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ABSTRACT
We investigate the hypothesis that gaze-signal can improve ego-
centric action recognition on the standard benchmark, EGTEA
Gaze++ dataset. In contrast to prior work where gaze-signal was
only used during training, we formulate a novel neural fusion
approach, Cross-modality Attention Blocks (CMA), to leverage
gaze-signal for action recognition during inference as well. CMA
combines information from different modalities at different levels
of abstraction to achieve state-of-the-art performance for egocen-
tric action recognition. Specifically, fusing the video-stream with
optical-flow with CMA outperforms the current state-of-the-art
by 3%. However, when CMA is employed to fuse gaze-signal with
video-stream data, no improvements are observed. Further investi-
gation of this counter-intuitive finding indicates that small spatial
overlap between the network’s attention-map and gaze ground-
truth renders the gaze-signal uninformative for this benchmark.
Based on our empirical findings, we recommend improvements to
the current benchmark to develop practical systems for egocentric
video understanding with gaze-signal.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding; Neural networks.
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1 INTRODUCTION
We live in a complex multi-sensory environment and leverage mul-
tiple sources of information, such as vision, speech, touch, motion
and/or smell, to effectively accomplish our daily tasks. Arguably, an
advanced artificial intelligence system (AIS) should be able to mimic
our ability to match human-level performance [Zhang et al. 2018,
2020b, 2019]. Among other tasks, egocentric video understanding is
an important application in AR/VR. There have been prior attempts
at fusing RGB video-stream, optical-flow and gaze-signal to improve
egocentric action-recognition [Furnari and Farinella 2020; Kazakos
et al. 2019; Li et al. 2020]. In addition, there is strong evidence for
the usefulness of gaze-signal in egocentric action recognition from
investigations by neuroscience research streams [Borji and Itti 2014;
Henderson et al. 2013; Iqbal and Bailey 2004; Yarbus 2013]. Based
on these findings, it is natural to expect that the current AIS would
leverage gaze-signals along with RGB video-stream for egocentric
action-recognition. However, none of the existing approaches lever-
age gaze-signals for egocentric action-recognition during inference
because they all report degraded performance with gaze’s inclusion,
at the inference stage, due to noise in the gaze-signal [Huang et al.
2020; Li et al. 2020; Sudhakaran et al. 2019].

In order to resolve this contradiction between neuroscience and
data-driven AIS observations, we first attempt to improve the cur-
rent multi-modal fusion strategies that employ simple concate-
nation or element-wise summation/multiplication of high-level
neural-network features. We hypothesize that this simple schema
for fusion has several limitations, which can lead to inferior perfor-
mance. For example, these simple fusion approaches lack the ability
to capture the long-range spatio-temporal relationships which not
only exist within the same modality, i.e. video-stream data, but
also across different modalities, i.e., video-stream, optical flow, and
gaze. Intuitively, such long-range dependencies contain useful in-
formation for feature fusion in egocentric videos. For example, in a
video clip corresponding to the action of "taking a plate", fusion of
features corresponding to hands and plates across all the frames
within the same modality would be desirable. It would also be ben-
eficial to perform cross-modality fusion by merging optical flow
features of hands with appearance features of plates, and vice versa.
Unfortunately, fusion approaches that simply concatenate or add
features cannot afford adaptive feature updating, which has been
shown to be effective in many single-modal learning tasks [Berta-
sius et al. 2021; Carion et al. 2020; Dosovitskiy et al. 2020; Vaswani
et al. 2017; Wang et al. 2018]. As a result, models with simple fusion
rely heavily on deep CNN-based neural-network architectures that
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achieve long-range spatio-temporal fusion and adaptive feature
update by first concatenating/adding/multiplying features and then
stacking multiple CNN layers, which is not efficient.

Motivated by the shortcomings of the existing approaches for
fusing multi-modal spatio-temporal signals, here we propose Cross-
modality Attention (CMA) blocks as a novel approach. CMA lever-
ages a self-attention mechanism [Vaswani et al. 2017] to first infer
associations between cross-modal pairs of spatial-temporal signals
to aggregate information from all the modalities. This step is fol-
lowed by updating the features from each modality to incorporate
the aggregated information through learned relation matrices. This
design leads to a very flexible module that can be inserted into any
place within neural networks and can be used to fuse any number
of modalities.

We conducted experiments with the proposed CMA architecture
for egocentric action-recognition, on the EGTEA-Gaze++ dataset [Li
et al. 2020], to show it’s efficacy for fusing multi-modal informa-
tion (video, gaze, optical-flow). With the same standard backbone
of I3D [Carreira and Zisserman 2017; Wang et al. 2018], models
with CMA that fuse RGB-video with optical flow outperform all
state-of-the-art methods as well as model variants with Non-Local
Blocks [Wang et al. 2018] by significant margins. Motivated by
this observation, we tried fusing gaze-signal with RGB-video us-
ing CMA to assess whether CMA-fusion is effective in tackling
the reported issue of noise in gaze-signals. We observed that the
action-recognition accuracy did not deteriorate with gaze as input,
unlike all the existing approaches. This indicates that perhaps CMA
can effectively learn to tackle the noise in gaze-signals. However,
we did not observe any improvements to action-recognition accu-
racy. Further analysis led to the discovery that the CMA module is
completely ignoring the gaze-signal input for final inference. Our
investigations into this issue revealed that the spatial intersection of
the raw gaze-point with an information-theoretic optimal-attention
map is extremely low for all the training/testing samples, which
essentially forces the network to treat raw gaze-signal as noise.
This finding is consistent with the prior body of work [Li et al. 2020;
Min and Corso 2021], and the implications offer additional insights
into the reason behind this phenomenon. These findings should be
used to guide the data collection protocols in the future and provide
a sanity-check for leveraging gaze signal for attention.

In summary, we made these important contributions:
(1) We introduced a novel attention-based multi-modal fusion

approach for spatio-temporal signal fusion and improved
the current state-of-the-art on the standard benchmark for
video and optical-flow fusion.

(2) We obtain information-theoretic optimal attention-maps for
action-recognition tasks and show that the ground-truth
gaze-fixation points for EGTEA Gaze++ dataset have ex-
tremely low intersection with the aforementioned attention
maps, therefore, rendering the gaze-signals ineffective.

(3) Based on our observations, we discuss further improvements
to egocentric dataset collection protocols.

2 RELATEDWORK
In this section, we first provide a short summary of current ap-
proaches for egocentric action-recognition followed by a short
review of popular multi-modal fusion approaches for the same.
Egocentric Video Action Recognition: The egocentric action-
recognition task is gaining popularity due to its importance for
AR experience. Spriggs et al. [Spriggs et al. 2009] leveraged video
and wearable sensor data for daily activity segmentation and recog-
nition. Kitani et al. [Kitani et al. 2011] proposed an unsupervised
method for ego-action learning using a global motion descriptor.
Fathi et al. [Fathi et al. 2012] demonstrated an ability to simulta-
neously recognize actions and gaze with a probabilistic generative
model. While these early work relied on hand-designed features, re-
cent methods are usually deep neural network models [Huang et al.
2020; Kapidis et al. 2019; Kazakos et al. 2019; Li et al. 2020; Lu et al.
2019; Ma et al. 2016; Min and Corso 2021; Ryoo et al. 2015; Singh
et al. 2016; Sudhakaran et al. 2019; Sudhakaran and Lanz 2018].
Following from their previous work [Fathi et al. 2012], Li et al. [Li
et al. 2020] proposed an I3D-based model that jointly estimates
gaze and classifies actions. The estimated gaze is then used for re-
weighting the features that are fed to the action recognition head.
Min et al. [Min and Corso 2021] adopted a similar workflow but
employed a residual connection for feature updating. Sudhakaran et
al. [Sudhakaran et al. 2019] proposed to incorporate soft attention
to LSTM models. In contrast to these methods, our work improves
egocentric video action recognition by proposing a novel Cross-
modality Attention Block that can better fuse information from
each different modality of input signal streams.
Multi-Modal Fusion: Although multi-modal fusion is an impor-
tant problem, which has been studied a lot in other fields [Chen
et al. 2017; Djuric et al. 2020; Feichtenhofer et al. 2016; Ku et al. 2018;
Liang et al. 2019, 2020; Luo et al. 2018; Simonyan and Zisserman
2014; Zhang et al. 2020a], it has not received much attention for
egocentric video understanding. Most methods adopt simple con-
catenation or element-wise summation / multiplication for fusing
video and optical-flow. In contrast, Kazakos et al. [Kazakos et al.
2019] fused RGB clips, optical flows and audio signals within a
range of temporal offsets for egocentric video action recognition.
All of these existing approaches do not use gaze-signal as input
and report loss in accuracy if they do. Some recent approaches also
leverage attention-transformers for multi-modal learning, for exam-
ple: [Gheini et al. 2021] uses cross-attention to avoid fine-tuning for
language translation models; [Mohla et al. 2020] uses attention from
Lidar and content from spectral imaging to combine them for image-
segmentation; and [Ye et al. 2019] uses attention-transformers to
segment out the object described in the form of text from a given
image. CMA, on the other hand, infers the spatio-temporal relation-
ships across different modalities by combining information from all
the modalities via attention-transformers [Vaswani et al. 2017] and
adaptively updates features for each modality to disseminate the
global information from all the modalities. The closest technique to
CMA is presented in [Bhatti et al. 2021], where Electrocardiogram
(ECG) and Electrodermal Activity (EDA) signals are fused together
by a transformer-like module for emotion-recognition. The main
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difference from CMA is in their use of asymmetric-attention mod-
ules, which requires domain-knowledge to decide where attention
comes from; CMA doesn’t require such knowledge.

3 CROSS-MODALITY ATTENTION BLOCKS
(CMA)

As the core technical contribution of this work, CMA is designed to
capture cross-modality relationships acrossmultiple spatio-temporal
input signal streams in the feature space at each spatial and tempo-
ral location of the feature map followed by updating the represen-
tations of each modality adaptively according to the relationship
matrix.

CMA builds on the attention-transformer networks [Vaswani
et al. 2017] and hence familiarity with them would be necessary
to follow the details of CMA. The input to a CMA block are the
feature representations, {𝐹1, 𝐹2, ..., 𝐹𝑛}, where 𝐹𝑖 ∈ 𝑅𝑇×𝐻×𝑊 ×𝐶𝑖 , 𝑖 =

1, 2, ..., 𝑛 for the given modalities, {𝑀1, 𝑀2, ..., 𝑀𝑛}. Here, 𝑇 , 𝐻 ,𝑊 ,
𝐶 denote the number of frames (or time-steps), height, width, and
channels, respectively. For spatio-temporal data, such as video-clips,
the features are 4-D tensors, with one convolution feature map for
each time-step, see Figure 1.

Differing from the traditional self-attention [Vaswani et al. 2017;
Wang et al. 2018] networks, we first aggregate global information
from all the features through a learned mapping Γ:

𝐹 = Γ(𝐹1, 𝐹2, ..., 𝐹𝑛) (1)

to yield 𝐹 ∈ 𝑅𝑇×𝐻×𝑊 ×𝐶 , respectively. We note that the proposed
CMA architecture requires the spatio-temporal dimensions of 𝐹𝑖s
and 𝐹 to be the same.

Once we have obtained the aggregated feature representation,
𝐹 , we reshape it to 2D-tensors of shape 𝑇𝐻𝑊 ×𝐶 . It is done to
extract the per time-step per spatial-location feature representa-
tion, 𝑓𝑡,𝑥,𝑦 = 𝐹 [𝑡, 𝑥,𝑦, :], which simply translates into representing
an image-region centered at the 2D gaze-location, (𝑥,𝑦) in the 𝑡𝑡ℎ
frame of the input-video. Now, we follow the attention-computation
mechanism of attention-networks and for each modality,𝑀𝑖 , com-
pute the modality-specific attention matrix, 𝐴𝑖 ∈ 𝑅𝑇𝐻𝑊 ×𝑇𝐻𝑊 ,
which is described below.

To estimate 𝐴𝑖 , a modality-specific key matrix 𝐾𝑖 ∈ 𝑅𝑇𝐻𝑊 ×𝐶𝐴

and a query matrix 𝑄𝑖 ∈ 𝑅𝑇𝐻𝑊 ×𝐶𝐴 are first computed by applying
a single linear projection layer on 𝐹 ′:

𝐾𝑖 = ℎ𝑖 (𝐹 ′) (2)

𝑄𝑖 = 𝑔𝑖 (𝐹 ′) (3)
where ℎ𝑖 and 𝑔𝑖 are modality-specific linear projection layers with
learnable weight and bias.
𝐴𝑖 can be then computed based on any similarity metrics S(·, ·),

followed by proper normalization with C(·):

𝐴𝑖 = C(S(𝐾𝑖 , 𝑄𝑖 )) (4)

There are multiple alternatives for S(·, ·) and C(·) [Wang et al.
2018]. One possible way is embedded Gaussian, where S(𝐾𝑖 , 𝑄𝑖 ) =
𝑄𝑖𝐾

𝑇
𝑖
and C(·) is softmax normalization over each row ofS(𝐾𝑖 , 𝑄𝑖 ).

In order to adaptively update 𝐹𝑖 with 𝐴𝑖 , we first reshape 𝐹𝑖 to
𝐹 ′
𝑖
∈ 𝑅𝑇𝐻𝑊 ×𝐶𝑖 and project each feature vector to a new space with

dimension 𝐶𝑉 with trainable linear projection 𝑓𝑖 (·), resulting in a

value matrix 𝑉𝑖 = 𝑓𝑖 (𝐹 ′𝑖 ) ∈ 𝑅𝑇𝐻𝑊 ×𝐶𝑉 . The entry at the𝑚𝑡ℎ row
and 𝑛𝑡ℎ column of 𝐴𝑖 describe the relationship between the𝑚𝑡ℎ

and the 𝑛𝑡ℎ spatial-temporal location of modality 𝑖 and therefore
the feature updating can be performed as:

𝑉 ′
𝑖 = 𝐴𝑖𝑉𝑖 (5)

𝑉 ′
𝑖
is then projected back to the feature space of dimension𝐶𝑖 by

another trainable linear projection 𝜙 (·), 𝑉 ′′
𝑖

= 𝜙 (𝑉 ′
𝑖
) ∈ 𝑅𝑇𝐻𝑊 ×𝐶𝑖 ,

and reshaped to 𝑉 ′′′
𝑖

∈ 𝑅𝑇×𝐻×𝑊 ×𝐶𝑖 , which will be finally added to
𝐹𝑖 to form a residual connection for feature updating:

𝐹 ′′𝑖 = 𝐹𝑖 +𝑉 ′′′
𝑖 (6)

In summary, we learn modality-specific spatio-temporal attention
mappings derived from the aggregated information, which affords
fusing information across different modalities and effectively dis-
seminating them to the individual modalities re-weighted through
spatio-temporal attention scores. The proposed CMA blocks can be
inserted at any layer in the model for multi-modal fusion. Besides,
it can be used to fuse features from any number of modalities. CMA
is a generalization of Non-Local Networks [Wang et al. 2018] for
more than one input stream.

4 RESULTS
We conducted experiments to assess the efficacy of CMA towards
egocentric action-recognition on the open-source EGTEA-Gaze++ [Li
et al. 2020] dataset because it comes with egocentric video and gaze-
directions, and optical-flow can be computed from the videos. In
this section, we show results of using CMA for fusing video with
optical-flow, and video with gaze-signal, followed by additional
analysis to understand the behaviour of CMA block for the latter.
The EGTEA-Gaze++ dataset [Li et al. 2020] contains 10321 videos
belonging to one of the 106 action classes. A few examples of the
action-categories are "cut onion", "wash pot", "open fridge" etc.
These videos are recorded by first-person cameras capturing meal
preparation scenarios in a kitchen with per-frame gaze-directions
projected in the image-space. See [Li et al. 2020] for more details
on the data-capture protocol.

4.1 RGB Clips and Optical Flows
We first injected CMA into a two-stream Inception-V1 [Szegedy
et al. 2015] and I3D [Carreira and Zisserman 2017] with RGB clips
and optical flows as input. Optical flows were obtained and pre-
processed following [Li et al. 2020]. RGB clip input is also normal-
ized accordingly. The input to each stream is a 32-frame sequence
sampled every two frames. For clips that don’t have enough frames
to fill-up 32 frames, the last frame is repeated. Γ is an element-
wise summation and we adopt embedded Gaussian for S(·, ·) and
C(·). The consensus head is global average pooling of features from
both streams and element-wise summation, followed by a dropout
layer of ratio 0.7 and a linear classification layer for final action
recognition.

Following the protocol from [Li et al. 2020], the I3D backbone
is initialized with weights from a pre-trained model on Kinetics-
400 [Kay et al. 2017] and CMA is initialized according to [Wang et al.
2018]. A cross-entropy loss between the output action probability,
obtained by softmax operation, and the ground-truth action labels
is minimized during training. The initial learning rate is 0.03 and
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Figure 1: Illustration of a CMA block with two modalities as the input. The dark red text besides a variable indicates its
dimension. Here, 𝑇 , 𝐻 ,𝑊 , 𝐶 denote the number of frames (or time-steps), height, width, and channels, respectively.

the batch size is 64. During inference, 10 clips are taken from each
video and the action probabilities of all the clips are averaged to get
the final action recognition score. Each clip has 32 frames sampled
every two frames. The starting timestamps of each clip are evenly
sampled from 0 to 𝐿 − 64, 𝐿 is the total length of the video. When
a video contains fewer frames than needed, the last frame will be
repeated and 10 identical clips are used for inference.

We compare CMA-models against other state-of-the-art methods
and Non-local Blocks [Wang et al. 2018] with regards to average
instance accuracy and mean-class accuracy over 3 train/test splits,
see [Li et al. 2020] for split information. The results are reported
in Table 1. We observe that I3D with 1 CMA block at different
network depths outperforms other state-of-the-art methods by a
large margin in terms of both instance accuracy and mean-class
accuracy. For a fair comparison, we use the same backbone of
Inception-V1 [Szegedy et al. 2015] I3D [Carreira and Zisserman
2017] and the same input modalities as Min et al. [Min and Corso
2021], which is the current state-of-the-art. Moreover, [Min and
Corso 2021] requires gaze-signal during training, while our results
only use video and optical-flow, both during training and inference.

We further note that the performance gain by placing 1 CMA-
block after ConvBlock_4 is higher than placing 1 CMA after Con-
vBlock_5. We hypothesize that the degradation in performance
could be due to the large size receptive field for features in Con-
vBlock_5, which leads to coarse spatial-temporal attention-mapping
by CMA and therefore is less beneficial. We also compared with

model variants that have Non-local Blocks [Wang et al. 2018] in-
serted to the same place of both streams. Models with CMA out-
perform variants with Non-local Blocks significantly, supporting
the effectiveness of CMA for multi-modal learning.

4.2 RGB Clips and Gaze
Unlike the optical-flow stream, which could be computed from the
video-stream and available at every time-step, gaze is not available
for all the frames. Whenever the gaze is available, it’s represented
as a 2D Gaussian heat-map with its center at the gaze-point and its
variance 𝜎 equal to 40 pixels. When there is no valid gaze available,
we use a 2D uniform distribution to indicate to the network that the
gaze can be anywhere with uniform probability. The RGB stream is
processed by a ResNet50 I3D as used in [Wang et al. 2018] initialized
with weights pretrained on Kinetics-400 [Kay et al. 2017]. The input
RGB clips are normalized by subtracting the mean and dividing by
standard deviation. The network for the gaze-stream processing is
randomly initialized I3D with half of the depth (number of layers)
and one fourth of the width (channel number) as the RGB stream.
We hypothesize that such a 3D-convolution based gaze stream can
eliminate noise from the raw gaze data and hallucinate gaze for
those frames without valid gaze recorded based on gaze in adjacent
frames besides processing gaze and extracting information. The
element-wise summation operation in Γ and the consensus head
is replaced by concatenation for this experiment. Other details are
the same as in Sec. 4.1.
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Table 1: Experiments on egocentric action recognition tasks on EGTEA-Gaze++ with input modalities of RGB clips and optical
flows. I3D with 1 CMA significantly outperforms other state-of-the-art methods as well I3D with Non-local blocks at the same
place of both streams in terms of both instance accuracy and mean class accuracy.

Method Instance Acc (%) Mean Class Acc (%)

Li et al. [Li et al. 2020] - 55.03
Sudhakaran et al. [Sudhakaran and Lanz 2018] 60.76 -

LSTA [Sudhakaran et al. 2019] 61.86 -
MCN [Huang et al. 2020] - 55.63

Kapidis et al. [Kapidis et al. 2019] 66.59 59.44
Lu et al. [Lu et al. 2019] 68.60 60.54

Min et al. [Min and Corso 2021] 69.58 62.84

I3D [Carreira and Zisserman 2017] with 1 Non-local Block [Wang et al. 2018] after ConvBlock_4 of each stream 72.09 64.22
I3D [Carreira and Zisserman 2017] with 1 Non-local Block [Wang et al. 2018] after ConvBlock_5 of each stream 71.32 63.43

I3D [Carreira and Zisserman 2017] with 1 CMA after ConvBlock_4 72.95 64.65
I3D [Carreira and Zisserman 2017] with 1 CMA after ConvBlock_5 71.86 63.99

Table 2: Experiments on egocentric action recognition tasks
on EGTEA with input modalities of RGB clips and gaze.

Stream(s) CMA Instance Acc (%)

RGB - 64.34

RGB & Gaze 1 after Res5 64.89
RGB & Gaze 1 after Res4 & 1 after Res5 66.12

As the results in Table 2 show, when compared to models with
only a RGB stream, the performance seems to be improved by using
gaze as additional input and leveraging CMA formulti-modal fusion.
We also found that adding more than one CMA block can slightly
improve the performance. In order to tease apart the improvement
offered due to CMA block for attention-modeling and gaze-signal
as input, we dropped gaze-information from all the frames and
fed 2D uniform distribution with each frame during testing. We
hoped to observe some deterioration in the accuracy, which would
translate into the improvement coming from gaze. Surprisingly,
however, the performance didn’t change at all! Further analysis of
the neural activation coming from the gaze-network towards the
final classification-head confirmed that the model simply learns
to ignore gaze signals altogether. Essentially, CMA block simply
reduces to a Non-Local network block on video-stream, which is
not the result we expected. We hypothesize that gaze signals were
ignored because many recorded gaze points, though valid and ac-
curate, do not fall within the regions that are related to the action
being performed. This can happen in many situations; for example,
when we have a reliable memory about the environment and there-
fore do not need to stare at the object that is being manipulated, or
when we are very experienced with the task at hand and therefore
our gaze might just precede the hand, if at all. Under such situations,
gaze-signal can actually distract the network attention away from
the optimal location.

In order to verify our hypothesis, we first computed the Class-
Activation Map [Zhou et al. 2016], CAM for short, for each frame
corresponding to the known ground-truth action category. CAM
obtains the input image-regions, through back-propagation from
the target all the way to the input image, that are strongly cor-
related with the correct action category. Intuitively, CAM can be

thought of as class-specific saliency map indicating the regions
that contribute the most towards the correct ground-truth. We
confirm the above intuition by using the CAM saliency-map for
weighted pooling before the action-classification head and obtain
95% instance accuracy, which clearly validates our claim. Since
the CAM saliency-map is a pixel-wise score, 𝑠 [𝑥,𝑦 ] ∈ [0, 1], we
first threshold it at different score-levels, 𝑡 , to obtain binary masks,
𝐶𝐴𝑀𝑡

[𝑥,𝑦 ] = 1(𝐶𝐴𝑀[𝑥,𝑦 ] ≥ 𝑡). Finally, we compute the fraction of
times the ground-truth gaze falls within the CAM binary-mask for
the best model, an event we refer to as a hit, that we obtained in
Sec.4.1 (I3D with 1 CMA after ConvBlock_4 with RGB and flows
as input). The results of hit-rate with different score-thresholds
are shown in Table 3. From the table, we can clearly observe that
even at 𝑡 = 0.5, the hit-rate is merely 48.6%, which means that the
ground-truth gaze will not result in reasonable attention 50% of the
time. This analysis, for the first time, explains the counter-intuitive
observation of decreasing accuracy with the use of gaze-signal as
input, which was widely reported by multiple works in the past
on this dataset [Li et al. 2020; Min and Corso 2021]. While our
CMA block could not overcome this problem, we hope that the
insights uncovered in this article could be useful for setting the
future directions of research in this area.

4.3 Advancing the Value of Gaze for Egocentric
Video Understanding

The findings we report here draw attention to a number of improve-
ments that could be made to the current benchmark. One issue was
that many gaze points did not fall into a region of interest defined
by the action. This does not mean that gaze is uninformative per se,
but that another factor such as expertise or the nature of the task
[Hadnett-Hunter et al. 2019] could influence whether gaze needs to
focus directly on the task or not. For example, a well-practiced task
might be possible to carry out with peripheral vision [Rosenholtz
2016], whereas a difficult or unfamiliar task might be more reliant
on direct gaze rather than peripheral vision and covert attention
[Matthis et al. 2018]. Another issue could be the dynamics of eye
gaze and hand movements, such that the temporal co-registration
of gaze might lead the hands at different intervals depending on
the nature of the action being performed, such that a shifting se-
lection window might be required [de Vries et al. 2018; Land 2006].
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Table 3: The variation of ground-truth gaze-point hit-rate w.r.t. the threshold for score-level in CAMmaps.

Threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Frequency (%) 48.6 48.1 47.7 47.2 46.7 46.2 45.5 44.7 43.7 42.0

How might a benchmark, such as the EGTEA-Gaze++ dataset, be
improved to address such issues? The classes of action-categories
provided and the nature of the person performing actions in each
video could provide additional classifications to support a more
nuanced analysis of gaze. For example, some tasks might be more
dangerous or difficult than others (say, cutting versus washing) and
the tight coupling between gaze and the action should likely reflect
that; expertise migth be key as well. A future dataset that explicitly
included tasks that vary in difficulty would be crucial, as well as
complementary data on the expertise of the person carrying out the
task. The latter could be provided by having actions recorded more
than once by the same person, such that changes in interaction and
the value of gaze might change over time and with experience.

5 CONCLUSION
We investigated whether gaze-signals can be informative for ego-
centric video understanding tasks, particularly when used during
inference. We proposed Cross-modality Attention Blocks (CMA) for
multi-modal fusion for solving egocentric video action recognition
tasks to leverage gaze-signals and assess whether that is informa-
tive. We show that CMA-fused RGB video-stream and optical flow
outperform state-of-the-art methods and Non-local Blocks of sim-
ilar configuration. We also applied CMA to RGB clips and gaze
signal fusion, but our results and analyses indicate that the spatial
incoherence between the ground-truth gaze-data with regards to
class-attention-maps for correct classification is too strong and
forces the CMA block to treat ground-truth gaze as noise, therefore,
learning to ignore gaze-signals altogether. Determining whether,
and when, gaze-signals might provide an informative contribu-
tion to models of egocentric video understanding tasks remains a
challenge for continuing research.
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