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Abstract. Data centers account for 1% of global energy consumption, and optimizing their energy use is a 

priority in the industry. Since cooling contributes several tens of percent of the total energy consumption in 

many data centers, the industry is moving towards very energy-efficient data center buildings. An effective 

cooling strategy is the containment strategy, which consists of separating the cold air going into the servers 

(supply air) and the hot air going out of the servers (return air), creating physically secluded cold and hot 

aisles. One important source of parasitic heat in data halls is the hot-air recirculation, flowing back from the 

hot to the cold aisle at the rack level and having multiple negative consequences, such as the creation of hot 

spots damaging the hardware and increasing the data center cooling needs. To prevent this phenomenon and 

improve the data centers' energy efficiency, the ability to predictively model conditions and events, even 

those not seen before, in data centers is increasingly important. We have identified three main reasons 

leading to recirculation in a Data Hall: baseline Recirculation characterized by design Hot Aisle 

Containment and racks leakage, recirculation caused by negative differential pressure locally at the rack, 

and flow deficit at the end of an aisle when there is not enough supply air to cool the racks. We developed 

physical-law-based models to predict thermal conditions in a data hall accurately and quantify the three 

types of recirculation airflow. This paper presents an application of these models in an actual data center in 

the United States with a successful prediction of the thermal behaviour within 1°F of MAE (mean absolute 

error) for cold aisles in normal conditions. It achieves more accurate predictions than a data-science-only-

based model in under-provisioned conditions.

1 Introduction 

As the demand for a digitized world is exploding, 

efficient operations of data centers are a core tool in 

limiting the energy demands of the growing fleet [1]. 

Meta has worked to reduce the power consumed in 

cooling our data centers, achieving 9% overhead, 

though the industry standard is 50% energy overhead on 

server power for cooling of the building [2]. Data center 

containment is a technique that reduces the energy used 

to cool the servers by separating the cold room-level 

supply air from the hot exhaust air from IT equipment at 

the server level [3]. Previous studies have shown the 

high efficiency of this strategy [4][5]. In this paper, we 

consider a hot aisle containment configuration in which 

the airflow path is the following: the cold air is supplied 

at the room level from the supply shaft and diffused 

through the rows into the front side of the racks - this is 

the cold aisle. The servers heat the airflow and then 

exhaust it in the hot aisle at a high temperature. The hot 

air is secluded in the hot aisle by containment walls. We 

call "recirculation" the heat remaining in the cold aisle 

despite the hot aisle containment. 

 The server inlet temperatures depend on the ratio 

between the cold air supply and server airflow [6]. When 

the total cooling supply airflow entering the data hall is 

lower than the total airflow consumed by the servers, the 

rack's inlet and outlet air temperatures significantly 

increase [7] and may put the hardware at risk. In 

contrast, a higher airflow rate leads to very inefficient 

cooling since it amplifies the bypass of cold around and 

above the servers and not through it [8], leading to more 

operating costs and less energy-efficient data centers. 

The usual ratio between supply airflow and servers' 

airflow is usually above 1.2 to reach acceptable 

operating conditions [9].  

 To prevent recirculation and improve the data 

centers' energy efficiency, the ability to predictively 

model conditions and events, even those not seen before, 

in data centers is increasingly important. This paper 

proposes a physics-based method to assess data centers' 

recirculated heat to predict the data hall cold aisle 

temperature. The main novelties of this paper are the 

introduction of the "effective" recirculation heat fraction 

that characterizes the heat remaining in the cold aisle 

despite containment and the simple method to assess this 

fraction, with a fast-computing time to accurately 



 

 

predict the cold aisle temperature both at the data hall 

and the rack levels with minimum input data needed. 

2 Methodology 

Our approach is to create a simple first-principle model 

with a short runtime and very few inputs and parameters 

to get the average cold aisle temperature within a data 

hall. We have built a steady-state single-zone numerical 

model in Modelica language using the Modelica 

Buildings Library [10], where the inputs are the supplied 

and exhausted airflow, the supply air temperature, and 

the effective recirculation heat ratio (Fig 1). The 

“effective” recirculated heat is the portion of heat 

remaining in the cold aisle, calculated as the fraction of 

the heat generated by the servers (IT load) required to 

raise the total air supplied to the cold aisles to the 

temperature measured at the cold aisle temperature 

sensors. We are not modeling the exact airflow rate 

flowing back from the hot to the cold aisle; hence we say 

‘effective.’ This parasitic heat is most likely caused by 

air flowing back from the hot aisle to the cold aisle but 

can also be caused by other sources of unwanted heat, 

such as radiation or leakages from the air recycling 

plenum above the data hall that is redirecting the air 

exhausted by the servers back to the economizer system.  

 Our modeling approach is to gather all the cold 

aisles in one single volume of air of the same dimension 

as the totality of the data hall, including the hot and cold 

aisles, and to assume the volume of air is well-mixed. 

We consider the totality of the airflow entering the 

volume is also leaving this volume to avoid over or 

under pressure in the data center. Our goal in this paper 

is to find a way to characterize this parasitic heat with 

very few data measurements and without using fitting 

methods. The “recirculation ratio” that is calculated is 

then multiplied by the IT load. When the recirculation 

ratio is equal to 0, the containment and insulation of the 

building are perfect. When the recirculation ratio is 

100%, all the heat in the data hall is well mixed, and 

there is no containment at all.  

 

 
Fig. 1.Data hall model estimating the room temperature using 

the recirculated heat, supply air temperature, and supply, and 

exhaust airflows as inputs 

A similar logic is applied to the row level to get the 

temperature at the center of a cold aisle for each rack 

position.  

We have identified three main reasons leading to 

recirculation in a Data Hall (Fig 2):  

● Baseline (or background) Recirculation: 

characterized by the designed hot Aisle 

Containment and racks leakage and possible 

other sources of radiated or unwanted leakage,  

● Differential-pressure induced recirculation: 
recirculation caused by negative differential 

pressure locally at the rack, 

● Flow deficit recirculation at the end of an aisle 
when there is not enough supply air to cool 

the racks  
𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑅𝐷𝑃 + 𝑅𝑓𝑙𝑜𝑤                 (1) 

 

 

 

 
Fig. 2. Schematic of the airflow on a hot aisle contained data 

center 

2.1 Baseline recirculation 

We call baseline recirculation the minimum amount of 

heat remaining in the cold aisle even when the supply 

and total server demand ratio is above 1.2. The hot aisle 



 

 

containment has been designed to meet a requirement of 

5% of leakage. The containment system has additional 

sources of leakages, for instance, when the servers need 

maintenance or when the maintenance team opens the 

doors to access the aisles. The baseline recirculation is 

specific to each data center because it translates the 

particular installation and possible gaps between 

containment walls, the exact setup of the racks, and the 

operation of the data hall. Therefore, the baseline 

recirculation ratio is estimated with measured 

operational data. To do so, we have created a thermal 

model in Modelica language that can calculate the 

average data hall zone cold aisle temperature as a 

function of the supply airflow entering and leaving the 

room, the supply air temperature, and the IT load. The 

recirculated heat is defined as a percent of the IT load 

remaining in the server rooms. The measured average 

cold aisle temperature is then compared to the simulated 

one in normal operating conditions by varying the 

recirculation percent. We then select the recirculation 

percent with the lower mean average error.  

2.2 Differential-Pressure-induced Recirculation 

For any rack position where the differential pressure 

between cold and hot aisles is negative (i.e., the cold 

aisle pressure is lower than the one in the hot aisle), the 

flow is naturally coiling back through the rack gaps. The 

total amount of air due to this effect is accounted for as 

the differential-pressure-induced recirculation.  
The initial velocity at the shaft is estimated using the 

shaft dimensions and airflows, according to [11].  

 
Fig. 3. Velocities along half of a cold aisle 

For rack position 𝑖, we assume some flow coming into 

the slice from the left-hand side with forward velocity 

𝑣_𝑖𝑛  in the middle of the aisle. The fans in 𝑟𝑎𝑐𝑘_𝑖 pull 

some air through them into the hot aisle behind the racks 

with an average velocity 𝑣_𝑟 in the volume of the cold 

aisle being pulled towards the rack. The remaining 

airflow 𝑣_𝑜𝑢𝑡 passes to the next slice as the center aisle 

velocity. With this model flow field in hand, we 

calculate the pressure profile by using momentum 

conservation as described by the time-averaged 

momentum Navier-Stokes equation below:  
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where  

𝑥𝑖,𝑗 are the coordinates       

𝜌 is the air density 

𝑉𝑗 is the velocity component in  𝑥𝑗 – direction 

𝑝 is the pressure 

𝜇
𝑒𝑓𝑓

 is the effective viscosity 

𝛽 is the thermal expansion coefficient of air 

𝑇0 is the thermal expansion coefficient of air 

𝑇 is the temperature 

𝑔 is the gravity acceleration 

 

We are interested in the z-dependence of pressure, 

so we focus on the 𝑖 = 𝑧 case. We assume no variation 

in the flow field along the y-direction (vertical; 

assumption confirmed by numerical estimate of 

buoyancy term) and that the solution is steady-state. 

Next, we eliminate the term arising from viscosity by 

noting that 𝜇
𝑒𝑓𝑓

≤ 0.01 in SI units for the conditions of 

the datahall, while 𝜌 = 1.225 in SI units, providing a 

100x suppression of that term relative to the others 

which is not overcome by the extra derivative in that 

term for these conditions.  Finally, we are left with  
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We numerically approximate under our assumed 

flow field with 

∆𝑝𝑖

𝑤𝑟𝑎𝑐𝑘
≈ −𝜌

(𝑣𝑜𝑢𝑡,𝑖𝑣𝑟𝑎𝑐𝑘,𝑖)
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where  

∆𝑝𝑖 (Pa) is the pressure change across rack position 

𝑖 along the cold aisle,  

𝑤𝑟𝑎𝑐𝑘 and 𝑤𝑎𝑖𝑠𝑙𝑒 are the width of a rack and the half-

width of cold aisle, respectively 

 𝜌 is the density of air,  

𝑣𝑖𝑛,𝑖 is the air velocity entering rack position 𝑖, 
𝑣𝑟𝑎𝑐𝑘,𝑖   is the air velocity flowing through the rack at 

position 𝑖 into the hot aisle,  

𝑣𝑜𝑢𝑡,𝑖 is the velocity of the air leaving rack position 

𝑖 due to the missing flow going through the rack.  

 

Both terms on the RHS can be thought of as static 

pressure changes due to differing bulk flow conditions 

(i.e. dynamic pressures) for a constant density gas at 

constant temperature.  

This formula allows us to compute the pressure 

change along the cold aisle due to the flow out through 

the racks at position 𝑖 with knowledge of the cold aisle 

dimension, the rack width, the flow entering the 

beginning of the cold aisle, and the flow being pushed 

into the hot aisle at each rack position (sum of the rack 

on the left and the right of the cold aisle at that position). 

We then combine the pressure profile along the row with 

the pressure spike at the beginning of the cold aisle to 

obtain the final pressure profile.  

The previous process leads us to a relative 

differential pressure profile down the cold aisle. An 

important last step of the process is to offset this profile 

to make sure we are reflecting the actual profile in the 

data center. To do so, we use the unique differential 

pressure sensor per cold aisle that is available in our data 

centers (usually around the middle of the row).   



 

 

Finally, the last step of the calculation is to convert 

the calculated pressure profile into recirculated air flow 

from the hot aisle to the cold aisle. For this, we need a 

model of the conductance of the racks. To assess the 

recirculated heat flow, we use two inputs: a model of the 

flow through a standard rack face, and a model of flow 

through the opening on the side of the racks near the 

back due to the lack of side panels. Both these models 

have been built and validated with measured data 

collected during in-situ experiments. 
 
For any rack position with a negative differential 

pressure, we apply the following logic: if a rack is 

populated at that position, we apply the pressure model 

to account for recirculation through the face. If that rack 

is adjacent to an empty rack position, we apply the crack 

leakage conductance once for each empty adjacent rack 

position, i.e., a crack at the edge of each group of racks. 

If there are two populated racks next to one another, we 

do not compute flow into the cold aisle through the side-

of-rack gaps between the two racks considering (this has 

been verified with CFD studies) that the two racks close 

off effectively that volume from the cold aisle.  

2.3 Flow deficit Recirculation 

For cases when the data hall is being supplied with less 

airflow than the racks are calling for, we argue on mass-

balance terms that the missing airflow must come from 

recirculation. In these severe and obviously unwanted 

cases, we add in an additional recirculation airflow term 

which is the difference between the total supply airflow 

and the servers’ airflow.  

3 Results and discussion 

3.1 Baseline recirculation estimation 

The baseline recirculation is calculated as described in 

2.1. The result is expected to be different from one data 

center to another because it is highly dependent on the 

geometry and physical installation of the racks and 

containment walls of the data halls. It translates the 

minimum effective recirculation rate that we can 

achieve at best in a data center without any structural 

changes to the insulation or containment walls.  Fig 4 

shows the result for one modeled data center. The 

baseline recirculation is estimated to be around 12.5% 

with a mean average error of 0.7 F for temperatures 

around 65°F. This study corroborates previous 

measurement tests that was conducted in our data 

centers for a specific type of racks. 

 
Fig. 4. Error in Fahrenheit between the simulated and 

measured cold aisle temperature as a function of the 

recirculation heat ratio. The green dotted line/area shows the 

fitted value +/- 1 standard deviation. 

The baseline recirculation ratio is a useful metric to 

characterize the performance of the containment 

installation or to identify data centers with a higher 

maintenance rate that needs specific attention. The fact 

that the baseline recirculation ratio is around 12.5% for 

this data hall explains why the ratio between supply and 

demand is around 1.2. Typically, the baseline 

recirculation ratio is the only metric that would be used 

in a data-science-based model since usually no data are 

available to describe the thermal behavior of a data hall 

under several under provisioned conditions. 

3.2 Differential Pressure induced Recirculation 
Estimation 

The model described in 2.2 is applied for several data 

halls. Fig. 5 shows characteristic distributions of total 

recirculation for an ensemble of racks estimated due to 

differential pressure, one for typical running conditions 

with a small overabundance of supply air relative to 

servers’ airflow, and an undersupply case during a test 

period where the supply to server airflow ratio was 

intentionally lowered slightly below parity:  

 
 
Fig. 5. dp-induced recirculation flow totals per aisle in normal 

case and severe undersupply conditions.  Means shown as the 

red bar, Q3 and Q1 as box limits, and p5 and p95 as whiskers. 

We note that dp-induced recirculation is predicted to 

exist by this model even in standard or over supplied 

conditions.  In the most severe undersupply cases, this 

effect can grow to be equivalent to > 15% of the total 

supply airflow from a few % under standard conditions.. 



 

 

The data centers are equipped with a single 

differential-pressure sensor in the cold aisle to measure 

against the hot aisle static pressure. To validate the 

pressure profile against sensor data, we have deployed 

test differential-pressure sensors at 6 additional rack 

positions. 

 
Fig. 6. Pressure profile predictions and comparison with 

sensor data.  Solid line is the prediction from the model using 

measured input data and dashed lines show the range of 

predictions for the expected range of input data. 

Although the overall simulated form of the pressure 

profile  is consistent with measurements, we observe a 

static pressure rise at the first rack position not captured 

in the modelled profile. This is due to a 90° redirection 

of the airflow flowing from the shaft located on the 

ceiling to the aisles at the head of the rows that our 

current model, focused on z-direction motion, does not 

capture.  

3.3 Flow deficit Recirculation 

This case occurs in severe conditions where the supply 

airflow added to the differential pressure-induced 

recirculation airflow is less than the server’s airflow 

demand. Even though this is impossible in normal 

operating conditions - we have not encountered such a 

case in stable data center historical data, it is possible 

and seems to occur in normal operating conditions for 

highly populated rows, meaning that a single row can be 

in this regime while the other rows function normally. 

In that case, the sum of airflows pulled by the servers in 

that aisle is larger than the supplied airflow provided by 

the supply shaft at this aisle.  

We handle this case in our dp-induced term by 

allowing for the surplus supply airflow from other aisles 

to enter an individual aisle through the backside of the 

aisle. In those cases, the airflow down the cold aisle 

changes direction at a rack position and begins to 

increase. This increase in flow up the cold aisle means 

the static pressure of the cold aisle begins to decrease 

again as the airflow moves towards the end of the row, 

leading to more differential pressure-induced 

recirculated airflow if the local pressure goes below the 

one of the hot aisles (Fig 8). 

3.4 Temperature prediction at the data hall level 

We used the model described in part 2 to predict the 

average cold aisle temperature. The effective 

recirculation radio input of the model has been 

calculated following eq (1) where each term is 

calculated according to the methods described part 2.1 

to 2.3. 

We compare this approach to a model that would 

only consider the baseline recirculation term, usually 

what data-science only based models typically predict, 

since this factor has been calculated with measured data, 

largely available in a well provisioned data center. The 

goal of this comparison is to validate why the analytic 

portion of the model add values to the data science-

based only prediction accuracy. 

 

Both models were compared to measured data 

during a test conducted in data halls where the supply 

airflow has been drastically reduced to 90% of the server 

airflows for several hours (Fig.9). The cold aisle 

temperature sensors have a 0.5°C uncertainty. 

 

 
Fig. 9. Measured cold aisle temperature vs over(under)supply 

ratio for both analytical and historical data inference-based 

model for a sample of timespans with stable temperatures 

during the period including the stress test in a data hall. Blue 

is the analytical model and black is the inference-based model  

We can see that both models successfully predict the 

average cold aisle temperature of the data hall under 

well provisioned conditions, with less than 1 F of mean 

absolute error or about 1% of relative error. The 

analytical model presents an acceptable accuracy: 5.1°F 

of mean absolute error  in very undersupplied 

conditions, capturing at least half of the missing effect 

from the model ignoring the dp-induced recirculation. 

Fig. 10 presents the breakdown of recirculation 

terms for three supply and server airflows’ ratio 

categories: normal operating conditions (above 1.2), 

undersupplied (between 1 and 1.2) and severe 

undersupplied (less than 1).  Fig. 10 confirms that the 

recirculation phenomenon is accentuated in 

undersupplied conditions.  

 



 

 

 
Fig. 10: Recirculation breakdown as a function of the supply 

ratio category 

3.5 Temperature prediction at the row hall level 

The row-level temperature is estimated with the same 

approach as the one applied to the room level, but to 

predict the average temperature in between two racks for 

each rack position. Note that we consider the baseline 

recirculation to be evenly distributed along the aisle. We 

stop our temperature profile prediction at the point along 

the cold aisle where flow of supply air changes direction 

from coming from the front of the row to coming up the 

back of the row due to the equations having more 

unknown than inputs.  

Fig. 11 shows the result of our prediction both in 

normal and severe undersupplied conditions on the same 

cold aisle. 

 
Fig. 11: Temperature profile prediction for each rack position 

for a test aisle for normal conditions (left) and undersupplied 

conditions (right) 

The predicted slope of the temperature as a function of 

the rack position is higher for the undersupply data, this 

reflects the recirculation for each rack position. 

If we consider all the rows of a data hall, this model’s 

accuracy is 4.7°F in normal conditions and 6.3°F in 

undersupply conditions. However, the server inlet 

temperature sensor have a 2.5°C uncertainty which leads 

us to some reservations to the use of MAE as a right 

metric to assess this model, for that reason we use the 

𝜒2 metric, defined as follows: 

𝜒2 =
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑑𝑎𝑡𝑎)2

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎
  

 

𝜒2  is a measure of the difference between the model 

and data normalized by the uncertainty in the data. The 

model shows a 𝜒2 of 2.15 in normal conditions and 2.9 

in undersupply conditions, which is satisfying for our 

prediction needs. 
 

4 Conclusion and next steps 

This paper presents a simple, first-order analytical 

model with very few inputs and parameters to assess the 

average cold aisle temperature at the data hall level. This 

model successfully predicted the cold aisle temperature 

of a data hall with less than 1F of mean absolute error 

for normal conditions and 5F for severe undersupply 

conditions during a test period. To achieve these results, 

we considered the effective recirculation ratio as the 

portion of IT load remaining in the cold aisle despite the 

containment and broke it down into three terms: baseline 

recirculation that describes the containment and 

building insulation leaks and maintenance operations in 

the data hall, differential pressure-induced recirculation 

and flow limitation recirculation. 

The differential-pressure recirculation model 

provides a general understanding of the pressure profile 

along the cold aisle, which is an important input into 

calculating the pressure induced recirculation. The 

model outputs a trend along the whole row that is then 

offset by an actual measurement of a single rack. We 

have used this pressure model to accurately model the 

recirculation. 

We then applied this model at the row level to get a 

prediction of the cold aisle temperature in between each 

rack along the data center aisles.  

While our prediction at the row level is satisfying, 

we would like to improve our understanding of the local 

recirculation effects at the rack level. We would also like 

to understand whether we are including some local 

recirculation in our estimate of background 

recirculation, i.e. whether some of the blue in the bars in 

Fig 10 should actually be attributed to the red. To 

achieve this, a more detailed airflow model could be 

helpful to identify the recirculated air flow flowing back 

from the hot aisle to the cold aisle but may be at the 

expense of computing time.  

References 

[1] E. Masanet, A. Shehabi, N. Lei, S. Smith, & J. 

Koomey,  Recalibrating global data center energy-use 

estimates in Science (2020)  

[2] Meta 2021 Sustainability Report.  Accessed: 

https://sustainability.fb.com/wp-

content/uploads/2022/06/Meta-2021-Sustainability-

Report.pdf (2022) 

[3] J. Wan, X. Gui, S. Kasahara, Y. Zhang & R. Zhang 

Air Flow Measurement and Management for Improving 

Cooling and Energy Efficiency in Raised-Floor Data 

Centers: A Survey in IEEE Access, 6 (2018) 

[4] C. H. Wang, Y. Y. Tsui & C. C. Wang, On cold-aisle 

containment of a container datacenter in Applied 

Thermal Engineering 112 (2017) 

[5] J. Cho, C. Park & W. Choi Numerical and 

experimental study of air containment systems in legacy 

data centers focusing on thermal performance and air 

leakage in Case Studies in Thermal Engineering, 26 

(2021) 

[6] W. X. Chu & C. C. Wang A review on airflow 

management in data centers. In Applied Energy 240 

(2019) 



 

 

[7] H. Lu, Z. Zhang Numerical and experimental 

investigations on the thermal performance of a data 

center in Applied Thermal Engineering, 180 (2020). 

[8] S. A. Nada, M.A. Said & M.A. Rady Numerical 

investigation and parametric study for thermal and 

energy management enhancements in data centers’ 

buildings in Applied Thermal Engineering, 98 (2016) 

[9] L. Li, C. Jin, & X. Bai A determination method on 

the supply airflow rate with the impact of leakage and 

bypass airflow of computer room air conditioning in 

Journal of Building Engineering 59 (2022) 

[10] M. Wetter, Z. Wangda, T. S. Nouidui and X. Pang. 

Modelica buildings library, Journal of Building 

Performance Simulation 7 4 (2014) 

[11] A. Rubel Computations of jet impingement on a flat 

surface. 16th Aerospace Sciences Meeting, Huntsville, 

Alabama, January 16-18, (1978) 


	2.1 Baseline recirculation
	2.2 Differential-Pressure-induced Recirculation
	2.3 Flow deficit Recirculation
	3 Results and discussion
	3.1 Baseline recirculation estimation
	3.2 Differential Pressure induced Recirculation Estimation
	3.3 Flow deficit Recirculation
	3.4 Temperature prediction at the data hall level
	3.5 Temperature prediction at the row hall level

	4 Conclusion and next steps

