
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

Bi-directional Domain Adaptation for
Sim2Real Transfer of Embodied Navigation Agents

Joanne Truong1 and Sonia Chernova1,2 and Dhruv Batra1,2

Abstract—Deep reinforcement learning models are notoriously
data hungry, yet real-world data is expensive and time consuming
to obtain. The solution that many have turned to is to use
simulation for training before deploying the robot in a real
environment. Simulation offers the ability to train large numbers
of robots in parallel, and offers an abundance of data. However,
no simulation is perfect, and robots trained solely in simulation
fail to generalize to the real-world, resulting in a “sim-vs-real
gap”. How can we overcome the trade-off between the abundance
of less accurate, artificial data from simulators and the scarcity of
reliable, real-world data? In this paper, we propose Bi-directional
Domain Adaptation (BDA), a novel approach to bridge the sim-
vs-real gap in both directions– real2sim to bridge the visual
domain gap, and sim2real to bridge the dynamics domain gap.
We demonstrate the benefits of BDA on the task of PointGoal
Navigation. BDA with only 5k real-world (state, action, next-
state) samples matches the performance of a policy fine-tuned
with ∼600k samples, resulting in a speed-up of ∼120×.

Index Terms—Vision-Based Navigation; AI-Enabled Robotics;
Reinforcement Learning

I. INTRODUCTION

DEEP reinforcement learning (RL) methods have made
tremendous progress in many high-dimensional tasks,

such as navigation [1], manipulation [2], and locomotion [3].
Since RL algorithms are data hungry, and training robots in the
real-world is slow, expensive, and difficult to reproduce, these
methods are typically trained in simulation (where gathering
experience is scalable, safe, cheap, and reproducible) before
being deployed in the real-world.

However, no simulator perfectly replicates reality. Sim-
ulators fail to model many aspects of the robot and the
environment (noisy dynamics, sensor noise, wear and-tear,
battery drainage, etc.). In addition, RL algorithms are prone to
overfitting – i.e., they learn to achieve strong performance in
the environments they were trained in, but fail to generalize
to novel environments. On the other hand, humans are able
to quickly adapt to small changes in their environment. The
ability to quickly adapt and transfer skills is a key aspect of
intelligence that we hope to reproduce in artificial agents.

Manuscript received: October, 16, 2020; Revised January, 15, 2021; Ac-
cepted February, 16, 2021.

This paper was recommended for publication by Editor Eric Marchand upon
evaluation of the Associate Editor and Reviewers’ comments.

The Georgia Tech effort was supported in part by NSF, AFRL, DARPA,
ONR YIPs, ARO PECASE. JT was supported by an NSF GRFP and a Google
Women Techmaker’s Fellowship.

1JT, SC, and DB are with Georgia Institute of Technology {truong.j,
chernova, dbatra}@gatech.edu

2SC and DB are with Facebook AI Research {schernova,
dbatra}@fb.com

Digital Object Identifier (DOI): see top of this page.

This raises a fundamental question – How can we leverage
imperfect but useful simulators to train robots while ensuring
that the learned skills generalize to reality? This question is
studied under the umbrella of ‘sim2real transfer’ and has been
a topic of much interest in the community [4], [5], [6], [7],
[8], [9], [10].

In this work, we first reframe the sim2real transfer problem
into the following question – given a cheap abundant low-
fidelity data generator (a simulator) and an expensive scarce
high-fidelity data source (reality), how should we best leverage
the two to maximize performance of an agent in the expensive
domain (reality)? The status quo in machine learning is to pre-
train a policy in simulation using large amounts of simulation
data (potentially with domain randomization [8]) and then fine-
tune this policy on the robot using the small amount of real
data. Can we do better?

We contend that the small amount of expensive, high-fidelity
data from reality is better utilized to adapt the simulator (and
reduce the sim-vs-real gap) than to directly adapt the policy.
Concretely, we propose Bi-directional Domain Adaptation
(BDA) between simulation and reality to answer this question.
BDA reduces the sim-vs-real gap in two different directions
(shown in Fig. 1).

First, for sensory observations (e.g. an RGB-D camera
image I) we train a real2sim observation adaptation module
OA : I real 7→ Isim. This can be thought of as ‘goggles’
[10], [11] that the agent puts on at deployment time to make
real observations ‘look’ like the ones seen during training in
simulation. At first glance, this choice may appear counter-
intuitive (or the ‘wrong’ direction). We choose real2sim ob-
servation adaption instead of sim2real because this decouples
sensing and acting. If the sensor characteristics in reality
change but the dynamics remain the same (e.g. same robot
different camera), the policy does not need to be retrained,
but only equipped with a re-trained observation adaptor. In
contrast, changing a sim2real observation adaptor results in the
generated observations being out of distribution for the policy,
requiring expensive re-training of the policy. Our real2sim
observation adaptor is based on CycleGAN [12], and thus does
not require any sort of alignment or pairing between sim and
real observations, which can be prohibitive.

Second, for transition dynamics T : Pr(st+1 | st, at)
(the probably of transitioning from state st to st+1 upon
taking action at), we train a sim2real dynamics adaptation
module DA : T sim 7→ T real. This can be thought of
as a neural-augmented simulator [5] or a specific kind of
boosted ensembling method [13] – where a simulator first
makes predictions about state transitions and then a learned

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

(a) (b)
Fig. 1: (a) Left: We learn a sim2real dynamics adaptation module to predict residual errors between state transitions in simulation and reality.
Right: We learn a real2sim observation adaptation module to translate images the robot sees in the real-world at test time to images that more
closely align with what the robot has seen in simulation during training. (b) Using BDA, we achieve the same SPL as a policy finetuned
directly in reality while using 117× less real-world data.

neural network predicts the residual between the simulator
predictions and the state transitions observed in reality. At
each time t during training in simulation, DA resets the
simulator state from ssim

t+1 (where the simulator believes the
agent should reach at time t+ 1) to ŝreal

t+1 (where DA predicts
the agent will reach in reality), thus exposing the policy to
trajectories expected in reality. We choose sim2real dynamics
adaptation instead of real2sim because this nicely exploits the
fundamental asymmetry between the two domains – simulators
can (typically) be reset to arbitrary states, reality (typically)
cannot. Once an agent acts in the real-world, it doesn’t matter
what corresponding state it would have reached in simulator,
reality cannot be reset to it.

Once the two modules are trained, BDA trains a policy in
a simulator augmented with the dynamics adaptor (DA) and
deploys the policy augmented with the observation adaptor
(OA) to reality. This process is illustrated in Fig. 1a, left
showing policy training in simulation and right showing its
deployment in reality.

We instantiate and demonstrate the benefits of BDA on the
task of PointGoal Navigation (PointNav) [14], which involves
an agent navigating in a previously unseen environment from a
randomized initial starting location to a goal location specified
in relative coordinates. For controlled experimentation, and
due to COVID-19 restrictions, we use Sim2Sim transfer of
PointNav policies as a stand-in for Sim2Real transfer. We
conduct experiments in photo-realistic 3D simulation environ-
ments using Habitat-Sim [15], which prior work [16] has found
to have high sim2real predictivity, meaning that inferences
drawn in simulation experiments have a high likelihood of
holding in reality on Locobot mobile robot [17].

In our experiments, we find that BDA is significantly more
sample-efficient than the baseline of fine-tuning a policy.
Specifically, BDA trained on as few as 5,000 samples (state,
action, next-state) from reality (equivalent of 7 hours to collect
data in reality) is able to match the performance of baseline
trained on 585,000 samples from reality (equivalent of 836
hours to collect data in reality, or 3.5 months at 8 working
hours per day), a speed-up of 117× (Fig. 1b).

While our experiments are conducted on the PointNav task,
we believe our findings, and the core idea of Bi-directional
Domain Adaptation, is broadly applicable to a number of

problems in robotics and reinforcement learning.

II. BI-DIRECTIONAL DOMAIN ADAPTATION (BDA)

We now describe the two key components of Bi-directional
Domain Adaptation (BDA) in detail – (1) real2sim observation
adaptation module OA to close the visual domain gap, and
(2) sim2real dynamics adaptation module DA to close the
dynamics domain gap.
Preliminaries and Notation. We formulate our problem by
representing both the source and target domain as a Markov
Decision Process (MDP). A MDP is defined by the tuple
(S,A, T ,R, γ), where s ∈ S denotes states, a ∈ A denotes
actions, T (s, a, s′) = Pr(s′ | s, a) is the transition probability,
R : S × A → R is the reward function, and γ is a discount
factor. In RL, the goal is to learn a policy π : S → A to
maximize expected reward.

A. System Architecture

Algorithm 1: Bi-directional Domain Adaptation

1 Train behavior policy πsim in Sim
2 for t = 0, ..., N steps do
3 Collect Isim

t ∼ Sim rollout (πsim)
4 Collect I real

t , sreal
t , areal

t ∼ Real rollout (πsim)
5 Train OA ({IsimN

i=1}, {I realN
i=1})

6 Train DA ({srealN
i=1}, {arealN

i=1})
7 SimDA ← Augment Source with DA
8 for j = 0, ..., K steps do
9 πSimDA ← Finetune πsim in SimDA

10 πSimOA+DA ← Apply OA at test-time
11 Test πSimOA+DA in Real

Observation Adaptation. We consider a real2sim domain
adaptation approach to deal with the visual domain gap.

We leverage CycleGAN [12], a pixel-level image-to-image
translation technique that uses a cycle-consistency loss func-
tion with unpaired images. We start by using a behavior policy
πsim trained in simulation to sample rollouts in simulation and
reality to collect RGB-D images Isim

t and I real
t at time t (line

3). The dataset of N unpaired images {IsimN
i=1} and {I realN

i=1}
is used to train OA, to translate {IsimN

i=1} 7→ {I realN
i=1} (line

TRUONG et al.: BI-DIRECTIONAL DOMAIN ADAPTATION 3

5). OA learns a mapping Gsim : I real 7→ Isim, an inverse
mapping Greal : Isim 7→ I real, and adversarial discriminators
Dreal, Dsim. Although our method focuses on adaptation from
real2sim, learning both mappings encourages the generative
models to remain cycle-consistent, i.e., forward cycle: I real →
Gsim(I real)→ Greal(Gsim(I real)) ≈ I real and backwards cycle:
Isim → Greal(Isim) → Gsim(Greal(Isim)) ≈ Isim. The ability to
learn mappings from unpaired images from both domains is
important because it is difficult to accurately collect paired
images between simulation and reality.

A real2sim approach for adapting the visual domain offers
many advantages over a sim2real approach because it disen-
tangles the sensor adaptation module from our policy training.
This enables us to remove an additional bottleneck during the
RL policy training process; we can train OA in parallel with
the RL policy, thus reducing the overall training time needed.
In addition, if the sensor observation noise in the environment
changes, the base policy can be kept frozen, and only OA will
have to be retrained.
Dynamics Adaptation. To close the dynamics domain gap,
we follow a sim2real approach. Starting with the behavior
policy πsim, we collect state-action pairs (sreal

t , areal
t) in the

real-world (line 4). The state-action pairs are used to train
DA, a 3 layer multilayer perceptron regression network,
that learns the residual error between the state transitions in
simulation and reality T sim 7→ T real (line 7). Specifically,
DA learns to estimate the change in position and orientation
∆sreal : (sreal

t+1 − sreal
t). We use a weighted MSE loss function,

1
n

∑N
n=1 w

>(∆sreal
n −∆ŝreal

n)2. For our experiments, the state
sreal
t = (xreal

t , yreal
t , θreal

t), is represented by the position and
orientation of the robot at timestep t. We placed twice as
much weight on the prediction terms for the robot’s position
than for its orientation because getting the position correct
is more important for our performance metric. Once trained,
DA is used to augment the source environment (line 7). We
finetune πsim in the augmented simulator, SimDA (lines 8-
9). Our hypothesis (which we validate in our experiments) is
using real-world data to adapt the simulator via our DA model
pays off because we can then train RL policies in this DA-
augmented simulator for large amounts of experience cheaply.
We use OA at test time (line 10). Finally, we test our policy
trained with BDA in the real-world (line 11).

To recap, BDA has a number of advantages over the status
quo (of directly using real data to fine-tune a simulation trained
policy) that we demonstrate in our experiments: (1) Decouples
sensing and acting, (2) Does not require paired training data,
(3) The data to train both modules can be collected jointly (by
gathering experience from a behavior policy in reality) but the
two can be trained in parallel independently of each other,
(4) Similar to model-based RL [18], reducing the sim-vs-real
gap is made significantly more sample-efficient than directly
fine-tuning the policy.

III. EXPERIMENTAL SETUP: SIM2SIM TRANSFER FOR
POINT-GOAL NAVIGATION

Our goal in this work is to enable sample efficient Sim2Real
transfer for the task of PointGoal Navigation (PointNav) [14].

However, for controlled experiments and due to COVID-
19 restrictions, we study Sim2Sim transfer as a stand-in
for Sim2Real. Specifically, we train policies in a “source”
simulator (which serves as ‘Sim’ in ‘Sim2Real’) and transfer it
to a “target” simulator (which serves as ‘Real’ in ‘Sim2Real’).
We add observation and dynamics noise to the target simulator
to mimic the noise observed in reality. Notice that these noise
models are purely for the purpose of conducting controlled
experiments and are not available to the agent (which must
adapt and learn from samples of state and observations).
Since no noise model is perfect (just like no simulator is
perfect), we experiment with a range of noise models and
report results with multiple target simulators. Our results show
consistent improvements regardless of the noise model used,
thus providing increased confidence in our experimental setup.
For clarity, in the text below we present our approach from
the perspective of “transfer from a source to target domain,”
with the assumption that obtaining data in the target domain
is always expensive, regardless of whether it is a simulated or
real-world environment. All of our experiments are conducted
in Habitat [15].

A. Task: PointGoal Navigation

In PointNav, a robot is initialized in an unseen environment
and asked to navigate to a goal location specified in relative
coordinates purely from egocentric RGB-D observations with-
out a map, in a limited time budget. An episode is considered
successful if the robot issues the STOP command within
0.2m of the goal location. In order to increase confidence
that our simulation settings will translate to the real-world,
we limit episodes to 200 steps, limit number of collisions
allowed (before deeming the episode a failure) to 40, and turn
sliding off– specifications found by [16] to have high sim2real
predictivity (how well evaluation in simulation predicts real-
world performance). Sliding is a behavior enabled by default
in many physics simulators that allows agents to slide along
obstacles when the agent takes an action that would result in
a collision. Turning sliding off ensures that the agent cannot
cheat in simulation by sliding along obstacles. We use success
rate (SUCC), and Success weighted by (normalized inverse)
Path Length (SPL) [14] as metrics for evaluation.

B. Robot in Simulation

Body. The robot has a circular base with a radius of 0.175m
and a height of 0.61m. These dimensions correspond to the
base width and camera height of the LoCoBot robot [17].
Sensors. The robot has access to an egocentric RGB and
Depth sensor, and accurate localization and heading through
a GPS+Compass sensor. Real-world robot experiments from
[16] used Hector SLAM [19] with a Hokuyo UTM-30LX
LIDAR sensor and found that localization errors were ap-
proximately 7cm (much lower than the 20cm PointNav suc-
cess criterion). This gives us confidence that our results will
generalize to reality, despite the lack of precise localization.
We match the specifications of the Intel D435 camera on the
LoCoBot, and set the camera field of view to 70. To match the

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

No Noise 0.1 Gaussian 0.1 Speckle 1.0 Poisson

R
G

B

No Noise 1.0 Redwood 1.5 Redwood 2.0 Redwood

D
ep

th

Fig. 2: Different RGB and Depth sensor noise combinations we apply to our training and testing environments. From left to right: 0 RGB
noise + 0 Depth noise, 0.1 Gaussian RGB noise + 1.0 Redwood Depth noise, 0.1 Speckle RGB noise + 1.5 Redwood Depth noise, 1.0
Poisson RGB noise + 2.0 Redwood Depth noise.

maximum range on the depth camera, we clip the simulated
depth readings to 10m.
Sensor Noise. To simulate noisy sensor observations of the
real-world, we add RGB and Depth sensor noise models to the
simulator. Specifically, we use Gaussian, Speckle, and Poisson
noise for the RGB camera, and Redwood noise for the Depth
camera. More details about the Redwood noise can be found
in [20]. Fig. 2 shows a comparison between noise free RGB-
D images and RGB-D images with the different noise models
and multipliers we use.
Actions. The action space for the robot is turn-left 30◦

turn-right 30◦, forward 0.25m, and STOP. In the
source simulator, these actions are executed deterministically
and accurately. However, actions in the real-world are never
deterministic – identical actions can lead to vastly different
final locations due to the actuation noise (wheel slippage,
battery power drainage, etc.) typically found on a real robot. To
simulate the noisy actuation that occurs in the real-world, we
leverage the real-world translational and rotational actuation
noise models characterized by [21]. A Vicon motion capture
was used to measure the difference in commanded state and
achieved state on LoCoBot for 3 different positional con-
trollers: Proportional Controller, Dynamic Window Approach
Controller from Movebase, and Linear Quadratic Regulator
(ILQR). These are controllers typically used on a mobile robot.
From a state (x, y, θ) and given a particular action, we add
translational noise sampled from a truncated 2D Gaussian, and
rotational noise from a 1D Gaussian to calculate the next state.

C. Testing Environment

We virtualize a 6.5m by 10m real lab environment (LAB)
to use as our testing environment, using a Matterport Pro2 3D
camera. To model the space, we placed the Matterport camera
at various locations in the room, and collected 360◦ scans of
the environment. We used the scans to create 3D meshes of the
environment, and directly imported the 3D meshes into Habitat
to create a photorealistic replica of LAB Fig. 3b. We vary the
number of obstacles in LAB to create 3 room configurations
with varying levels of difficulty. Fig. 3 shows one of our room
configurations with 5 obstacles. We perform testing over the

(a) (b)

Fig. 3: (a) Top-down view of one of our testing environments. White
boxes are obstacles. The robot navigates sequentially through the
waypoints A → B → C → D → E → A. Figure taken from [16].
(b) 3D visualization of the robot navigating in one of our testing
environments in simulation. RGB and Depth observations are shown
on the right.

TABLE I: Definition of the 10 different noise settings we use for
training and testing. Row 1 indicates the ‘source’ environment with
no observation or actuation noise present.

RGB Obs Noise Depth Obs Noise Actuation Noise

1 - - -

2 Gaussian 0.1 Redwood 1.0
3 - - Proportional 1.0
4 Gaussian 0.1 Redwood 1.0 Proportional 1.0

5 Speckle 0.1 Redwood 1.5
6 - - Move Base 1.0
7 Speckle 0.1 Redwood 1.5 Move Base 1.0

8 Poisson 1.0 Redwood 2.0 -
9 - - ILQR 1.0
10 Poisson 1.0 Redwood 2.0 ILQR 1.0

3 different room configurations, each with 5 start and end
waypoints for navigation episodes, and 10 independent trials,
for a total of 150 runs. We report the average success rate and
SPL over the 150 runs.

Our models were trained entirely in the Gibson dataset [11],
and have never seen LAB during training. The Gibson dataset
contains 3D models of 572 cluttered indoor environments
(homes, hospitals, offices, museums, etc.). In this work, we
used the 72 Gibson environments that were rated 4+ in quality
in [15].

D. Experimental Protocol

Recall that our objective is to improve the ability for RL
agents to generalize to new environments using little real-
world data. To do this, we define our source environment as

TRUONG et al.: BI-DIRECTIONAL DOMAIN ADAPTATION 5

Gibson without any sensor or actuation noise (Gibsonno noise).
We create 10 target environments with noise settings described
in Table I. We use the notation O to represent an environment
afflicted with only RGBD observation noise (rows 2, 5, or 8),
D to represent an environment afflicted with only dynamics
noise (rows 3, 6, or 9), and O+D to represent an environment
afflicted with RGBD observation noise and dynamics noise
(rows 4, 7, or 10).

E. RL Navigation Models

We train learning-based navigation policies, π, for Point-
Nav in Habitat using environments from the Gibson dataset.
Policies were trained from scratch with reinforcement learning
using DD-PPO [1], a decentralized, distributed variant of the
proximal policy optimization (PPO) algorithm, that allows for
large-scale training in GPU-intensive simulation environments.
We follow the navigation policy described in [1], which is
composed of a ResNet50 visual encoder, and a 2-layer LSTM.
Each policy is trained using 64 Tesla V100s. Base policies are
trained for 100 million steps (π100M) to ensure convergence.

IV. EXPERIMENTS

Our experiments aim to answer the following: (1) How
large is the sim2real gap? (2) Does our method improve
generalization to target domains? (3) How does our method
compare to directly training (or fine-tuning) in the target
environment? (4) How much real-world data do we need?

How large is the sim2real gap? First, we show that RL
policies fail to generalize to new environments. We train a
policy without any noise (π100M

Gibsonno noise), and a policy with
observation and dynamics noise (π100M

GibsonO+D). We test these
policies in LAB with 4 different noise settings: LABno noise,
LABO, LABD, LABO+D, and average across the noise set-
tings. For each noise setting, we conduct 3 sets of runs, each
containing 150 episodes in the target environments. We see
that π100M

Gibsonno noise tested in LABno noise exhibits good transfer
across environments – 0.84 SPL (in contrast, the Habitat 2019
challenge winner was at 0.95 SPL [22]). [1] showed that
near-perfect performance is possible when the policy is trained
out for significantly longer (2.5B frames), but for the sake of
multiple experiments, we limit our analysis to 100M frames
of training and compare all models across the same number.

From Fig. 4, we see that when dynamics noise is introduced
(π100M

Gibsonno noise tested in LABD), SPL drops from 0.84 to 0.56
(relative drop of 28%). More significantly, when sensor noise
is introduced (π100M

Gibsonno noise tested in LABO), SPL drops to 0.04
(relative drop of 81%), and when both sensor and dynamics
noise are present, (π100M

Gibsonno noise tested in LABO+D), SPL drops
to 0.06 (relative drop of 78%). Thus, in the absence of noise,
generalization across scenes (Gibson to LAB) is good, but
in the presence of noise, the generalization suffers. We also
notice that the converse is true: policies trained from scratch in
GibsonO+D environments fail to generalize to LABno noise and
LABD environments. These results show us that RL agents are
highly sensitive to what might be considered perceptually mi-
nor changes to visual inputs. To the best of our knowledge, no

prior work in embodied navigation appears to have considered
this question of sensitivity to noise; hopefully our results will
encourage others to consider this as well.

Fig. 4: Zero-shot transfer of π100M
Gibsonno noise and π100M

GibsonO+D tested in
LAB with different combinations of observation and dynamics noise.
We see that SPL drops when a policy is tested in an environment with
noise different from what it was trained in.

How well does OA do? Following Alg. 1 described in Sec.
II-A, we train OA from scratch for 200 epochs. In Fig. 5,
we see that the model learns to remove the Gaussian noise
placed on the RGB image, and learns to smooth out textures
in the depth image. In Table II, we see that simply equipping
π100M

Gibsonno noise withOA during deployment (πBDA−5k
GibsonOA) drastically

improves SPL in LABO compared to π100M
Gibsonno noise , resulting in

an average increase of 65% (rows 2, 6, 10).

Ino noise IO OA (IO)

R
G

B
D

ep
th

(a) (b) (c)

Fig. 5: (a) LAB with no sensor noise (b) LAB with 0.1 Gaussian
RGB noise and 1.0 Redwood Depth noise. (c) By adapting images
from real2sim, we now have images that closely resemble (a).

In addition, we have RGB-D images of LAB collected
from a real robot, pre-COVID, and results using our real2sim
OA module. While no GAN metric is perfect (user studies
are typically conducted for evaluation as done in [12]), we
calculated the Fréchet Inception Distance (FID) [23] score
(lower is better) to provide quantitative results. We find that
the FID comparing I real and Isim is 100.74, and the FID from
OA (I real) to Isim images is 83.05. We also calculated FID
comparing simulation images afflicted with Gaussian noise,
IGaussian, to noise-free simulation images Ino noise to be 98.73,
and FID between OA (IGaussian) to Ino noise images to be
88.44. To put things in context, the FID score comparing
images from CIFAR10 to our simulation images is 317.61.
This shows that perceptually, the distribution of our adapted
images more closely resembles images taken directly from
simulation, and that real2sim OA is not far off from our

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

TABLE II: Success rate and SPL of five policies with RGB-D observations. π100M
Gibsonno noise is a policy trained solely in simulation. πBDA−5k

GibsonOA is
π100M

Gibsonno noise equipped with OA trained using 5k images from the source and target environments. πBDA−5k
GibsonDA , πBDA−5k

GibsonOA+DA and π1M
GibsonO+D are

initialized with π100M
Gibsonno noise . πBDA−5k

GibsonDA is fine-tuned with DA using 5k samples from the target environment. πBDA−5k
GibsonOA+DA is finetuned using

the full BDA pipeline, utilizing both OA and DA. π1M
GibsonO+D is fine-tuned directly in the target environment for 1M steps of experience,

and serves as an oracle baseline. While π1M
GibsonO+D and πBDA−5k

GibsonOA+DA achieve in strong performance across environments with varying noises
(rows 4, 8, 12), BDA requires 200× fewer samples from the target environment.

RGB Obs Depth Obs Actuation π100M
Gibsonno noise πBDA−5k

GibsonOA πBDA−5k
GibsonDA πBDA−5k

GibsonOA+DA π1M
GibsonO+D

Noise Noise Noise SUCC SPL SUCC SPL SUCC SPL SUCC SPL SUCC SPL

1 - - - 1.00 0.84 1.00 0.85 1.00 0.89 0.80 0.61 0.99 0.84
2 Gaus. 0.1 Red. 1.0 - 0.10 0.04 1.00 0.78 0.21 0.10 0.97 0.80 0.99 0.87
3 - - Prop. 1.0 0.89 0.57 0.86 0.54 1.00 0.66 0.99 0.65 1.00 0.64
4 Gaus. 0.1 Red. 1.0 Prop. 1.0 0.32 0.11 0.78 0.48 0.16 0.05 1.00 0.62 1.00 0.65

5 - - - 1.00 0.84 1.00 0.85 0.98 0.80 0.85 0.68 0.97 0.80
6 Speck. 0.1 Red. 1.5 - 0.11 0.05 1.00 0.80 0.03 0.01 0.70 0.54 0.99 0.81
7 - - MB 1.0 0.71 0.42 0.79 0.47 1.00 0.59 0.97 0.58 1.00 0.59
8 Speck. 0.1 Red. 1.5 MB 1.0 0.08 0.03 0.68 0.39 0.03 0.01 0.99 0.60 1.00 0.62

9 - - - 1.00 0.85 1.00 0.86 1.00 0.85 1.00 0.87 1.00 0.83
10 Pois. 1.0 Red. 2.0 - 0.07 0.04 0.68 0.51 0.25 0.13 0.96 0.69 1.00 0.87
11 - - ILQR 1.0 0.93 0.68 0.95 0.69 1.00 0.74 1.00 0.76 0.99 0.73
12 Pois. 1.0 Red. 2.0 ILQR 1.0 0.14 0.05 0.63 0.39 0.25 0.08 0.99 0.63 1.00 0.73

sim2sim OA experiments. While our architecture has changed
since this initial data collection (initial images are 256 × 256,
compared to our current architecture which uses 640 × 360
images), these results will serve as a good indication that our
approach will generalize to reality.

I real OA (I real)

R
G

B
D

ep
th

(a) (b)

Fig. 6: (a) LABreal (b) We adapt from real2sim to obtain images that
closely resemble RGB-D images from simulation.

How well does DA do? We train DA using 5,000 samples
of state-action pairs collected in the target environment, and
augment our source simulator with DA. From Table II, we see
that finetuning π100M

Gibsonno noise with DA (πBDA−5k
GibsonDA) on average,

leads to a relative 15% improvement in success and a 11%
improvement in SPL over π100M

Gibsonno noise in LABD (rows 3,
7, 11). Next, we investigate how well our actuation noise
model approximates real-world conditions. Using state-action
pairs collected from LoCoBot in LAB using the PyRobot
proportional controller from our experiments pre-COVID, we
trained a DA module to approximate the translation and

TABLE III: Average translation and rotation actuation error for
LoCoBot using the PyRobot proportional controller. For a given
action, the actuation error is sampled from the noise models, and
added to the action to calculate the next state. We report the noise
model characterized by real-world benchmarking by PyRobot, as well
as the learned DA noise model from real-world experiments in LAB.

X error (mm) Y error (mm) θ error (rad)

PyRobot
Linear motion 0.042 ±0.15 0.017 ±0.08 0.031 ±0.16
Rotation motion 0.005 ±0.06 0.001 ±0.03 0.043 ±0.13

LAB
Linear motion 0.093 ±0.08 0.016 ±0.15 0.002 ±0.00
Rotation motion 0.001 ±0.00 0.012 ±0.01 0.004 ±0.01

rotation noise present in our real-world testing environment.
We compare this to the actuation noise models used in our
target environments, which were provided from the real-
world benchmark by PyRobot [21] using a Vicon motion
capture system. Since actuation noise models are a factor
of the robot and environment, the DA learned using our
real-world experiments cannot exactly match the noise model
benchmarked by PyRobot. However, Table III shows that the
noise model learned from LAB is similar in order of magnitude
to the noise models derived PyRobot. This gives us confidence
that the actuation noise models used in our target simulation
as a stand in for reality are a good approximation for the
dynamics noise present in the real-world.

How does our method compare to fine-tuning? We eval-
uate our policy finetuned using BDA with 5,000 data sam-
ples collected in the target environment (πBDA−5k

GibsonOA+DA). We
compare this to directly finetuning in the target environ-
ment (π1M

GibsonO+D), which serves as an oracle baseline. Both
πBDA−5k

GibsonOA+DA and π1M
GibsonO+D are initialized with π100M

Gibsonno noise ,
and both are re-trained for each target O +D setting.

Our results in Table II show the benefits in finetuning with
BDA using data from target environments. While πBDA−5k

GibsonOA

and πBDA−5k
GibsonDA show improvements over the baseline policy,

TRUONG et al.: BI-DIRECTIONAL DOMAIN ADAPTATION 7

(a) (b) (c)

Fig. 7: Performance of BDA compared to directly finetuning a policy in the target environment: Plots (a), (b) and (c) represent LAB
environments with different noise settings we test in. On average, BDA requires 61× less data from the target environment to achieve the
same SPL as finetuning directly in the target environment.

both policies still fail to generalize to environments in which
new noise is present. Specifically, πBDA−5k

GibsonOA fails to generalize
to LABD and LABO+D environments, and πBDA−5k

GibsonDA fails
to generalize to LABO and LABO+D environments. On the
other hand, both πBDA−5k

GibsonOA+DA and π1M
GibsonO+D demonstrate

robustness in all combinations of sensor and actuation noise.
We also observe that using BDA to learn the observation and
dynamics noise models with 5,000 samples from the target
environment is capable of nearly matching performance of
π1M

GibsonO+D . In fact, we only see, on average, a 5% difference
between π1M

GibsonO+D and πBDA−5k
GibsonOA+DA (rows 4, 8, 12), while

the former is directly trained in the target environment which
is not possible in reality, as it requires 1M samples from
the target environment. In contrast, we see on average, a
25% difference between π1M

GibsonO+D and πBDA−5k
GibsonOA , and an

average 62% difference between π1M
GibsonO+D and πBDA−5k

GibsonDA

(rows 4, 8, 12). This highlights the importance of our proposed
framework to close the reality gap in both directions; to utilize
both real2sim observation adaptation and sim2real dynamics
adaptation to accommodate for variations that are overlooked
by approaches that only focus on one of these two directions.

From these results, we notice in certain environments our
method performs worse than the oracle baseline if no or only
observation noise is present (rows 1, 5, 6, 10), but performs
on the level of the oracle baseline when dynamics is added
(rows 3, 4, 7, 8, 11, 12). We believe it’s due to ‘sliding’,
a default behavior in 3D simulators allowing agents to slide
along obstacles rather than stopping immediately on contact.
Following the findings and recommendations of [16], we
disabled sliding to make our simulation results more predictive
of real-world experiments. We find that one common failure
mode in the absence of sliding is that agents get stuck on
obstacles. In the presence of dynamics noise, the slight amount
of actuation noise allows the agent to free itself from obstacles,
similar to how it would in reality. Without dynamics noise, the
agents continue to stay stuck.

Sample Efficiency. We repeat our experiments, varying the
amounts of data collected from the target environment. We
re-train OA and DA using 100, 250, 500, 1,000, and 5,000
steps of experience in the target environment, and re-evaluate
performance. We compare this to directly finetuning in the

target environment for varying amounts of data.
In Fig. 7, the x-axis represents the number of samples

collected in the target environment. From previous experi-
ments, we estimate 1 episode in the real-world to last on
average 6 minutes, in which the robot will take approximately
70 steps to reach the goal. We use this as a conversion
factor, and add an additional x-axis to show the number of
hours needed for collecting the required samples from the
target environment. The y-axis shows the SPL in the target
environment. We see that the majority of our success comes
from our first 1,000 samples from the target environment,
and after 5,000 samples, πBDA−5k

GibsonOA+DA is able to match the
performance from π1M

GibsonO+D . Collecting 5,000 samples of
data from a target environment to train our method would have
taken 7 hours. In comparison, Fig. 7b shows that we would
have to finetune the base policy for approximately 585,000
steps in the target environment (836 hours to collect data
from target environment) to reach the same SPL. Comparing
the amount of data needed to reach the same SPL, we see
that BDA reduces the amount of data needed from the target
environment by 36× in Fig. 7a, 117× in Fig. 7b, and 32× in
Fig. 7c, for an average speed up of 61×. These results give
us confidence in the importance of our approach, as we wish
to limit the amount of data needed from a target environment
(i.e. real-world).

V. RELATED WORK

Bi-directional Domain Adaptation is related to literature on
domain and dynamics randomization, domain adaptation, and
residual policy learning.

Domain and Dynamics Randomization. Borrowing ideas
from data augmentation commonly used in computer vision,
domain randomization is a technique to train robust policies
by exposing the agent to a wide variety of simulation envi-
ronments with randomized visual properties such as lighting,
texture, camera position, etc. Similarly, dynamics randomiza-
tion is a process that randomizes physical properties in the
simulator such as friction, mass, damping, etc. [24] applied
randomization to textures to learn real indoor flight by training
solely in simulation. [25] used real-world roll outs to learn a
distribution of simulation dynamics parameters to randomize

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

over. [2] randomized both physical and visual parameters to
train a robotic hand to perform in hand manipulation. However,
finding the right distribution to randomize parameters over is
difficult, and requires expert knowledge. If the distribution
chosen to randomize parameters over is too large, the task
becomes much harder for the policy to learn; if the distribution
is too small, then the reality gap remains large, and the policy
will fail to generalize.

Domain Adaptation. To bridge the simulation to reality
gap, many works have used domain adaptation, a technique
in which data from a source domain is adapted to more
closely resemble data from a target domain. Prior works have
used domain adaptation techniques for adapting vision-based
models to translate images from sim-to-real during training for
manipulation tasks [4], [6], and real-to-sim during testing for
navigation tasks [10]. Other works have focused on adapting
policies for dynamic changes [5], [9]. In our work, we seek
to use domain adaptation to close the gap for both the visual
and the dynamics domain.

Residual Policy Learning. An alternative to typical transfer
learning techniques is to directly improve the underlying
policy itself. Instead of re-training an agent from scratch when
policies perform sub-optimally, the sub-optimal policy can be
used as prior knowledge in RL to speed up training. This
is the main idea behind residual policy learning, in which a
residual policy is used to augment an initial policy to correct
for changes in the environment. [26], [27] demonstrated that
combining residual policy learning with conventional robotic
control improves the robot’s ability to adapt to variations in the
environment for manipulation tasks. Our method builds on this
line of research by augmenting the simulator using a neural
network that learns the residual error between simulation and
reality.

VI. CONCLUSION

We introduce Bi-directional Domain Adaptation (BDA),
a method to utilize the differences between simulation and
reality to accelerate learning and improve generalization of
RL policies. We use domain adaptation techniques to transfer
images from real2sim to close the visual domain gap, and
learn the residual error in dynamics from sim2real to close the
dynamics domain gap. We find that our method consistently
improves performance of the initial policy π while remaining
sample efficient.

VII. ACKNOWLEDGEMENTS
The Georgia Tech effort was supported in part by NSF, AFRL, DARPA,

ONR YIPs, ARO PECASE. JT was supported by an NSF Graduate Research
Fellowship under Grant No. DGE-1650044 and a Google Women Techmaker’s
Fellowship. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S. Government,
or any sponsor.
License for dataset used Gibson Database of Spaces. License at http://svl.
stanford.edu/gibson2/assets/GDS agreement.pdf

REFERENCES

[1] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, et al., “DD-PPO:
Learning near-perfect pointgoal navigators from 2.5 billion frames,” in
ICLR, 2020.

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
et al., “Learning dexterous in-hand manipulation,” The International
Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[3] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” arXiv preprint
arXiv:1812.11103, 2018.

[4] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, et al., “Using
simulation and domain adaptation to improve efficiency of deep robotic
grasping,” in 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, 2018, pp. 4243–4250.

[5] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer, “Sim-to-
real transfer with neural-augmented robot simulation,” in Conference
on Robot Learning, 2018, pp. 817–828.

[6] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
et al., “Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[7] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE
international conference on robotics and automation (ICRA), 2018.

[8] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017.

[9] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adapta-
tion with meta strategy optimization,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2950–2957, 2020.

[10] J. Zhang, L. Tai, P. Yun, Y. Xiong, M. Liu, et al., “Vr-goggles for robots:
Real-to-sim domain adaptation for visual control,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1148–1155, 2019.

[11] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson
env: Real-world perception for embodied agents,” in CVPR, 2018.

[12] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017.

[13] R. E. Schapire, “A brief introduction to boosting,” in Proceedings of the
16th International Joint Conference on Artificial Intelligence - Volume
2, ser. IJCAI’99, 1999.

[14] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
et al., “On Evaluation of Embodied Navigation Agents,” arXiv preprint
arXiv:1807.06757, 2018.

[15] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, et al.,
“Habitat: A Platform for Embodied AI Research,” in ICCV, 2019.

[16] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, et al.,
“Sim2real predictivity: Does evaluation in simulation predict real-world
performance,” IEEE Robotics and Automation Letters, 2020.

[17] “Locobot: An open source low cost robot,” https://locobot-website.
netlify.com/.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[19] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and
scalable slam system with full 3d motion estimation,” in SSRR. IEEE,
November 2011.

[20] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015.

[21] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, et al., “Pyrobot:
An open-source robotics framework for research and benchmarking,”
arXiv preprint arXiv:1906.08236, 2019.

[22] “Habitat Challenge 2019 @ Habitat Embodied Agents Workshop. CVPR
2019,” https://aihabitat.org/challenge/2019/.

[23] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in neural information processing systems,
2017, pp. 6626–6637.

[24] F. Sadeghi and S. Levine, “CAD2RL: real single-image flight without a
single real image,” in Robotics: Science and Systems XIII, Massachusetts
Institute of Technology, Cambridge, Massachusetts, USA, July.

[25] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, et al.,
“Closing the sim-to-real loop: Adapting simulation randomization with
real world experience,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 8973–8979.

[26] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, et al., “Residual rein-
forcement learning for robot control,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 6023–6029.

[27] T. Silver, K. R. Allen, J. B. Tenenbaum, and L. P. Kaelbling, “Residual
policy learning,” ArXiv, vol. abs/1812.06298, 2018.

