
On Continual Model Refinement in Out-of-Distribution Data Streams

Bill Yuchen Lin†∗ Sida Wang‡ Xi Victoria Lin‡

Robin Jia† Lin Xiao‡ Xiang Ren† Wen-tau Yih‡

‡ Facebook AI Research †University of Southern California
{yuchen.lin,robinjia,xiangren}@usc.edu,{sida,victorialin,linx,scottyih}@fb.com

Abstract

Real-world natural language processing (NLP)
models need to be continually updated to fix the
prediction errors in out-of-distribution (OOD)
data streams while overcoming catastrophic
forgetting. However, existing continual learn-
ing (CL) problem setups cannot cover such a
realistic and complex scenario. In response
to this, we propose a new CL problem for-
mulation dubbed continual model refinement
(CMR). Compared to prior CL settings, CMR
is more practical and introduces unique chal-
lenges (boundary-agnostic and non-stationary
distribution shift, diverse mixtures of multiple
OOD data clusters, error-centric streams, etc.).
We extend several existing CL approaches to
the CMR setting and evaluate them extensively.
For benchmarking and analysis, we propose
a general sampling algorithm to obtain dy-
namic OOD data streams with controllable non-
stationarity, as well as a suite of metrics mea-
suring various aspects of online performance.
Our experiments and detailed analysis reveal
the promise and challenges of the CMR prob-
lem, supporting that studying CMR in dynamic
OOD streams can benefit the longevity of de-
ployed NLP models in production. 1

1 Introduction

Fine-tuning large pre-trained language models
(LMs) has become the de facto standard for train-
ing models of a variety of tasks in natural language
processing (NLP). These success stories are usu-
ally in places where the training and testing data
are drawn from the same distribution. However,
in real-world scenarios, a deployed model (e.g., a
question answering service) often encounters exam-
ples that are out of the training distribution (i.e., out-
of-distribution, OOD). Such distribution shift often
leads to a high error rate. In practice, it is highly

∗The work was done when Bill was an intern at FAIR.
1Our code and data are available at the project website —

https://cmr-nlp.github.io/.

preferred to continually refine deployed models
whenever new errors are reported and annotated, in
order to reduce their further negative impacts.

In spite of its importance, the challenge of con-
tinually refining a model over OOD data streams
has been underexplored. Prior work in contin-
ual learning (CL) has primarily focused on task-
incremental settings with boundary-aware data
streams. These CL methods are usually evaluated
on simple models and data (e.g., image classifica-
tion with MNIST) (Aljundi et al., 2019).

It is not clear to what extent they can efficiently
refine a model in boundary-agnostic streams for a
complex language task (e.g., reading comprehen-
sion) with modern LMs. In addition, there is no
existing evaluation protocol for comprehensively
comparing the collection of applicable methods for
such a practical and complex problem. Traditional
CL paradigms mainly focus on incrementally learn-
ing a model from a data stream with a sequence
of distinct tasks with explicit delineation, which is
rather unrealistic in real-world NLP applications.

To address these research questions, we propose
a novel CL formulation named continual model re-
finement (CMR), which aims to efficiently update a
model for error correction in an out-of-distribution
data stream without catastrophically forgetting its
acquired knowledge over time. In contrast to prior
CL setups, CMR targets learning a model of a
particular task (e.g., question answering) from its
prediction errors in dynamic OOD data streams.
Instead of assuming that the streams are drawn
from a fixed unseen distribution, we study CMR
under a more general and realistic scenario, where
the underlying distribution of OOD data streams
is non-stationary across time steps without clear
boundaries while being diverse at every time step.

In this paper, we focus on studying whether exist-
ing methods can address CMR and how we should
benchmark and analyze their performance. We
first formulate the CMR problem with several ba-

https://cmr-nlp.github.io/

sic metrics covering multiple desiderata for a CMR
method: the ability to instantly fix known errors,
the retention of previously acquire knowledge from
upstream/online data, and the generalization to un-
seen OOD data (Sec. 2). Then, we propose a gen-
eral method to create the dynamic data streams
of the aforementioned characteristics and evalua-
tion metrics to benchmark CMR methods, yield-
ing a comprehensive evaluation protocol for CMR
(Sec. 3). We employ and extend several suitable
methods from the CL literature to study the CMR
problem, which is based on parameter regulariza-
tion or memory replay (Sec. 4).

We have conducted a comprehensive analysis
with extensive experimental results, which reveal
many interesting, non-trivial findings (Section 5).
For example, we find that even though replay meth-
ods are generally better than regularization-based
methods, EWC (Kirkpatrick et al., 2017), a typical
regularization method, achieves the best score in
generalizing to unseen OOD data. We also find that
a simple variant of ranking criteria in conditional
replay methods achieves more stable results. More-
over, we find that different CMR methods have
orthogonal improvements and our positive initial
results suggest that integrating regularization terms
for replay methods is a promising future direction
to develop advanced CL methods to address CMR.

2 Continual Model Refinement

In this section, we formally introduce the proposed
continual learning setup, continual model refine-
ment (CMR). We first define the notations and de-
scribe the learning objectives that are also illus-
trated in Fig. 1, then we design a few basic eval-
uation metrics for assessing CMR methods, and
finally, we briefly discuss the unique challenges
compared to other CL formulations.

2.1 Problem Formulation
Upstream learning. Suppose that we want to
build a question answering (QA) model. To do
this, we usually need to offline fine-tune a large
pre-trained LM with the existing QA data we have
now. Formally, we denote a dataset with D =
{(xi, yi)}, consisting of the examples are drawn
from an upstream distribution U , i.e., D ∼ U . The
fine-tuned LM is named upstream model f0.

Query streams. After the model f0 is deployed
in production, it is common to see ever-changing
distribution shifts in real-world data. We use

𝑓!

…

𝑓!"#

𝐸! 𝐸!"#

𝑄! 𝑄!"#

𝑡

Upstream
Learning

𝑓$ CMR 𝑔 𝑓!, 𝐸!

𝐷

Continual Model Refinement

error stream
query stream

𝑈
Ever-Changing

Unseen Data Dist.

online

offline

shift

Figure 1: The continual model refinement (CMR) problem.
We offline train a model f0 and it may encounter many error
cases Et when it is tested on a stream of query examples Qt

over time which is drawn from ever-changing unseen distribu-
tions. A CMR method g aims to fix the error cases over time
by refining ft without catastrophic forgetting.

{Q1, . . . , QT } to denote the arriving examples
grouped in T episodes and call this sequence of
datasets as a query stream. We discuss our method
of creating such challenging query streams for eval-
uating CMR in Sec. 3.2 and Alg. 1.

Error streams. In real-world scenarios, the size
of Qt can be very large even in a short period of
time, and it is unrealistic to assume that we can
annotate all of them to refine the model ft−1. A
common practice is to only annotate the ones that
are reported as prediction errors or bugs. Moti-
vated by this, we use Et to denote the examples
in Qt that are predicted incorrectly by ft−1. This
thus forms an evolving, dynamic stream of predic-
tion errors {E1, . . . , ET }, where Et = { (x, y) ∈
Qt | ft−1(x) ̸= y }.

Learning objectives. To improve the user satis-
faction over time, we need a continual model refine-
ment (CMR) method g that can efficiently take the
model ft−1 and Et as input and then output a re-
fined model ft for processing future examples. We
expect ft to output correct answers for the known
errors Et immediately while maintaining its correct
predictions on previous questions that are answered
correctly. We also want the refined models to keep
their generalization ability to unseen future data in
the stream. Sec. 2.2 shows the metrics to assess a
CMR method g toward these goals.

2.2 Basic Evaluation Metrics

We use five metrics to describe the desiderata for
CMR methods and assess them quantitatively. We
show how to use these metrics for benchmarking
in a comprehensive yet concise way in Sec. 3.3.

• Error-fixing rates (EFR). To assess the re-
sponsiveness of the error-fixing methods, we look
at how many errors can be fixed right away. We
define the instant error-fixing rate at time step t as:

EFR(t) =: Acc(ft, Et) =:
|{(x, y) ∈ Et | ft(x) = y}|

|Et|
.

• Knowledge retention (UKR&OKR). We de-
fine two metrics below to assess how much knowl-
edge acquired from upstream or online data streams
that the model maintains over time:

UKR(t) =: Acc(ft, D) and OKR(t) =: Acc(ft, Q<t),

where Q<t =
⋃t−1

i=1 Qi. We down-sample D and
Q<t and compute periodically for efficiency.

• Cumulative success rates (CSR). To monitor
the model performance on incoming query exam-
ples, we compute a running average of success rates
at past time steps: CSR(t) =: 1− |E<t|/|Q<t|.

• Knowledge generalization (KG). As we only
have a finite number of episodes for experiments,
to assess the model performance in the future
episodes, we test the models with a held-out set
of test examples, H , that are drawn from the same
underlying distributions which are used to create
the query stream. That is, KG(t) =: Acc(ft, H).

2.3 Unique Challenges of CMR
Without loss of generality, we suppose that Qt ∼
Ot, where {Ot} denotes an ever-changing series of
unseen distributions. Typical task-incremental CL
problem setups such as LAMOL (Sun et al., 2020)
and CLIF (Jin et al., 2021) consider Qt and Qt+1

are sampled from two distinct tasks. Therefore, the
distribution shifts are sudden (i.e., Ot and Ot+1

does not share any overlapping components).
Also, in conventional CL formulations, the past

distribution will never be revisited, which is rather
unrealistic in real-world applications. They do
not have the concept of “error stream” either. In-
stead, the proposed CMR formulation is essentially
a boundary-agnostic CL problem in non-stationary
data streams, where the distribution shifts are more
dynamic, unpredictable, and diverse, yielding a
more realistic yet challenging CL setup.

3 A Comprehensive Evaluation Protocol

We provide a comprehensive evaluation protocol
for studying continual model refinement in OOD

streams. This section first briefly describes our
selected task and datasets (Sec. 3.1), then focuses
on our proposed method to sample non-stationary
OOD data streams (Sec. 3.2), and finally, illustrate
how we use the basic metrics to benchmark various
CMR methods in a comprehensive yet concise way.

3.1 Datasets

In this paper, we mainly use extractive question
answering (i.e., machine reading comprehension)
to evaluate and analyze CMR methods, while one
could also study the CMR problem in any NLP
tasks with the proposed protocol. We use the
MRQA-19 benchmark (Fisch et al., 2019) which
consists of 6 datasets sharing the same formats.

We use the SQuAD (Rajpurkar et al., 2016) as
the upstream data for offline training the base LM,
and use the other five parts as the OOD data for
continual learning: NQ (Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), SearchQA (Dunn
et al., 2017) and TriviaQA (Trischler et al., 2017).
This is because SQuAD is more commonly used
for deploying models in production and the real-
world QA examples from online users can be more
similar to the distribution of NQ and SearchQA.

3.2 Creating Dynamic OOD Data Streams

Here we discuss how to create a realistic ever-
changing series of distributions (i.e., {Ot} in
Sec. 2.3) for creating query streams {Qt}.

Background. A common practice in CL to create
a controllable non-stationary data stream is to con-
trol the context-switching probability. For example,
OSAKA (Caccia et al., 2020), as a representative
method, uses a Markov chain to sample a sequence
of tasks with a constant transition probability and
then sample the examples from the selected task at
each time step. Despite its simplicity, this method
is nevertheless limited to the cases where query
stream Qt can only be drawn from a single distri-
bution, which can be unrealistic.

Instead, it is common that the online data at a
time step are from multiple underlying OOD data
clusters, each of which has a different feature distri-
bution, thus yielding a more diverse and challeng-
ing environment for continual model refinement.
Also, it is often that in the early stage of the model
deployment, the query streams still contain exam-
ples of the upstream distribution U , and the ratio of
such in-distribution examples will decay over time.

Query Stream: 𝛽 = 0.1 Query Stream: 𝛽 = 0.5 The 𝐄𝐫𝐫𝐨𝐫 Stream (frozen upstream): 𝛽 = 0.5

Figure 2: The left and middle figures are two query streams of the QA task with different non-stationarity (β = {0.1, 0.5})
while sharing other arguments (T=50, b=64, α=0.9, γ=0.8). We use the blue color and ‘*’ to denote the in-distribution data
cluster (i.e., V0), the percentage of which decay over time. The distribution of incoming query examples dynamically shifts over
time — with larger β, adjacent episodes are more likely to share the same major OOD clusters which takes the γ of the total
OOD data. To encourage diversity, the other 1− γ OOD examples are sampled from the remaining clusters. The right figure is
the error stream if we do not refine the upstream model (i.e., ft ≡ f0) and test it on the middle query stream.

Our proposed method. Motivated by these prac-
tical considerations, we propose a novel sampling
algorithm to control the dynamics of query streams,
aiming to encourage diversity and model the decay-
ing upstream distribution. We consider that there
are N underlying data clusters, {V1, . . . , VN}, each
of which corresponds to an unseen distribution, and
we have V0 ∼ U which is a data set sampled from
the upstream distribution.

Our key motivation is to sample the target Qt

from three sources: the in-distribution data cluster
V0, the data of a major OOD cluster Vct , and the
mix of other remaining OOD data clusters V̸=ct . As
shown in Alg. 1, we have three key configuration
arguments (α, β, γ) for controlling the dynamics
of the query stream: 1) α is the decaying factor for
the ratio of in-distribution data, 2) β is the transi-
tion probability of the Markov chain for deciding
the index of the major OOD cluster ct, and 3) γ
is to control the diversity by adding data from re-
maining OOD clusters; T is the number of episodes
and b is size of Qt. Fig. 2 shows examples of query
streams and associated error streams.

3.3 Benchmarking CMR Methods

Overall measurement. Recall that there are five
basic metrics in Section 2.2, namely EFR (instnat
error-fixing rate), UKR (upstream knowledge re-
tention), OKR (online knowledge retention), CSR
(cumulative success rate) and KG (knowledge gen-
eralization). To have a comprehensive yet concise
analysis of CMR methods, we report the average
and final values of these metrics. Specifically, we
use X to denote the average scores in the metric
X (e.g., X=UKR) over all time steps, and X(T) to

Algorithm 1: Sampling query streams with con-

trollable non-stationarity from multiple data clusters.
Input Data Clusters: V0, V1, . . . , VN

Configuration Arguments: T, b, (α, β, γ).
Output: A query stream {Q1, Q2, . . . , QT }
foreach t in range(1, T) do

bu = ⌊b ∗ αt−1⌉; bo = b− bu ; b′o = ⌊bo ∗ γ⌉ ;
ct ∼ P (c|ct−1;β)
/* The prob. of switching the major OOD data
cluster is 1− β, i.e., P (ct ̸= ct−1) = 1− β */
V̸=ct =

⋃
{k∈[1,N]|k ̸=ct} Vk

Qt ←− sample(V0, bu)
/* V0 ∼ U ; from upstream distribution */
Qt += sample(Vct , b

′
o)

/* from the current major OOD data cluster */
Qt += sample(V̸=ct , bo − b′o)
/* from non-major data clusters */
assert |Qt| = b

denote the score at the final time step. Reporting
both can help us quickly assess the trend of per-
formance of ft in addition to its final performance.
Besides these fine-grained scores, we also provide
an overall evaluation criterion (OEC) by taking
the average of the four scores except for the EFRs2,
i.e., OEC = average(UKR, OKR, CSR, KG).

Validation/testing streams. To evaluate CMR
methods (introduced later in Sec. 4), we use the
method in Alg. 1 to sample multiple streams un-
der the same configurations (i.e., T, b, α, β, γ and
{Vi}) and then split them as validation streams and
testing streams. The validation streams are used
to pick the best hyper-parameters of each CMR
method (e.g., the λ of regularization-based methods

2Note that we report EFR scores separately because it
computes on the method-specific errors unlike other metrics
that test on same examples for all CMR methods.

and the size of Rt in replay methods) and then they
are evaluated on the same set of testing streams.

4 Methods

We first introduce our base LM and then illustrate
several typical continual learning methods with our
extensions to make them applicable to the CMR
problem. We discuss other relevant yet not suitable
methods in Related Work (Sec. 6).

4.1 Base Model & Continual Fine-Tuning

Base model. Pretrained text-to-text language
models, such as BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020), are commonly used for
studying a wide range of NLP tasks. This is be-
cause they are generally applicable to tasks that
can be formulated as a text-to-text problem, and
that they show better generalization potential (Ye
et al., 2021; Wei et al., 2021; Sanh et al., 2021). We
thus employ the text-to-text formats to pre-process
all data in our experiments and use BART-base as
the base model. We find the BART-base model
is a great fit to support our extensive experiments
for its relatively smaller size and comparable up-
stream performance versus its alternatives. Thus,
we use it for our experiments to ensure the scalabil-
ity of our analysis and the generality of our findings.
Note that we do not aim to offline train a perfect
upstream model f0 with the upstream dataset D.
Instead, we focus on the CMR methods that can
continually refine a given upstream model.

Continual fine-tuning. The most straightfor-
ward method is to always use a vanilla optimizer
(e.g., Adam (Kingma and Ba, 2015)) to fine-tune
ft−1 with a small learning rate on Et for a few
epochs, aiming to minimize the loss LError(t) of
fine-tuned model ft on Et. Such refined models ft
should be able to output correct outputs for these
known errors. This method may overfit these errors
and thus forget previously acquired knowledge. We
introduce a few regularization methods next.

4.2 Regularization-based methods

A common solution to preventing forgetting is
to add a temporal regularization term to the loss
for continual fine-tuning: Ltotal(t) = LError (t) +
λLReg (t), so that the parameter changes from ft−1

to ft are restricted to avoid over-fitting.

Online L2Reg. We use an intuitive regularization
term by computing the L2 distance between the

parameters. That is,

LL2Reg (t) =
∑
i

(
θit − θit−1

)2
,

where θt is the parameters of ft. This regularization
term mitigates the forgetting issue by applying a
penalty for every parameter change.

Online EWC. Elastic weight consolida-
tion (Kirkpatrick et al., 2017) is a typical
regularization method for CL. Unlike L2Reg
which gives an equal penalty to every parameter
change, EWC produces a weighted penalty such
that the parameters that are more important
to the previous tasks will have larger penalty
weights, leading the parameter changes to find an
overlapping space where both previous knowledge
and new knowledge can be stored in the parameters.
In particular, it efficiently estimates the Fisher
Information Matrices F

(t)
ii and use them for

consolidating the weighted penalty:

LEWC (t) =

t−1∑
j=1

(
1

2

∑
i

F
(j)
ii

(
θit − θit−1

)2)
.

We here employ an extension of EWC by keep-
ing a running sum of Fii to avoid the growth of
computation cost in the online setting.

4.3 Replay Methods

The other significant group of CL methods is based
on replaying past examples, as follows:

Experience replay. ER (Rolnick et al., 2019) is
a simple yet effective replay method that stores the
previous examples into a growing memory module
M . Then, we periodically (every k time steps) sam-
ple a small subset of the memory Rt as additional
training examples for model refinement. It uses a
two-stage process: fine-tune ft−1 on Rt to get f ′

t−1

and then fine-tune f ′
t−1 on Et to get ft.

Maximally interfered replay (MIR). Instead
of randomly selecting Rt from M , MIR (Aljundi
et al., 2019) aims to replay the most forgettable
examples, conditioning on the current information:
ft−1 and Et. It samples a small candidate pool
C ⊂ M and then ranks the examples in C by their
“interference scores.” Finally, the Rt of MIR is the
subset of C with the largest scores. To compute
interference scores, we first fine-tune ft−1 on Et

to get a virtual model f̂t. Then, we compute the

loss of ft−1 and f̂t on each example in C to get the
interference scores (i.e., the loss delta):

score(xi, yi) =: loss(f̂t(xi), yi)−loss(ft−1(xi), yi).

MaxLoss replay. Inspired by Jiang et al. (2019)
and Kawaguchi and Lu (2020) that show learn-
ing with the examples with largest losses can en-
hance the learning efficiency, we propose a vari-
ant of the MIR by redefining the scoring func-
tion to score′(xi, yi) =: loss(f̂t(xi), yi) and call
it MaxLoss, which takes the examples that have
largest losses on the virtual model f̂t (instead of
the largest delta in MIR).

Extension for CMR. (1) Bi-Memory: There are
two types of knowledge that we want to maintain in
CMR: the knowledge acquired in upstream and on-
line learning respectively. Considering that the up-
stream data is much larger than the incoming errors,
it is thus not reasonable to use a single memory
module as in other CL problems. We thus use two
separate memory modules Mu and Mo where the
upstream memory is Mu = D and the online mem-
ory Mo grows by adding Et. (2) Mixed-Tuning:
Instead of following the two-stage method of using
Rt, we choose to mix Rt and Et for fine-tuning
ft−1. Both modifications are supported by their
better empirical results.

5 Evaluation & Analysis

We first present the setup in Sec. 5.1, and report
our main results in Table 1 and Figure 3, which we
use to discuss our key findings in Sec. 5.2 to 5.5.
Please note that there are other additional results
in Appendix, and we will release our codebase and
full experimental logs to support reproducibility.

5.1 Setup
Reference range. To get a reference range of
the performance, we set up two reference methods.
1) FrozenUpstream: We always use the upstream
model (i.e., ft ≡ f0) for inference at every time
step. 2) OfflineRefining: We combine all the errors
of f0 as E≤T and then offline fine-tune the model
f0 with D′ + E≤T , where D′ is a subset of D, to
directly get the final refined model fT .

Hyper-parameters. We here use a normal con-
figuration of the streams (i.e., T=100, b=64, α=0.9,
β=0.5, γ=0.8) for studying the CMR methods
and discuss other extreme configurations briefly
in Sec. 5.5 and more in Appendix. To select the

optimal hyper-parameters of each method (e.g., the
learning rate, training epochs, method-specific ar-
guments, etc.), we use grid search and pick the ones
with the best overall score on validation streams.

5.2 Main Results and Findings

We report the results in Table 1 & Figure 3, and
organize our findings by answering a coherent list
of analysis questions: (Q1-Q7).

(Q1) Can we fix errors without forgetting?
From the EFR column, we can see that all meth-
ods can achieve a 95+% instant error-fixing rate,
meaning that they can indeed quickly fix most
of the known errors. However, they tend to for-
get the previously fixed errors and even examples
that are correctly predicted before in the query
stream. An oracle method that does not forget
the previously acquired knowledge would have an
OKR(T) of nearly 100%, while the OKR(T) of the
continual fine-tuning method is only 77.7%. The
issue of forgetting both online and upstream knowl-
edge in the continual fine-tuning baseline is quite
serious. Notably, its OKR(T) is much lower than
its OKR (83.87→77.73), and similarly for UKR(T)

and UKR (72.05→66.21). The curves in Figure 3
also suggest that the forgetting issue can be increas-
ingly more serious over time, and it does not show
any trend to diminish after T . This confirms that
studying the CMR problem is of great importance
for enhancing deployed NLP models.

(Q2) How well do CMR methods mitigate
the forgetting issue? All tested CMR methods
can indeed mitigate forgetting without lowering
down the EFRs, but they behave quite differently.
The regularization methods (i.e., Online L2Reg
and Online EWC) are better at improving OKRs
rather than UKRs, while replay methods enhance
both OKRs and UKRs quite well. For exam-
ple, MaxLoss can achieve the best OKR(T)(91.0%)
while having a UKR(T)that is even slightly better
than the FrozenUpstream model (80.6 vs 80.3).

Moreover, we find that MaxLoss and MIR have
great potential to continually improve knowledge
retention in the future. From both curves in
Fig. 3 and Table 1 (i.e., the comparisons between
UKR/OKR and UKR(T)/OKR(T)), we can see they
tend to have better scores in the later stages, but
the retention scores of regularization-based meth-
ods are decreasing over time. We have a detailed
discussion on replay-based methods in Q4.

Methods ↓ Metrics → EFR UKR OKR CSR KG OEC UKR(T) OKR(T) CSR(T) KG(T) OEC(T)

Frozen Upstream (ft ≡ f0) 0.00 80.27 43.69 44.95 31.25 50.04 80.27 36.13 35.44 31.25 45.77

● Continual Fine-Tuning 97.36 72.05 83.87 55.93 45.68 64.38 66.21 77.73 53.48 48.91 61.58

■ Online L2Reg. 97.18 73.47 85.37 57.27 47.12 65.81 71.09 83.59 54.50 51.17 65.09
▲ Online EWC 97.49 73.38 86.09 56.17 47.34 65.75 68.55 85.74 53.67 53.28 65.31

✚ Exp. Replay (k=3) 97.07 75.30 87.29 56.02 47.61 66.55 72.46 87.30 54.08 52.66 66.63
Experience Replay (k=1) 96.72 78.91 89.38 57.80 47.17 68.31 78.13 86.52 55.33 52.73 68.18

◆ MaxLoss (k=3,c=256) 97.43 75.43 86.89 57.14 46.70 66.54 75.00 84.77 55.11 51.33 66.55
MaxLoss (k=1,c=256) 96.54 78.16 89.86 57.78 46.63 68.11 77.54 89.26 55.47 50.94 68.30
MaxLoss (k=1,c=512) 97.41 75.57 87.09 56.80 46.45 66.48 77.54 89.65 55.88 52.81 68.97

MaxLoss (k=1,c=1024) 96.63 77.61 89.82 58.13 47.10 68.17 80.66 91.02 55.88 50.78 69.59

▲ MIR (k=3,c=256) 97.08 75.92 87.13 56.91 47.22 66.79 75.78 87.50 54.53 51.80 67.40
MIR (k=1,c=256) 96.59 77.84 89.77 58.35 47.28 68.31 79.49 90.43 55.91 51.25 69.27
MIR (k=1,c=512) 96.96 77.86 89.41 58.13 46.40 67.95 79.69 89.45 55.50 50.08 68.68

MIR (k=1,c=1024) 96.71 77.47 87.83 57.98 46.87 67.54 78.13 87.89 55.73 50.70 68.11

MIR(1,256)+OnlineL2Reg 96.15 79.10 90.41 59.80 47.90 69.30 79.49 90.04 57.45 52.66 69.91

Offline Refining (f0 → fT) 95.62 - - - - - 83.78 93.75 93.81 56.17 81.88

Table 1: Results (%) in multiple metrics: EFR=Error-Fixing Rate; UKR/OKR=Upstream/Online Knowledge Retention;
CSR=Cumulative Success Rate; KG=Knowledge Generalization. OEC is the average of the last four. Column names with bars
are the average of all periods. The ones with ‘(T)’ are the scores at the final step. The underlined methods are matched with the
legends in Figure 3. k is the replay interval (the smaller the more frequent), and c is the size of the candidate pool.

UKR(t) OKR(t) KG(t)CSR(t)

Continual FT Online L2Reg Online EWC ER MaxLoss MIR

→ t

Figure 3: The curves of four key metrics over time of selected CMR methods in Table 1. The x-axis is the time step.

(Q3) Can refined models generalize to unseen
OOD data? Recall that CSRs evaluate the in-
coming yet not touched examples over time in
the stream and the KGs evaluate the held-out ex-
amples that are not in the stream. Both metrics
thus test on OOD examples that are unseen to
the refined model at that time. Compared to the
FrozenUpstream baseline, we see all methods have
large performance gains (from 30% to 50+% in
CSR(T)and KG(T)). The “MIR w/ Online L2Reg”
even achieves the best CSR(T) and it is significantly
better than others, showing that learning with re-
play effectively improves the generalization ability.

From the KG and KG(T) columns of these CMR
methods (and Fig. 3), we can see that refined mod-
els are increasingly more generalizable to held-out
unseen data over time as well. However, the dif-

ferences among these methods in these two met-
rics are not obvious, although they are all better
than the continual fine-tuning baseline. Interest-
ingly, the regularization method OnlineEWC gets
the best score of KG(T), even though its CSR(T) is
worse than others. This suggests that learning with
replay might hurt the held-out knowledge general-
ization, but regularization could maintain a better
generalization ability in the long run.

5.3 Analysis on Memory Replaying

(Q4) How should we replay the memory? We
find that increasing the replay frequency (i.e., set-
ting a smaller replay interval k) can largely im-
prove the overall performance for ER, MaxLoss,
and MIR. This is expected as there are more fine-
tuning steps over the retrieved data.

𝑡 = [10, 20] 𝑡 = [30, 40]

Figure 4: The differences between refined models pro-
duced by different CMR methods in terms of their pre-
dictions for the same inputs at two time spans (10-20
and 30-40). The darker cells have large discrepancy.

However, the reason for such improvement
varies among them. Increasing the replay frequency
primarily benefits ER’s UKR(T), but not for other
metrics, and it even causes a lower OKR(T). In-
stead, MaxLoss and MIR also benefit from larger
OKR(T) (MaxLoss: 84.77 → 89.26; MIR: 87.50
→ 90.43). This suggests that conditional replay
methods can get more important stored memory to
replay than ER’s random selections. Thus, it is
promising to develop more advanced conditional
replay methods for CMR.

(Q5) Are larger buffer sizes always better
for conditional replay methods? Larger buffer
sizes (i.e., c=256 → 512 → 1024) can increase
MaxLoss’s UKR(T) and OKR(T)with a large margin
and thus produce better overall scores. However,
MIR with larger buffer sizes suffers from decreas-
ing UKR(T) and OKR(T). This indicates that that
delta of loss as the ranking criteria is less stable
than using the virtual loss itself (i.e., MaxLoss).

This finding conflicts with the MIR experiments
on MNIST-based task-aware streams (Aljundi et al.,
2019). We thus conjecture it is because our streams
are more complex and the loss landscapes of the
task are significantly different from the toy datasets
used for evaluation in many prior CL works (e.g.,
image classification over shuffled MNIST).

5.4 Orthogonal Improvement for CMR

(Q6) Do different CMR methods produce simi-
lar refined models? We use Figure 4 to visualize
the differences among the refined models produced
by selected CMR methods in two different periods.
We can see the refined models by continual fine-
tuning (CFT) and regularization methods are more
similar to each other, and all replay methods are

Stream Dynamics CFT EWC ER MxLs MIR
α=0.9, β=0.5, γ=0.8 15.81 19.54 20.86 20.78 21.63

α=0.9, β=0.1, γ=0.8 23.40 24.14 26.32 26.05 26.04
α=0.9, β=0.9, γ=0.8 18.61 19.38 20.78 19.51 20.60

α=0.9, β=0.5, γ=0.5 19.97 20.10 21.97 23.01 22.04
α=0.9, β=0.5, γ=0.2 17.37 16.22 19.15 20.60 19.45

Table 2: The gain of OEC(T)over the Frozen Upstream base-
line for each method under different stream dynamics.

quite distinct from other methods. Also, the diver-
gence among different methods rapidly increases
from t = [10, 20] to t = [30, 40]. Therefore, we
believe that the improvement of these CMR meth-
ods is orthogonal to each other, especially between
regularization and replay methods.

(Q7) Can we integrate regularization and re-
play methods? Inspired by Fig. 4 and findings
in (Q3), we add an initial experiment by combin-
ing the MIR and OnlineL2Reg and show its perfor-
mance in Table 1. Interestingly, we indeed observe
this combination produces a noticeable improve-
ment over both MIR and OnlineL2Reg, yielding
the state-of-the-art performance in OEC(T) scores.
To the best of our knowledge, there is little prior
work that has studied the effect of integrating regu-
larization in (conditional) replay methods, and our
initial results suggest that this is a very promising
direction for future research.

5.5 Additional Analysis
Our above analysis is based on the results of a
normal stream configuration (i.e., α=0.9, β=0.5,
γ=0.8), but can such tuned hyper-parameters of
CMR methods directly apply to streams of extreme
configurations? In Table 2, we briefly compare the
gain of the previous CMR methods in terms of their
OCE(T) improvement over the vanilla FrozenUp-
stream baseline under a few extreme settings of We
find that, in general, all replay methods are still
better than continual fine-tuning and Online EWC.
ER shows more stable results in extreme settings
(e.g., β= 0.1 or 0.9) but MIR and MaxLoss (MxLs)
are more sensitive to the non-stationarity yet less
sensitive to the diversity.

6 Related Work

Continual Learning for NLP. Recently, contin-
ual learning (or lifelong learning) has drawn atten-
tion in the NLP field (Biesialska et al., 2020; Sun
et al., 2020; Wang et al., 2019; Huang et al., 2021;
Jin et al., 2021). However, most of these works

follow the traditional task-incremental, boundary-
aware, never-revisiting CL setup, which is not di-
rectly beneficial to most of the real-world scenarios
of deployed NLP models. For example, the CLIF
formulation (Jin et al., 2021) focuses on learning
over a sequence of different NLP tasks with few-
shot data so that the trained model can general-
ize better to unseen tasks. In contrast, the pro-
posed CMR in this work is a particularly novel
CL setup where we focus on continually refining
a model with its prediction errors in OOD data
streams, thus yielding a boundary-agnostic, dynam-
ically non-stationary environment for CL methods
to work. Such fundamental differences between
CMR and traditional CL setups make it difficult to
directly apply many CL methods that are based on
boundary-aware streams, especially for those who
require learning task representations.

CMR vs. OSAKA The OSAKA (Caccia et al.,
2020) problem is similar to the CMR in that we
both focus on CL in non-stationary boundary-
agnostic data streams. However, it does not con-
sider the distribution diversity inside each time step
or the decay of upstream distribution in the on-
line setting. Our sampling method (Alg. 1) fills
the gap and yields a more realistic CL setup. In
addition, the data streams of CMR are always the
prediction errors of the latest model, thus producing
a naturally evolving and adversarial environment
for CL methods to explore. Moreover, the experi-
ments of OSAKA are limited to simple networks
and tasks such as MNIST, but our work uses pre-
trained Transformer LMs and the QA task, and
thus we believe our analysis and findings are more
useful for the NLP community and beyond.

Model Refinement. Model refinement has re-
cently become an emerging topic in NLP, but ex-
isting works have mainly been limited to offline
editing time-sensitive factual knowledge in pre-
trained LMs (Zhu et al., 2020; De Cao et al., 2021;
Mitchell et al., 2021). In contrast, our work studies
the model refinement in an online continual learn-
ing setting and for downstream NLP tasks such as
reading comprehension and natural language in-
ference. Jang et al. (2021) attempt to study the
knowledge editing problem at a larger scale, but
its problem formulation only contains two time-
steps, thus being significantly different from CMR.
Dhingra et al. (2021) propose a simple method to
jointly model text with its timestamp so that the

trained language models can be calibrated when
new knowledge arrives, while CMR focuses on
the error cases from OOD data streams where the
timestamps have little correlation with the skills
we want the deployed model to learn. Besides, Yao
et al. (2021) propose a method of learning from
explanations to fix prediction errors, which shares
similar high-level motivation but has few direct
connections to our focus in this work.

7 Conclusion & Future Directions

In this paper, we propose a novel continual learn-
ing formulation named continual model refine-
ment (CMR). The CMR problem aims to effi-
ciently fix prediction errors when learning in out-
of-distribution data streams without catastrophi-
cally forgetting the acquired knowledge. For study-
ing such a realistic and complex problem, we pre-
sented a dedicated evaluation protocol with a gen-
eral method to create non-stationary, diverse OOD
data streams for analysis. Also, we design multiple
evaluation metrics to deliver a comprehensive yet
concise measurement of CMR methods.

The proposed CMR problem with our compre-
hensive analysis opens up a range of new opportu-
nities for studying continual learning problems that
are closer to real-world applications for the NLP
community and beyond. For example, based on our
results and analysis about (Q3) and (Q6), we find
that it is promising to study how we can integrate
both regularization methods and replay methods
for mitigating the forgetting issue while improv-
ing the generalization ability. The analysis about
(Q5) suggests that developing more stable rank-
ing criteria is also important to conditional replay
methods (e.g., our simple extension MaxLoss can
outperform MIR under specific settings). Devel-
oping CMR methods of which the configurations
can generalize to diverse types of streams is also an
important challenge. We release our codebase and
processed datasets for supporting the reproducibil-
ity of our experiments and future research.

References
Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Mas-

simo Caccia, Min Lin, Laurent Charlin, and Tinne
Tuytelaars. 2019. Online continual learning with
maximally interfered retrieval. ArXiv preprint,
abs/1908.04742.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussà. 2020. Continual lifelong learn-

https://arxiv.org/abs/1908.04742
https://arxiv.org/abs/1908.04742
https://doi.org/10.18653/v1/2020.coling-main.574

ing in natural language processing: A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6523–6541,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Massimo Caccia, Pau Rodríguez, Oleksiy Ostapenko,
Fabrice Normandin, Min Lin, Lucas Page-Caccia,
Issam Hadj Laradji, Irina Rish, Alexandre Lacoste,
David Vázquez, and Laurent Charlin. 2020. Online
fast adaptation and knowledge accumulation (OS-
AKA): a new approach to continual learning. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. 2021. Time-aware language mod-
els as temporal knowledge bases. ArXiv preprint,
abs/2106.15110.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Güney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new q&a dataset augmented with
context from a search engine. ArXiv preprint,
abs/1704.05179.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of the 2nd Workshop
on Machine Reading for Question Answering, pages
1–13, Hong Kong, China. Association for Computa-
tional Linguistics.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang,
and Diyi Yang. 2021. Continual learning for text clas-
sification with information disentanglement based
regularization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 2736–2746, Online. As-
sociation for Computational Linguistics.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun Kim, Stanley Jungkyu
Choi, and Minjoon Seo. 2021. Towards contin-
ual knowledge learning of language models. ArXiv
preprint, abs/2110.03215.

Angela H. Jiang, Daniel L.-K. Wong, Giulio Zhou,
David G. Andersen, Jeff Dean, Gregory R. Ganger,
Gauri Joshi, Michael Kaminsky, Michael A. Kozuch,
Zachary Chase Lipton, and Padmanabhan Pillai.
2019. Accelerating deep learning by focusing on
the biggest losers. ArXiv preprint, abs/1910.00762.

Xisen Jin, Bill Yuchen Lin, Mohammad Rostami, and
Xiang Ren. 2021. Learn continually, generalize
rapidly: Lifelong knowledge accumulation for few-
shot learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 714–
729, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Kenji Kawaguchi and Haihao Lu. 2020. Ordered SGD:
A new stochastic optimization framework for empir-
ical risk minimization. In The 23rd International
Conference on Artificial Intelligence and Statistics,
AISTATS 2020, 26-28 August 2020, Online [Palermo,
Sicily, Italy], volume 108 of Proceedings of Machine
Learning Research, pages 669–679. PMLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114:3521 – 3526.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2021. Fast model
editing at scale. ArXiv preprint, abs/2110.11309.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of

https://doi.org/10.18653/v1/2020.coling-main.574
https://proceedings.neurips.cc/paper/2020/hash/c0a271bc0ecb776a094786474322cb82-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c0a271bc0ecb776a094786474322cb82-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c0a271bc0ecb776a094786474322cb82-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://arxiv.org/abs/2106.15110
https://arxiv.org/abs/2106.15110
https://arxiv.org/abs/1704.05179
https://arxiv.org/abs/1704.05179
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/1910.00762
https://arxiv.org/abs/1910.00762
https://doi.org/10.18653/v1/2021.findings-emnlp.62
https://doi.org/10.18653/v1/2021.findings-emnlp.62
https://doi.org/10.18653/v1/2021.findings-emnlp.62
http://proceedings.mlr.press/v108/kawaguchi20a.html
http://proceedings.mlr.press/v108/kawaguchi20a.html
http://proceedings.mlr.press/v108/kawaguchi20a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Tim-
othy P. Lillicrap, and Gregory Wayne. 2019. Expe-
rience replay for continual learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 348–358.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Stella Biderman, Leo Gao, Tali Bers,
Thomas Wolf, and Alexander M. Rush. 2021. Multi-
task prompted training enables zero-shot task gener-
alization.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee.
2020. LAMOL: language modeling for lifelong lan-
guage learning. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. NewsQA: A machine comprehen-
sion dataset. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 191–200,
Vancouver, Canada. Association for Computational
Linguistics.

Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo,
Shiyu Chang, and William Yang Wang. 2019. Sen-
tence embedding alignment for lifelong relation ex-
traction. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
796–806, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2021. Finetuned lan-
guage models are zero-shot learners. ArXiv preprint,
abs/2109.01652.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Huihan Yao, Ying Chen, Qinyuan Ye, Xisen Jin,
and Xiang Ren. 2021. Refining neural networks
with compositional explanations. ArXiv preprint,
abs/2103.10415.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
CrossFit: A few-shot learning challenge for cross-
task generalization in NLP. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7163–7189, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
ArXiv preprint, abs/2012.00363.

https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
https://openreview.net/forum?id=Skgxcn4YDS
https://openreview.net/forum?id=Skgxcn4YDS
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/N19-1086
https://doi.org/10.18653/v1/N19-1086
https://doi.org/10.18653/v1/N19-1086
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://arxiv.org/abs/2103.10415
https://arxiv.org/abs/2103.10415
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://arxiv.org/abs/2012.00363

A Implementation Details

A.1 Upstream Learning

We use the huggingface’s implementation of Trans-
former architectures for running BartForCondtion-
alGeneration. Note that we choose to use this
seq2seq head instead of the BartForQuestionAn-
swering for the seq2seq version can support a much
wider range of NLP tasks as long as they can be
converted in to text-to-text formats (e.g,. Cross-
Fit (Ye et al., 2021) and FLAN (Wei et al., 2021)).
Also, we find that the results using seq2seq for-
mats is comparable to using the span extraction
for reading comprehension (at least for SQuAD).
Therefore, we choose to use seq2seq format to en-
courage the generality of our released codebase.
We use BART-base for all our experiments and
here we present the final hyper-parameters we
used for upstream learning: lr=5e-5, train_bsz=64,
pred_bsz=64, num_epochs=30.

We have also tried to use BART-Large for run-
ning our experiments and analysis. Our prelimi-
nary results show that our general findings still hold
such as Q1 to Q3. But running BART-Large causes
around 5 times slower speed for our experiments.
Considering the scale of our grid search and our
analysis as well as the negative impact to the envi-
ronment, we choose to focus on using BART-base
for all our experiments and analysis. We believe
future works for CMR can also benefit from this
due to the fact that using BART-base can help them
quickly analyze the performance. Also, as we seek
to test different CMR methods instead of different
base LMs, we think using BART-base can represent
a reasonable scope of similar LMs that are widely
used in the community such as T5-base, etc.

A.2 Details for CMR Methods

Datasets. We refer to the MRQA 2019
homepage for more detailed statistics of each
dataset: https://github.com/mrqa/
MRQA-Shared-Task-2019. Particularly, we
use the SQuAD-train as D, the upstream data, and
SQuAD-dev as V0 (the upstream data cluster);
Also, other devs as {V1, . . . , VN} as the OOD data
clusters. We also tried to use NQ as the upstream
data and it shows a similar performance trend as
we discussed in the main table.

Validation/Test Streams We sampled 32 vali-
dation streams and 8 test streams for all our ex-
periments, shown in Table 1. We searched the

hyperparameters (hps) of all CMR methods on the
set of validation streams and then pick the best
one for each method by measuring their average
of OEC(T)and EFR(T)on the sum of all validation
streams. The results are based on the average of
all test streams, where for each stream we run each
method with 5 different random seeds, yielding
40 rounds of experiments for each CMR method (a
reason why we choose to use BART-base).

Continual Fine-Tuning There are two major
hps: the learning rate and the num_epochs, we
searched over {1e − 5, 2e − 5, . . . , 5e − 5} and
{5, 10, 15, 20, 30} for the num_epochs at each
episode. We use the mini-batch size of 8 for fine-
tuning the ft−1 on Et at each time step. Our final
choices are lr=3e-5 and num_epochs=20.

OnlineL2Reg There is one additional hp: the λ,
the weight of the L2 penalty. We searched it from
{1, 5, 10, 20, 50, 100} on top of the hps of the CFT
and finally decide to use λ = 10.

OnlineEWC Please refer to the original pa-
per (Kirkpatrick et al., 2017) for the details of
the online version. Therefore, we also have two
hps λEWC and γEWC, which we searched over
{1, 5, 10} and {1.0, 0.95, 0.9, 0.8}. We finally use
5 and 0.9 for their best performance.

Replay Methods For all replay methods, we first
search them with the best hps using CFT and then
run them together with the same size of replay
examples |Rt| = 32 which we found perform the
best. Their k and c are compared in Table 1.

We leave more details of the MIR and MaxLoss
implementation in our codebase.

A.3 Computational Cost
Replay methods (with best searched hps) are
slightly more expensive than continual learning
methods. Online L2Reg needs to store the weight
of the previous model checkpoint and compute the
L2 distance, and OnlineEWC is more expensive
than OnlineL2Reg because computing the Fisher
also needs a virtual model learning step and storing
the running sum of the previously stored matri-
ces. The replay based methods store all raw data
in memory. ER is the most cheap because it does
not need any local adaptation (i.e., virtual model
update) for ranking. MIR and MaxLoss are almost
equally expensive for ranking, and they both use
the same lr and epochs of CFT for virtual learning.

https://github.com/mrqa/MRQA-Shared-Task-2019
https://github.com/mrqa/MRQA-Shared-Task-2019

