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This document provides additional information about the HM3D dataset as well as qualitative and
quantitative results to support the analysis from the main paper. Below is a summary of the sections
in the supplementary file:

(§S1) Limitations of Habitat-Matterport 3D dataset
(§S2) Hyperparameters for PointNav experiments
(§S3) Computational requirements for experiments
(§S4) Accessing Habitat-Matterport 3D dataset
(§S5) Habitat-Matterport 3D dataset collection process
(§S6) Rejection criteria for HM3D dataset collection
(§S7) PointNav validation results
(§S8) Dataset characteristics that impact PointNav performance
(§S9) Example scenes from Habitat-Matterport 3D dataset
(§S10) PointNav qualitative results

S1 Limitations of Habitat-Matterport 3D dataset

Data acquisition: The dataset is currently limited to scans from 38 countries. The dataset is restricted
to contain data from building-owners who can afford to purchase the Matterport Pro2 sensor (which
costs ∼ 3,000$) and have internet access to upload data to the cloud. The dataset also excludes
regions where the Matterport Pro2 is not available to purchase. Due to these factors, we are limited in
the types of regions and neighborhoods which can be included in the dataset. This can introduce an
unintended bias into the algorithms developed based on our dataset, where the algorithms work only
in a subset of buildings that we encounter in the real world. Nevertheless, this dataset is a significant
leap from past building-scale datasets [1–3] that were restricted to labs, residences, and offices. We
hope to expand our data set in the future to include scans from many more diverse backgrounds and
countries.

Task support: The dataset only supports geometric tasks in static (i.e., unchanging) environments
and does not include semantic annotations. We plan to investigate augmenting the dataset with
semantic annotations to tackle high-level understanding tasks like object retrieval. We also plan to
study dynamic and changing environments so that our simulations will be fluid rather than static.
This would bring simulated training environments closer to the real world, where people and pets
freely move around and where everyday objects such as mobile phones, wallets, and shoes are not
always in the same spot throughout the day.
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S2 Hyperparameters for PointNav experiments

We use the publicly available implementation of DD-PPO [4] from Habitat Lab. We use the same
hyperparameters as Wijmans et al. [4] for our experiments. We use a ResNet-50 [5] backbone and an
LSTM with 512-D hidden states and 2 layers. Following Wijmans et al. [4], we replace BatchNorm
with GroupNorm layers in the ResNet-50 backbone. We use a PPO clip parameter of 0.2, 2 PPO
epochs, 2 mini-batches, a value loss coefficient of 0.5, entropy coefficient of 0.01 and a learning rate
of 0.00025. Please see the default configuration here for more details. We train each model for 1.5
billion steps (sufficient for convergence) with 256 parallel environments divided between 8 nodes, 4
workers (i.e., 4 GPUs) per node and 8 environments per worker.

S3 Computational requirements for experiments

The PointNav experiments were the most computationally expensive of all our experiments. Each
experiment is run in our internal cluster in a distributed fashion over 8 nodes, with 4 GPUs per node.
Each GPU (32 in total) is a Volta 16/32 GB. Training an agent takes 2-3 days with depth inputs, and
4-5 days with RGB inputs.

S4 Accessing Habitat-Matterport 3D dataset

HM3D is free and available for academic, non-commercial research here:
https://matterport.com/habitat-matterport-3d-research-dataset
The terms of use are available here:
https://matterport.com/matterport-end-user-license-agreement-academic-use-model-data

S5 Habitat-Matterport 3D dataset collection process

The 1000 scans in HM3D were collected by Matterport Inc. in collaboration with the Habitat team at
Facebook AI Research. Matterport directly contacted its users explicitly requesting them to contribute
their scans for open-sourced Embodied AI research (see mailer snippet below).

Imagine if firefighters could ask a robot to detect where smoke is coming from
within your house, then command it to find people who need help. Or, if you could
ask an AI assistant to locate your car keys. To realize innovations like these, robots
and AI assistants need to be trained in how to act in multiple environments. They
must learn to recognize and navigate through 3D spaces. That’s where you come in.
We have identified your Matterport 3D model as an ideal space for an open-source
AI project focused on furthering such causes.

Each user agreed to the following terms while contributing their scans for the dataset.

I agree to allow Matterport to use the Space(s) (including all related imagery)
that I have designated in this form for academic and/or non-commercial purposes
as further provided in the Matterport Terms and Conditions for Academic and
Non-Commercial Use of Spaces, without payment by Matterport for such use. I
affirm that I have all necessary rights, consents and permissions relating to my
Space(s) necessary to grant the foregoing permission. By checking this box, I
specifically agree to all of the provisions of the Matterport Terms and Conditions
for Academic and Non-Commercial Use of Spaces & Matterport Privacy Policy.

After obtaining scans from users, Matterport used commercially reasonable efforts to try and obscure
personally identifiable information such as pictures of people or faces, names, documents with
personal information, diplomas, driver’s licenses, email addresses, phone numbers, street addresses,
personal notes / letters / envelopes, employer information, license plates, and street names. Hu-
man reviewers were asked to preview images from every scanned location to check for the above
information and annotated each instance of personal information using a label. Any personal in-
formation identified in the previous step was blurred using a pixel-wise blur mask. The blurred
data was used to recreate the 3D scans. A helpful FAQ regarding this process can be found here:
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Figure S1: Visualizing the distribution of countries included in HM3D scenes. In total, we obtain
scans from users in 38 countries. The left plot shows the distribution over different countries in the
world map with the hue representing the number of scenes. The right plot shows a histogram over the
different countries. Note: Due to missing data from certain scans, we only visualize the statistics
over 30/38 countries in this figure.

https://go.matterport.com/ProjectHabitat.html. Overall, the dataset contains scans
from users in 38 countries (see Figure S1).

S6 Rejection criteria for HM3D dataset collection

In the previous section, we provided details about how HM3D was collected and the steps taken
to de-identify personal information. We now provide the criteria used to reject and exclude scenes
from the dataset. We rejected scenes that were incomplete, had significant reconstruction artifacts, or
included people. Specifically, we rejected scenes which had:

• Large holes/cracks in the floors, walls, or staircases which lead to separated “islands” within
a single scene. These impact navigability between different parts of the scene for embodied
agents in simulation.

• Large holes/cracks on object surfaces which can impact perception as well as potentially
hinder future semantic annotations.

• Reconstruction artifacts/errors (i.e. bogus meshes) due to reflections and lighting. The
scanning process occasionally misinterpreted unusual lighting/shadows as objects.

• Large outdoor areas in which many parts were out of range of the depth sensors.
• Uninteresting content with limited to no interactive potential (e.g., large empty parking lots,

basement storage areas, abandoned warehouses, empty halls, hazardous waste store room).
• Objects that changed positions in the middle of the scanning process. For example, the door

to a room may be open during a part of the scanning process, and closed for the latter part.
This gave rise to artificial debris in the room entrance.

• Many doors that were scanned partially or fully closed (affects navigability between rooms).
• Brand names which were clearly visible (usually commercial buildings).
• Humans that were partially or fully visible in the scan.
• Other scenes which were naturally hard to scan and had poor reconstruction quality (e.g.,

submarine and ship exhibits, open-pit mines with equipment like excavators).

It is possible that these choices may impact the distribution over real scenes since some artifacts are
correlated with either challenging surface materials or lighting conditions in the real world. However,
we chose to focus on interiors, and tried to minimize reconstruction issues that affect navigability in
simulation. Particularly, we prioritized surface completeness and the absence of spurious geometric
artifacts as these have the biggest impact on RGB-D rendering in simulation (as we note in Sec. 3.2).
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Gibson (val) MP3D (val) HM3D (val)
Dataset Success ↑ SPL ↑ Success ↑ SPL ↑ Success ↑ SPL ↑

D
ep

th

MP3D 0.98 ± 0.00 0.92 ± 0.00 0.93 ± 0.01 0.84 ± 0.01 0.96 ± 0.00 0.87 ± 0.00

Gibson 4+ 0.96 ± 0.00 0.91 ± 0.00 0.88 ± 0.00 0.76 ± 0.00 0.93 ± 0.00 0.84 ± 0.00

Gibson 0.99 ± 0.00 0.94 ± 0.00 0.95 ± 0.00 0.86 ± 0.01 0.98 ± 0.00 0.90 ± 0.00

HM3D 1.00 ± 0.00 0.95 ± 0.00 0.96 ± 0.00 0.87 ± 0.00 0.99 ± 0.00 0.91 ± 0.00

R
G

B

MP3D 0.93 ± 0.01 0.78 ± 0.00 0.78 ± 0.01 0.59 ± 0.01 0.84 ± 0.00 0.67 ± 0.00

Gibson 4+ 0.88 ± 0.00 0.78 ± 0.01 0.49 ± 0.00 0.36 ± 0.00 0.77 ± 0.01 0.62 ± 0.00

Gibson 0.99 ± 0.00 0.91 ± 0.00 0.86 ± 0.01 0.69 ± 0.01 0.94 ± 0.00 0.82 ± 0.00

HM3D 0.99 ± 0.00 0.91 ± 0.00 0.92 ± 0.01 0.74 ± 0.01 0.97 ± 0.00 0.87 ± 0.00

Table S1: PointNav val performance on multiple navigation metrics. We report the mean and
standard deviation by training on 1 random seed, and evaluating on 3 random seeds. The 1st column
indicates whether the agent uses depth or RGB inputs. The HM3D agents reach 100% navigation
success for both sensors on Gibson (val). In the majority of cases, HM3D agents significantly
outperform the other agents on both metrics. Thus, training on HM3D greatly benefits embodied
agents.

S7 PointNav validation results

In Figure 6 from the main paper, we presented the validation performance as a function of the training
steps. Now, we present the final validation performance of the best checkpoint (analogous to Table 2
in the main paper). See Table S1. We observe trends similar to the ones observed in the main paper.
The HM3D agent matches the Gibson agent on Gibson (val) with RGB inputs. On all other cases, the
HM3D agents outperform the other agents by a good margin, particularly in the RGB case.

S8 Dataset characteristics that impact PointNav performance

In the main paper, we compared datasets along different characteristics such as navigable area, visual
fidelity, 3D reconstruction quality, and the utility for training agents for the PointNav task. In Section
4 and Figure 6, we analyzed the impact of dataset size on the PointNav performance, and noted that
total navigable area in the training scans are highly correlated with the PointNav results. Here, we
perform a complete analysis of how the following factors affect the PointNav performance (on the
val splits).

1. EMD (train, val) measures the dissimilarity between episodes in the train and val splits. We
calculate the normalized histogram of geodesic distances between the start and goal locations for
each episode in the train and val splits (independently). We then measure the distribution shift
between the train and val episodes. This is done by computing the Earth Mover’s Distance (EMD)
a.k.a Wasserstein Distance between the normalized histograms of geodesic distances for the train and
val splits.
2. KID (mean) is a measure of visual fidelity of images rendered from each dataset. This is
calculated as the mean of KID (Gibson real) and KID (MP3D real) from Table 5(b) in the main paper.
3. % defects is a measure of reconstruction completeness for the 3D scans. For each dataset, this is
calculated as the mean of “% defects" values from Figure 4 in the main paper.
4. Navigable area (m2) measures the dataset size. It is computed as the overall navigable area in the
training scans for each dataset.

We compute the above metrics for all the train datasets1. For a given PointNav val set, we measure
the Pearson’s correlation between each of the above metrics for a train dataset and the navigation
SPL achieved by agents trained on the same dataset (see Table S2). As noted in the main paper, we
observe that the navigable area is highly correlated with the PointNav performance (0.82 to 0.97)
indicating that large-scale datasets are critical for achieving high-quality navigation. For both MP3D
(val) and HM3D (val), there is a strong negative correlation of −0.4 to −0.7 between EMD (train,
val) and SPL. This indicates that large distribution shifts between the train and val episodes leads to
worse performance. Next, we observe that KID (mean) is weakly correlated with the SPL (−0.30
to 0.1), indicating that visual fidelity may not strongly impact PointNav performance in simulation.
In most cases, % defects is generally uncorrelated with SPL. However, we find a slightly positive

1We compute EMD(train, val) for all pairs of train and val sets.
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PointNav (depth) PointNav (RGB)
Factor Gibson (val) MP3D (val) HM3D (val) Gibson (val) MP3D (val) HM3D (val)

EMD (train, val) +0.118 −0.693 −0.412 −0.129 −0.589 −0.584
KID (mean) −0.100 +0.016 −0.145 −0.167 −0.062 −0.299
% defects −0.102 +0.302 +0.019 −0.290 +0.168 −0.208
Navigable area (m2) +0.968 +0.822 +0.900 +0.886 +0.864 +0.884

Table S2: We measure the correlation between different dataset characteristics (row) on the PointNav
performance (column). EMD (train, val) measures the distribution mismatch between the difficulties
of episodes in the train and val PointNav datasets. KID (mean) measures the visual fidelity of images
from the train scans. % defects measures the reconstruction completeness of scans in the train scans.
Navigable area measures the total area that is navigable across all the train scans from that dataset.

correlation (0.17-0.32) with SPL on MP3D (val). This may be due to the fact that MP3D val scenes
have significantly more mesh reconstruction artifacts than Gibson val scenes2 (see Figure 4 in main
paper). Agents trained on scenes with more mesh reconstruction artifacts adapt better to such testing
conditions. Note that these results are not very indicative of the transfer performance to a real robot.
It is possible that higher visual fidelity and lower % defects may be necessary for real-world transfer.

S9 Example scenes from Habitat-Matterport 3D dataset

We provide more examples of scenes from Habitat-Matterport 3D in the same style as Figure 2 in the
main paper. In Figure S2, we visualize 5 residences, and in Figure S3, we visualize 5 diverse scenes
such as offices, gyms, restaurants, and nightclubs. All 900 scenes from the train and val splits of
HM3D can be visualized on the dataset website: https://aihabitat.org/datasets/hm3d/

2Only Gibson 4+ scenes are used for Gibson (val) and Gibson (test).
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Figure S2: Five example residences from the HM3D dataset. From left to right in each row: top-down
view, cross section view, and two egocentric views from navigable positions in the scene. The dataset
contains multi-floor buildings spanning a wide range of sizes.
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Figure S3: Five examples of diverse scenes from the HM3D dataset. From left to right in each row:
top-down view, cross section view, and two egocentric views from navigable positions in the scene.
The dataset contains diverse scans such as restaurants (row 1), office buildings (row 2), a night club
(row 3), art studio (row 4), and gyms (row 5).
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S10 PointNav qualitative results

We show sample PointNav episodes of the HM3D agents in Figure S4 and Figure S5. We present the
qualitative results in a format similar to Wijmans et al. [4]. The episodes are categorized based on the
difficulty (i.e., the geodesic distance b/w start and goal), and the agent performance (in SPL).
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Figure S4: PointNav with depth sensor: Example episodes for the HM3D-agent with depth inputs
broken down by geodesic distance between agent’s start and goal locations (on rows) vs SPL achieved
by the agent (on columns). Gray represents navigable regions on the map while white is non-navigable.
The agent starts at the blue square and navigates to the red square. The green line shows the shortest
path on the map (or oracle navigation). The blue line shows the agent’s trajectory. The SPL score is
higher if the blue trajectory closely matches the green trajectory.
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Figure S5: PointNav with RGB sensor: Example episodes for the HM3D-agent with RGB inputs
broken down by geodesic distance between agent’s start and goal locations (on rows) vs SPL achieved
by the agent (on columns). Gray represents navigable regions on the map while white is non-navigable.
The agent starts at the blue square and navigates to the red square. The green line shows the shortest
path on the map (or oracle navigation). The blue line shows the agent’s trajectory. The SPL score is
higher if the blue trajectory closely matches the green trajectory.

10


