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ABSTRACT

Most speech enhancement (SE) models learn a point estimate and
do not make use of uncertainty estimation in the learning process.
In this paper, we show that modeling heteroscedastic uncertainty by
minimizing a multivariate Gaussian negative log-likelihood (NLL)
improves SE performance at no extra cost. During training, our ap-
proach augments a model learning complex spectral mapping with
a temporary submodel to predict the covariance of the enhancement
error at each time-frequency bin. Due to unrestricted heteroscedas-
tic uncertainty, the covariance introduces an undersampling effect,
detrimental to SE performance. To mitigate undersampling, our ap-
proach inflates the uncertainty lower bound and weights each loss
component with their uncertainty, effectively compensating severely
undersampled components with more penalties. Our multivariate
setting reveals common covariance assumptions such as scalar and
diagonal matrices. By weakening these assumptions, we show that
the NLL achieves superior performance compared to popular loss
functions including the mean squared error (MSE), mean absolute
error (MAE), and scale-invariant signal-to-distortion ratio (SI-SDR).

Index Terms— Uncertainty, negative log-likelihood, neural net-
works, complex spectral mapping, speech enhancement

1. INTRODUCTION

Speech enhancement (SE) aims at improving speech quality and
intelligibility via recovering clean speech components from noisy
recordings. It is an essential part of many applications such as tele-
conferencing [1], hearing aids [2], and augmented hearing systems
[3]. Modern SE approaches usually train a deep neural network
(DNN) model to minimize a loss function on a target speech rep-
resentation. Because DNNs can be universal approximators [4, 5, 6]
and capable of learning anything incentivized by the loss, designing
DNN architectures on different target representations has been the
most popular trend in SE. Literature in this area is vast, [7, 8, 9, 10,
11, 12, 13, 14, 15, 16] for example.

Despite such progress, the most popular loss functions such as
the MSE and MAE in SE make no or little use of uncertainty. We re-
fer the reader to an excellent survey paper by Gawlikowski et al.
[17] for a thorough discussion of uncertainty in DNNs. From a
probabilistic point of view, one can derive a loss function from a
probabilistic distribution subject to certain constraints. For example,
minimizing the MSE loss is equivalent to maximizing a Gaussian
likelihood that assumes homoscedastic uncertainty, meaning that the
variance associated with each squared error is a constant. The MAE
loss also follows the same logic but with a Laplacian distribution.
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Taking complex spectral mapping [18, 13] for instance, optimizing
the MSE or MAE on the complex spectrogram implicitly assumes a
constant variance of the enhancement error on the real and imaginary
parts at every time-frequency (T-F) bin. In fact, such an assumption
even extends to speech signals in dissimilar noise conditions, e.g.,
different signal-to-noise ratios (SNRs). Although these loss func-
tions are easy to use, they could limit the learning capability of a
DNN model due to the underlying constant variance assumption.

The first effort in the literature training a neural network to min-
imize a Gaussian NLL dates back to a seminal work by Nix and
Weigend [19]. Although the Gaussian NLL has been earlier used in
computer vision [20, 21], its potential in SE remained unexplored
until a recent work by Fang et al. [22]. They showed that a hy-
brid loss combining the SI-SDR [23, 24] and the Gaussian NLL can
outperform both MSE and SI-SDR losses. However, they also re-
ported that minimizing a Gaussian NLL alone leads to inferior SE
performance, highlighting the difficulty of using heteroscedastic un-
certainty to improve perceptual scores in SE.

In this paper, we show that, at no extra cost in terms of com-
pute, memory, and parameters, directly minimizing a Gaussian NLL
yields significantly better SE performance than minimizing a con-
ventional loss such as the MAE or MSE, and slightly better SE per-
formance than the SI-SDR loss. To the best of our knowledge, this
is the first successful study that achieves improved perceptual met-
ric performance by directly using heteroscedastic uncertainty for SE.
Inspired by recent progress in uncertainty estimation [25], we reveal
the main optimization difficulty and propose two methods: i) co-
variance regularization and ii) uncertainty weighting to overcome
such a hurdle. Experiments show that minimizing Gaussian NLLs
using these methods consistently improves SE performance in terms
of speech quality and objective intelligibility.

2. PROBABILISTIC MODELS AND ASSUMPTIONS

Let the received signal at a single microphone in the short-time
Fourier transform (STFT) domain be yt,fr + iyt,fi ∈ C for all (t, f)
with the time frame index t ∈ {1, 2, · · · , T} and frequency bin
index f ∈ {1, 2, · · · , F}. Let y ∈ R2TF be the vector representing
every real part and imaginary part of the STFT representation of the
received signal. We assume the clean signal is corrupted by additive
noise, i.e., y = x + v where x and v are the clean signal random
vector and noise random vector, respectively, from the probabilis-
tic perspective. Now, we assume that the probability density of the
clean signal given the received noisy signal and a conditional density
model follows a multivariate Gaussian distribution

p (x|y;ψ) =
exp

(
− 1

2
[x− µ̂θ(y)]

T Σ̂−1
ϕ (y) [x− µ̂θ(y)]

)
√

(2π)n det Σ̂ϕ(y)
(1)

Copyright 2023 IEEE. Published in ICASSP 2023 – 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), scheduled for 4-10 June 2023 in
Rhodes Island, Greece. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.



STFT fθ

fϕ

µ̂θ(y)

L̂ϕ(y) Cov. regularization L̂δϕ(y)

Noisy

Clean

Enhanced

STFT x

y
fψ

Uncertainty weightingNLL loss

iSTFT

Fig. 1. We augment an SE model fθ with a temporary submodel
fϕ to estimate heteroscedastic uncertainty during training. The aug-
mented model fψ is trained to minimize a multivariate Gaussian
NLL (see §3). The methods of covariance regularization and un-
certainty weighting are proposed to overcome the optimization diffi-
culty that arises in optimizing the NLL (see §4).

where its conditional mean µ̂θ(y) and covariance Σ̂ϕ(y) are directly
learned from a dataset by a conditional density model fψ parame-
terized by ψ = {θ, ϕ} in supervised speech enhancement. Fig. 1
illustrates the conditional density model fψ and its difference com-
pared to conventional SE models that only estimate clean speech.
The map fψ can be expressed as an augmented map consisting of an
essential SE model fθ and a temporary submodel fϕ such that[

µ̂θ(y)

vec
[
L̂ϕ(y)

]]
=

[
fθ(y)
fϕ(ỹ)

]
= fψ(y) (2)

where fψ , fθ , and fϕ are DNN models parameterized by ψ, θ, and ϕ,
respectively. vec[·] is an operator that vectorizes a matrix. Because a
valid covariance is symmetric positive semidefinite, the output of fϕ
must be constrained to satisfy the property. To avoid imposing such
a constraint, we design the map fϕ to estimate the lower Cholesky
factor L̂ϕ of the covariance. The covariance can be later obtained by
Σ̂ϕ(y) = L̂ϕ(y)L̂

T
ϕ(y). ỹ is the input feature of fϕ and a function of

y, which can be y, an intermediate representation produced by fθ , or
a combination of both. One can design different DNN architectures
for fθ and fϕ. For example, fψ can be an integrated DNN with two
output branches, one for clean speech estimation and the other for
covariance estimation, with shared weights between fθ and fϕ, i.e.
θ ∩ ϕ ̸= ∅. Alternatively, fθ and fϕ can be two separate DNNs, i.e.
θ ∩ ϕ = ∅. Below we point out key features of our framework.

Remark 1. The conditional mean µ̂θ(y) is the enhanced signal so
the submodel fϕ can be removed at inference time. Hence, one can
use a much larger parameter set ϕ to design fϕ without increasing
the complexity of the SE model at inference time.

Remark 2. The conditional covariance Σ̂ϕ(y) is also referred to as
the uncertainty in this paper. Its homoscedasticity or heteroscedas-
ticity is determined by assumptions made for the structure of the co-
variance. For example, the covariance can be assumed as a scalar
matrix, a diagonal matrix, or a block diagonal matrix (see §3).

Remark 3. The form of conditional density in (1) can be obtained
by assuming x and v are drawn from two multivariate Gaussian dis-
tributions. A Wiener filter can be realized by estimating the mean
and covariance of the joint distribution of x and v. However, this
approach requires a model to estimate more parameters, and such
an extra cost cannot be removed at inference time.

Given a dataset {xn, yn}Nn=1 containing pairs of target clean
signal xn and received noisy signal yn, we find the conditional mean
µ̂θ(y) and covariance Σ̂ϕ(y) maximizing the likelihood of the joint
probability distribution p(x1, x2, · · · , xN |y1, y2, · · · , yN ;ψ) =∏N
n=1 p (xn|yn;ψ) where we assume the data points are indepen-

dent and identically distributed (i.i.d.).

3. MULTIVARIATE GAUSSIAN NLL

Introducing the logarithmic function to the likelihood of the joint
distribution and expanding terms according to (1), the maximization
problem can be converted into minimizing the empirical risk using
the following multivariate Gaussian NLL loss

ℓFull
x,y(ψ) = [x− µ̂θ(y)]

T Σ̂−1
ϕ (y) [x− µ̂θ(y)]+log det Σ̂ϕ(y) (3)

of which the first term is an affinely transformed squared error be-
tween clean and enhanced speech, and the second term is a log-
determinant term. Without imposing any assumptions on the co-
variance Σ̂ϕ, the multivariate Gaussian NLL ℓFull

x,y(ψ) in (3) uses a
full matrix for the covariance. A full covariance matrix relaxes com-
mon assumptions such as uncorrelated real part and imaginary part
at each T-F bin and uncorrelated T-F bins [26, 27]. Although ℓFull

x,y(ψ)
is the most generalized formulation for a Gaussian NLL, the number
of output units of the submodel fϕ is 4T 2F 2, leading to exceed-
ingly high training complexity. Assumptions (§3.1, §3.2, and §3.3)
are made to sparsify the covariance matrix, which in turn, reduces
the complexity of the submodel and makes training amenable.

3.1. Homoscedastic Uncertainty: An MSE Loss

If the covariance Σ̂ϕ(y) is assumed to be a scalar matrix Σ̂ϕ(y) = cI
where c is a scalar constant and I is an identity matrix, then we actu-
ally assume the uncertainty is homoscedastic. The log-determinant
term in (3) becomes a constant, and the affinely transformed squared
error reduces to an MSE. In this case, minimizing the Gaussian NLL
is equivalent to the empirical risk minimization using an MSE loss
ℓMSE
x,y (θ) = ∥x−µ̂θ(y)∥22.Apparently, the submodel fϕ is not needed

for an MSE loss so the optimization is performed only on θ. Many
SE works fall into this category, e.g., [7, 8, 10, 12, 13].

3.2. Heteroscedastic Uncertainty: A Diagonal Case

If every random variable in the random vector drawn from the condi-
tional density p(x|y) is assumed to be uncorrelated with the others,
then the covariance reduces to a diagonal matrix. In this case, the
Gaussian NLL ignores uncertainties across different T-F bins and
between real and imaginary parts, leading to the following uncorre-
lated Gaussian NLL loss

ℓDiagonal
x,y (ψ) =

∑
t,f

∑
k∈{r,i}

[
xt,fk − µ̂t,fk;θ(y)

σ̂t,fk;ϕ(y)

]2

+ 2 log σ̂t,fk;ϕ(y) (4)

where σ̂t,fr;ϕ and σ̂t,fi;ϕ denote the conditional standard deviation for
the real and imaginary parts at (t, f) bin, µ̂t,fr;ϕ and µ̂t,fi;ϕ denote their
conditional means, and xt,fr and xt,fi denote the real and imaginary
parts of x at (t, f) bin. In this case, the number of output units
of the submodel fϕ is 2TF . Note that the Gaussian NLL derived
by Fang et al. [22] assumes circularly symmetric complex Gaus-
sian distributions for both clean speech and noise. Such a circularly
symmetric assumption is stronger than the assumption used in (4).
Consequently, their Gaussian NLL only has a variance term associ-
ated with each T-F bin whereas our formulation in (4) allows the real
and imaginary parts have their own variance.

3.3. Heteroscedastic Uncertainty: A Block Diagonal Case

We relax the uncorrelated assumption imposed between every real
and imaginary part in §3.2 to take more uncertainty into account.
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In this case, the conditional covariance becomes a block diagonal
matrix consisting of 2-by-2 blocks, giving the Gaussian NLL loss

ℓBlock
x,y (ψ) =

∑
t,f

dt,fθ,x(y)
T
[
Σ̂t,fϕ (y)

]−1

dt,fθ,x(y) + log tt,fϕ (y)︸ ︷︷ ︸
z
t,f
x,y(ψ)

(5)

where tt,fθ (y) =
[
σ̂t,fr;ϕ(y)σ̂

t,f
i;ϕ(y)

]2
−

[
σ̂t,fri;ϕ(y)

]2
, dt,fθ (y) =[

xt,fr − µ̂t,fr;θ(y)

xt,fi − µ̂t,fi;θ (y)

]
, Σ̂t,fϕ (y) =

[σ̂t,fr;ϕ(y)]2 σ̂t,fri;ϕ(y)

σ̂t,fri;ϕ(y)
[
σ̂t,fi;ϕ(y)

]2
 , and

σ̂t,fri;ϕ is the covariance between the real and imaginary parts at (t, f)
bin. Compared to the uncorrelated case in §3.2, the submodel fϕ
needs to additionally predict one more parameter at every (t, f) bin,
resulting in a submodel with 3TF output units, while the inference-
time complexity of the SE model fθ remains the same as using an
MSE loss or uncorrelated Gaussian NLL loss (Remark 1).

4. ON MITIGATING UNDERSAMPLING

The optimization difficulty in minimizing a Gaussian NLL can be
revealed by its average first-order derivative. Taking the uncorre-
lated Gaussian NLL for example, the expected first-order derivative
of ℓDigonal

x,y with respect to µ̂t,fr;θ can be approximated by

Ex,y

[
∂ℓDiagonal
x,y

∂µ̂t,fr;θ

]
≈ 2

N

N∑
n=1

µ̂t,fr;θ(yn)− xt,fn,r[
σ̂t,fr;ϕ(yn)

]2 . (6)

Given the unconstrained variance in the denominator, a larger vari-
ance makes the model fθ harder to converge to a clean component
compared to a loss component with a smaller variance. This under-
sampling issue was pointed out in a recent work by Seitzer et al.
[25], in which they proposed the β-NLL to mitigate undersampling.
However, the β-NLL was only developed for the univariate Gaus-
sian NLL. It can be used in (4) because the uncorrelated multivariate
Gaussian NLL can be decomposed into many univariate Gaussian
NNLs, while (5) can only be decomposed into many bivariate Gaus-
sian NLLs, which requires a more generalized approach.

4.1. Covariance Regularization

Let δ > 0 be the lower bound of the eigenvalues of the Cholesy
factor of the covariance matrix. The output of fϕ is modified by[

L̂δϕ(y)
]
mm

= max
{[
L̂ϕ(y)

]
mm

, δ
}
. (7)

for all m ∈ {1, 2, · · · , 2TF} where L̂δϕ(y) is now the regularized
output of fϕ. As the degree of undersampling is affected by the ratio
of the largest variance to the smallest variance, suitably increasing δ
can reduce the ratio and hence mitigate undersampling. However, a
large δ can saturate uncertainties, driving the NLL toward the MSE.

4.2. Uncertainty Weighting

Because a large variance can make the gradient of a loss component
small, assigning a larger weight for such a loss component would
alleviate undersampling. This is the intuition of β-NLL. To extend it
to a multivariate Gaussian NLL, we propose an uncertainty weight-
ing approach, which assigns a larger weight for a loss component
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Fig. 2. The Q-Q plots suggest that the predictive Gaussian distribu-
tions reasonably capture the populations of the clean speech.

according to the minimum eigenvalue of the covariance matrix. Ap-
plying such a strategy to (5) leads to the following loss function

ℓβ-Block
x,y (ψ) =

∑
t,f

λmin

[
Σ̂t,fϕ (y)

]β
zt,fx,y(ψ) (8)

where λmin [·] gives the minimum eigenvalue which is treated as a
constant. No gradients are propagated through λmin [·]. β ∈ [0, 1]
is a hyperparameter controlling the degree of uncertainty weighting.
When β = 0, ℓβ-Block

x,y (ψ) reduces to ℓBlock
x,y (ψ).To mitigate undersam-

pling while exploiting heteroscedastic uncertainty, we pick β = 0.5,
which is is also the suggested value of β-NLL.

5. EXPERIMENTS

The DNS dataset [28] is used as the corpus for all experiments. By
randomly mixing the speech and noise signals in the DNS dataset,
we simulate our training, validation, and test sets, which consist of
500K, 1K, and 1.5K pairs of noisy and clean utterances, respectively.
The SNR for each noisy utterance in the training and validation sets
is randomly sampled between -5 and 5 dB. For the test set, -5, 0,
and 5 dB SNRs are used, equally dividing the 1.5K utterances. Note
that all test speakers are excluded from the training and validation
sets and all utterances are sampled at 16 kHz, each of which is trun-
cated to 10 seconds. The window size and hop size of STFT are
320 and 160 points, respectively, where the Hann window is used.
We adopt the gated convolutional recurrent network (GCRN) [13] as
the SE model fθ for investigation. Given that the original GCRN
has an encoder-decoder architecture with long short-term memory
(LSTM) in between, we formulate the temporary submodel fϕ as an
additional decoder that takes the output of the in-between LSTM as
input. Hence the augmented model fψ formed by these two mod-
els is a GCRN with two distinct decoders. For comparison, we train
three SE models fθ individually using the MAE, MSE, and SI-SDR
loss (ℓSI-SDR), respectively. Another model fψ is trained with the
Gaussian NLL. At inference time, fψ drops fϕ, so all SE models for
comparison have the same DNN architecture and number of param-
eters. The Adam [29] optimizer is adopted to train all the models.
The learning rate is 0.0004 and the batch size is 128. All models
are trained for 300 epochs. After each training epoch, the model is
evaluated on the validation set, and the best model is determined by
the validation results. We measure SE performance using multiple
metrics, including wideband perceptual evaluation of speech qual-
ity (WB-PESQ) [30], short-time objective intelligibility (STOI) [31]
(%), SI-SDR [23] (dB), and NORESQA-MOS [32] on the test set.
Calibration of the Probabilistic Model: Each quantile-quantile (Q-
Q) plot at a different frequency component in Fig. 2(a) compares the
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δ β WB-PESQ STOI (%) SI-SDR (dB) NORESQA-MOS
SNR (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5

Unprocessed n/a 1.11 1.15 1.24 69.5 77.8 85.2 -5.00 0.01 5.01 2.32 2.36 2.45

MAE 1.50 1.76 2.09 84.4 90.4 93.9 9.83 12.63 15.02 2.77 3.27 3.65
MSE n/a 1.63 1.94 2.29 85.1 90.6 94.0 10.24 13.21 15.97 2.86 3.52 4.02

SI-SDR 1.71 2.04 2.42 86.5 91.5 94.6 10.96 13.92 16.80 3.05 3.65 4.20

Gaussian NLL:
Diagonal Σ̂ϕ

0.0001 0 1.11 1.18 1.28 69.6 77.3 83.0 0.79 4.37 7.48 1.95 2.16 2.40
0.01 0 1.59 1.88 2.28 83.5 89.7 93.7 7.65 10.61 13.31 2.97 3.60 4.14
0.01 0.5 1.74 2.08 2.48 86.2 91.3 94.6 9.83 12.55 15.01 3.14 3.77 4.25

Gaussian NLL:
Block diagonal Σ̂ϕ

0.0001 0 1.07 1.08 1.11 59.4 66.5 72.0 -6.46 -4.20 -2.82 1.56 1.47 1.44
0.001 0 1.53 1.80 2.19 82.6 89.1 93.3 7.08 10.08 13.01 2.71 3.33 3.97
0.01 0 1.61 1.92 2.33 83.9 90.1 94.0 7.82 10.73 13.51 2.98 3.60 4.15
0.001 0.5 1.73 2.08 2.49 86.0 91.4 94.7 9.71 12.62 15.41 3.11 3.79 4.30
0.005 0.5 1.75 2.11 2.52 86.4 91.6 94.8 10.09 13.05 15.88 3.07 3.75 4.22
0.01 0.5 1.75 2.10 2.50 86.7 91.8 94.9 10.22 13.15 15.99 3.23 3.89 4.35
0.05 0.5 1.72 2.08 2.49 86.3 91.6 94.8 10.12 13.09 15.86 2.96 3.63 4.15

Table 1. The methods of covariance regularization and uncertainty weighting effectively improve perceptual metric performance of multi-
variate Gaussian NLLs. The NLL using a block diagonal covariance with suitable δ and β outperforms the MAE, MSE, and SI-SDR.

WB-PESQ STOI (%) SI-SDR (dB)
SNR (dB) -5 0 5 -5 0 5 -5 0 5

Hybrid 1.77 2.14 2.53 86.9 91.9 94.9 10.62 13.58 16.30

Table 2. Performance evaluation of a hybrid loss defined by ℓHybrid =
αℓβ-Block + (1− α)ℓSI-SDR with α = 0.99, δ = 0.01, and β = 0.5.

population of a clean speech with the predictive Gaussian distribu-
tion for the real part on a frequency component. The Q-Q plots for
the imaginary part are shown in Fig. 2(b). All these Q-Q plots are
close to the main diagonal, showing that calibration qualities seem
to be acceptable. The predictive distribution is obtained by train-
ing an SE model with the Gaussian NLL ℓβ-Block using δ = 0.01 and
β = 0.5 and feeding a random noisy utterance at 5 dB SNR from the
test set to the model. One can probably argue that such calibration
qualities are sufficient to achieve SE performance improvements.
Covariance Regularization and Uncertainty Weighting: Table 1
shows that the eigenvalue lower bound of the lower Cholesky fac-
tor δ plays an important role in minimizing Gaussian NLLs. When
δ = 0.0001, we find that it is very difficult to optimize the Gaus-
sian NLL, and the trained model completely fails to enhance speech.
Such an issue can be significantly improved by increasing δ. Tak-
ing the block diagonal case for example, δ = 0.001 gives an SE
model with reasonable perceptual metric performance, and further
increasing δ to 0.01 gives even better performance. On the other
hand, Table 1 shows that applying the uncertainty weighting method
with β = 0.5 consistently improves SE performance for different
eigenvalue lower bounds δ and covariance assumptions.
Covariance Assumptions: Table 1 also shows that the Gaussian
NLL using the block diagonal covariance assumption outperforms
the Gaussian NLL using the diagonal covariance assumption for both
β = 0 and β = 0.5 under δ = 0.01. These improvements show that
modeling more heteroscedastic uncertainty is beneficial for SE. Note
that modeling more uncertainty implicitly relaxes more assumptions
for the loss function, which gives the SE model more flexibility to
learn better complex spectral mapping.
In Comparison to Losses without Exploiting Uncertainty: Ta-

ble 1 shows that the Gaussian NLL using the block diagonal co-
variance with δ = 0.01 and β = 0.5 substantially outperforms
the MAE and MSE loss functions that assume homoscedastic un-
certainty. The Gaussian NLL also slightly outperforms the SI-SDR
loss. To determine if the Gaussian NLL gives statistically significant
improvements over the SI-SDR loss, we perform the paired Student’s
t-test that assumes the two-tailed distribution. The p-values for WB-
PESQ, STOI, and NORESQA-MOS are much less than 0.1%, im-
plying that these improvements are statistically significant. It should
be noted that, although the SI-SDR loss yields competitive percep-
tual metric performance, it does not preserve the level of the clean
speech signal due to its scale invariance, which would require addi-
tional rescaling in real applications. In contrast, the proposed Gaus-
sian NLL preserves the level of clean speech while achieving supe-
rior perceptual metric performance.
A Hybrid Loss: Table 2 shows that a hybrid loss gives better perfor-
mance than every single-task loss in Table 1, suggesting that com-
bining the Gaussian NLL with the SI-SDR loss is indeed beneficial.
Such a result supports a multi-task learning strategy for SE.

6. CONCLUSION

In this study, we have developed a novel framework to improve SE
performance by modeling uncertainty in the estimation. Specifically,
we jointly optimize an SE model to learn complex spectral map-
ping and a temporary submodel to minimize a multivariate Gaus-
sian NLL. In our multivariate setting, we reveal common covari-
ance assumptions and propose to use a block diagonal assumption to
leverage more heteroscedastic uncertainty for SE. To overcome the
optimization difficulty induced by the multivariate Gaussian NLL,
we propose two methods, covariance regularization and uncertainty
weighting, to mitigate the undersampling effect. With these meth-
ods, the multivariate Gaussian NLL substantially outperforms con-
ventional losses including the MAE and MSE, and slightly outper-
forms the SI-SDR. To our best knowledge, this study is the first to
show that directly minimizing a Gaussian NLL can improve SE per-
formance, with our approach. Furthermore, such improvements in
SE are achieved without extra computational cost at inference time.
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