking.
Event cameras typically consume less power than conven-
tional cameras, with typical die-level power consumption
around 10 mW and some prototypes achieving less than
10 µW [6]. The EVK Gen3.1 camera consumes 26 mW
static power and has a dynamic consumption of 3 nW/ev.
By finding the event rate at various ocular velocities (Fig-

ure 9), we can use the power model of the event camera to
determine power usage for our method. At the limit of hu-
man ocular motion (≈ 500 °/s), sensor power usage for our
method is ≈ 35 mW.

The power to process each event is dependent on the
chosen processor hardware. The complexity of our method
is dominated by the frequency filtering component, which
is called millions of times per second. By contrast, glint
detection is executed merely at 1 kHz. Frequency filter-
ing requires around 3 Floating-Point Operations (FLOPs)
per event on average (see supplementary material). On
a modern CPU this would correspond to ≈ 0.5 nW/ev
(≈ 1.75 mW total at 500 °/s ocular velocity).
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Figure 9: The event rate at various ocular angular veloc-
ities for both paired LEDs and a solo LED (dotted line).
Conversion to power for our camera system via Pc =
26 + 3e−6 × events mW. Vertical line indicates limit of
human ocular velocity (500 °/s).

LED Power One means of reducing the power usage of
our proposed method is reducing the current to the signal
LEDs. To investigate this, we reduced the current to the
LEDs and measured the incident optical power at the model
eye as well as the glint detection error. The results in Figure
10 suggest that around 5 mW per LED are required for our
method to work reliably, although we still achieve sub-pixel
accuracy at lower power. Current LEDs are wide-angle, so
better performance can likely be achieved through focusing
and targeting LEDs at the eye.

4.4. Background and Noise Rejection

A limitation of event based sensors is that unexpected
changes of brightness can produce many unwanted (spu-
rious) events, which may cause errors in downstream
tasks. Some examples are flickering halogen lights, PWM
dimmed monitors, lens flare, or unmodelled camera/back-
ground motions. We claim that since we filter out these rela-
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Figure 10: Incident optical and LED power vs. glint de-
tection error. Optical power was measured using an 11 mm
aperture optical power meter at the cornea.

tively low-frequency sources of spurious events, our method
is unaffected by invasive light sources or facial movements
which might induce spurious events in a HMD. We demon-
strate this by recording the corneal glints of a realistic eye
model embedded in a model head. A bright light source illu-
minates the scene at a fixed frequency, causing large bright-
ness shifts in the surrounding eye and facial region being
recorded. The results of this experiment in Table 2 show
that our method retains sub-pixel accuracy even when scene
noise dominates the signal.

Our method is also robust to sensor noise. In agreement
with [3], we find that > 99 % of sensor noise operates in
the 0-250 Hz band, well outside the range of our frequency
filters. For more details, see supplementary materials.

4.5. Bandwidth

A limiting factor of previous ALM approaches (which
map each light to a unique frequency), is limited bandwidth,
motivating our introduction of binary sequence encoding.
Due to limitations of event camera hardware, there is vari-
ation in the response time of event camera pixels. Since
these variations are independent of scene frequency, they
have a larger effect on timing at higher frequencies (since
they are larger relative to the smaller timing differences).
This causes the observed transition periods to fall within a
distribution D, whose support is the required bandwidth for

Table 2: Effect of background events generated by an exter-
nal light source flashing at fe Hz on the event rate (Mev/s),
SNR and glint detection error (pix).

fe [Hz] 1 5 10 20 50 100

Mev/s 5.19 5.20 5.21 5.61 11.3 23.2
SNR 5345 4611 401 8.83 0.63 0.18
Err [pix] 0.13 0.13 0.14 0.16 0.78 4.97

that frequency. Placing frequency filters too close together
causes these distributions to overlap and therefore misiden-
tification of frequencies in the scene. For example, Figure
11 shows the distribution of transition periods for a light
flashing at 1 kHz, 1.25 kHz and 1.5 kHz. From the graph,
transition periods implying 1.1 kHz are equally likely to be
explained by a 1 kHz source as a 1.25 kHz pulse; the two
frequency bands are too close together and overlap substan-
tially. 1 kHz and 1.5 kHz overlap too, yet the large majority
of transitions may be identified unambiguously.

It should be noted that the sampling function (Equation
1), reduces the required bandwidth, since it weights val-
ues that are far from the actual frequency as essentially
zero. One way to think of this, is that the sampling func-
tion is multiplied with D to produce a distribution W with
a smaller support (W = N ( 1

2f , σs) × D). However, this
comes at the cost of throwing away information from D.
For more on this, see the supplementary materials. We
found σs = 80 Hz to be the smallest sample function stan-
dard deviation to give robust results, allowing ≈ 4 unique
frequencies in the 1-2kHz band (in agreement with the lit-
erature). In contrast to the above discussion, our binary en-
coding scheme is unaffected by issues of limited bandwidth.

1000 1500 20001250 1750750

1000Hz

1250Hz

1500Hz

Figure 11: Histograms of the frequencies implied by the
transition periods measured by an event camera observing a
light flashing at 1 kHz, 1.25 kHz and 1.5 kHz.

5. Conclusion
In this paper we present a novel method for detecting

corneal glints using an event camera. By pulsing the glint
stimuli in binary patterns in the 1-2kHz range, we are able
to achieve sampling-time of 1 ms on glint updates as well
as constructing an unambiguous correspondence between
stimuli and glint locations on the image plane. By placing
glint stimuli in complementary pairs, we are able to counter-
act the saturation of the event buffer one might expect from
recording flashing light sources on a scene. The result is a
low-power, sub-pixel accurate corneal glint detector which
robustly provides updates at kHz rates. By demonstrating
our method both on controlled experiments as well as on
real users, we hope to inspire the use of event sensors in
actual eye tracking solutions.
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A. Supplementary Materials
A.1. Unique Frequency Encoding

The simplest method of associating glints with their re-
spective light sources is using a unique frequency per light.
This is the method used in previous works on ALMs and
is illustrated in Algorithm 1. We propose integrating the
weight of each event transition w by a lowpass filter, in a
similar manner to lowpass image reconstruction [22]. Es-
sentially, each time a transition is registered, the previous
value in the filter is decayed proportionally to the time since
the last update, via the update formula

E(wn) = E(wn−1)k + P (dt|f) (3)

k = e−dt∗f∗τ (4)

where τ is the time constant of the lowpass filter (cutoff
frequency = 1

τ ).

Frequency filter normalization In order to make our fre-
quency filters more interpretable than a ‘raw’ expectation
map as in [3], we can normalize the filter images using
the ideal maximum value of the filter. Concretely, suppos-
ing that the event filter was observing an ideal pulse with
frequency f , the update weight w for each pulse would
be the mean likelihood of the sampling distribution µf =
N (0; 0, σ). Under this circumstance, the closed form defi-
nition for 3 is

E(n) = knE0 +
µf (kn+1 − 1)

k − 1
. (5)

Algorithm 1: Frequency filtering algorithm
(ec=event count, ts=timestamp, pol=polarity).

Input: Events E , f , σ, λc, sp
Output: If

1 forall e = {x, y, t, p} ∈ E do
2 if p == curr pol[x, y] then
3 curr ec[x, y] += 1;
4 else
5 next ts[x, y] = t;
6 next pol[x, y] = p;
7 next ec[x, y] += 1;
8 end
9 if next ec[x, y] > λc next pol[x, y] == sp then

10 dt=next ts[x, y]- curr ts[x, y];
11 If [x, y] = N (dt; 1

2f
, σ2);

12 curr pol[x, y] = p;
13 curr ec[x, y] = next ec[x, y];
14 curr ts[x, y] = next ts[x, y];
15 next pol[x, y], next ec[x, y], next ts[x, y] = 0;
16 end
17 end

(a) Scene (b) Frequency Filter

Figure 12: In 12a four glint pairs flash at various fre-
quencies. 12b shows the frequency filter response for the
glints. A 2-mean GMM is applied to detect glint centers
(red points).

This equation has a limit

lim
n→∞

E(n) =
µf

1− k
, (6)

which gives us the maximum value the filter can take. We
divide by this maximum value to scale expectation maps to
the range [0, 1].

Glint centroiding Because the frequency filter doesn’t
rely on the synchronization pulse, it needs an additional step
to distinguish the 2 glints within a glint pair (which operate
at the same frequency, as they compensate each other). We
use a 2-mean Gaussian Mixture Model (GMM) to find the
centers of each glint pair in the expectation maps with sub-
pixel accuracy (see Figure 12).

Operations per Event Note that the large majority of
events never passes the if statement on line 9 of Algorithm
1. Only when an event of the opposite polarity to the current
polarity is observed, is a transition registered and this condi-
tion triggered. For a single pulse of events, this should only
occur once and only for those pixels observing the beacon
stimulating the pulse. In our experiments, glints were al-
ways ≤ 120 pix in size. A typical pulse of events contained
around 3500 ev at an upper bound of 500 °/s ocular motion
(see Figure 9, where an event-rate of ≈ 3.5 Mev/s is mea-
sured with 1000 pulses/s). Most of these events only require
3 FLOPs as they do not pass the second if statement, which
is only passed ≈ 120 times. The second if statement re-
quires 10 FLOPs, so on average ≈ 3×3400+10×120

3500 = 3.3
FLOPs/ev

A.2. Binary Coded Glint Tracking Algorithm

A breakdown of the algorithm illustrated in 3.3 is pre-
sented in Algorithm 2.

10



Algorithm 2: Update algorithm for Binary Glint
tracker (gm0=glint-map 0 , gm1=glint-map 1 ).

Input: gm0, gm1, x, b, λp

1 if x == none then
2 patch = get patch (topleft=(0, 0),

size=gm0.shape);
3 else
4 patch = get patch (center=x, size=(λp,λp));
5 end
6 if b == none then
7 new x 0, w0 = find glint (gm0, patch);
8 new x 1, w1 = find glint (gm1, patch);
9 if w0 > w1 then

10 return new x 0;
11 else
12 return new x 1;
13 end
14 else
15 if b == 0 then
16 new x, w = find glint (gm0, patch);
17 return new x;
18 else
19 new x, w = find glint (gm1, patch);
20 return new x;
21 end
22 end

A.3. Sensor Noise

We claim that our proposed method is resistant to sensor
noise. To demonstrate this, we present a histogram of tran-
sition periods for a 60 s recording with the lens cap on (Fig-
ure 13). It is clear from this experiment that typical camera
noise operates almost entirely in the 0-250 Hz range.
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Figure 13: Dark blue bars show the histogram of the fre-
quencies implied by the transitions of lens-cap noise events.
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Figure 14: Dark blue bars show the histogram of the fre-
quencies implied by the transitions of the event pulses of
a light flashing at 1700 Hz for 10 s (mean µd = 1741 Hz,
stdev σd = 129 Hz). The sampling function (1) models this
as a normal distribution N (µs = 1700, σs = 80) (black
curve). Multiplying the data with the sampling function re-
duces the bandwidth consumed (light blue), as σs < σd.

A.4. Event Camera Bandwidth

As identified in Section 4.5, the bandwidth required to
robustly detect a beacon flashing at a fixed frequency is in
the low hundreds of Hz for modern event sensors. This lim-
its the number of beacons that can be robustly supported in
a one-frequency-per-beacon encoding scheme to just ≈ 5.
Figure 15 shows that event to achieve this, the target event
sensors needs to be tuned for the task. The distribution
of frequencies implied by the transition periods recorded
observing a beacon flashing at a fixed frequency, shows
that beyond 1 kHz the standard parameterisation fails en-
tirely. Notice that even in our tuned camera, the peak of
the distribution stalls at around 1800 Hz, implying that this
is the limit of our camera’s ability to accurately detect high
frequency pulses. Also noteworthy is the smaller peak at
the harmonic frequencies of the base frequency; since one
‘missed’ transition implies half the base frequency, and two
‘missed’ transitions imply on third the base frequency etc.,
there are peaks at these locations.

Effect of sampling function Since the frequency of the
observed stimulus is estimated by inspection of the transi-
tion period between negative and positive events, variation
in this period causes the recorded transitions to fall within
a distribution D. This distribution is quite spread at higher
frequencies, with σ in the low hundreds of Hz. Sampling
with (1) is equal to a multiplication with D, giving a new
distribution of weighted transitions: W = N ( 1

2f , σs) ×D
(see Figure 14). Since σs is chosen to be less than the stan-
dard deviation of D, σd, the sampling distribution is the
limiting factor that sets the bandwidth consumed by each
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(a) 500Hz (b) 1 kHz (c) 2 kHz (d) 3 kHz

Figure 15: Histograms of detected frequency (from 0 Hz to 3000 Hz) for light source flashing at 500 Hz, 1 kHz, 2 kHz, 3 kHz,
with optimised biases (blue) and default biases (red). Black bars on the x axis denote the light frequency. Note the significant
spike in detections at half of the target frequency - this occurs because a missed transition implies half of the frequency.

flashing stimulus, i.e. setting a small value for σs increases
the available bandwidth. However, setting σs too small risks
removing too much of D, which is the signal being mea-
sured. Therefore, there exists a tradeoff between available
bandwidth and measurement accuracy.

The sampling distributions should not overlap much,
since this introduces ambiguity, where the same transition
can trigger a similar response in multiple frequency filters.
This ultimately restricts the number of frequencies that can
be supported on a given bandwidth.
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