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Abstract

In the classic “influence-maximization” (IM) problem, people influence one
another to adopt a product and the goal is to identify people to “seed” with the
product so as to maximize long-term adoption. Many influence-maximization
models suggest that, if the number of people who can be seeded is
unconstrained, then it is optimal to seed everyone at the start of the IM process.
In a recent paper, we argued that this is not necessarily the case for social
products that people use to communicate with their friends [1]. Through
simulations of a model in which people repeatedly use such a product and update
their rate of subsequent usage depending upon their satisfaction, we showed that
overambitious seeding can result in people adopting in suboptimal contexts,
having bad experiences, and abandoning the product before more favorable
contexts for adoption arise. Here, we extend that earlier work by showing that the
costs of overambitious seeding also appear in more traditional threshold models
of collective behavior, once the possibility of permanent abandonment of the
product is introducedin addition to the model of repeated-product usage that we
studied in reference [1]. We also further demonstrate that these costs can be
mitigated by using conservative seeding approaches besides those that we
explored in the earlier paper. Synthesizing these results with other recent work in
this area, we identify general principles for when overambitious seeding can be of
concern in the deployment of social products.
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1 Introduction
The study of how new ideas and products spread through networks dates back

decades, to early studies from the 1950s and 1960s of the adoption of health in-

novations [2, 3, 4] and to the development of general models of product adoption

by Rogers and Bass [5, 6]. An important milestone was the formulation of “influ-

ence maximization” (IM) as an algorithmic problem by Domingos and Richardson

[7]. In IM, a product developer typically has limited resources (e.g., an advertising

budget) with which to give or market a product to potential adopters. The devel-

oper assumes that adoption of the product spreads through the social network of

potential adopters through some peer-influence process. Then, the challenge is to

decide which people to “seed” with the product in order to maximize long-term

adoption. Since its formulation by Domingos and Richardson, the influence maxi-

mization problem has found applications across diverse domains, from traditional

applications in marketing [8], to the spreading of health information [9, 10], to the

diffusion of microfinance programs in villages [11].

Influence maximization has been theoretically studied under a variety of peer-

influence models. One classic IM model is the independent-cascade model, in which
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friends of new adopters also adopt with some probability [12]. So-called linear

threshold models comprise another class, in which people will adopt if sufficiently

many of their friends adopt [13, 14]. Depending upon the specific threshold model,

an individual’s adoption decision can depend upon a minimum number of friends

adopting or upon a minimum percentage of friends adopting [15]. Soon after the

formulation of IM by Domingos and Richardson, Kempe, Kleinberg, and Tardos

demonstrated both that IM is NP-hard under the usual independent cascade and

threshold models and that there are nevertheless simple greedy algorithms for se-

lecting the seeds with strong performance guarantees [16]. Their work has inspired a

large literature around developing even better heuristic algorithms for IM. A recent

review of state-of-the-art algorithms can be found in reference [17].

In this paper, we revisit a question that we previously explored [1]: if there is

no budgetary constraint on seeding, is it optimal to seed everyone at the start of

the IM process? Despite the general hardness of IM, the traditional independent

cascade and threshold models all agree that the answer to this question is “yes.”

Does that property of these simplified models provide reasonable guidance for real

product-deployment scenarios? There are several reasons why it may not, includ-

ing costs associated with people rejecting the product, downstream word-of-mouth

effects, and so-called “non-conformism” effects, where people are inclined to adopt

less popular products. We review prior work on each of these pathways to “overex-

posure” in Section 2 below.

Our main focus here, however, is on a distinct pathway to overexposure, which

we demonstrated in a recent paper [1]: when the product under consideration is one

that allows people to communicate with their friends (i.e., a “social” product), if

people adopt too early, then they may begin using the product in contexts where

insufficiently many of their friends are using it. This can lead to abandonment of

the product prior to the emergence of a more favorable context for adoption. In

our earlier paper, we showed that a more conservative seeding strategy can often

help avoid these premature abandonments of the product and lead to greater long-

term usage. Crucially, we showed that this remains true even in the absence of a

budgetary constraint on initial seeding: even if a product developer can simply hand

the product to everybody, it may be preferable not to do so.

The present paper extends our previous work in various ways. In reference [1], we

demonstrated the “costs” of overambitious seeding in a model of repeated product

usage, where people gain access to a social product and then either use the product

or abstain in a sequence of time steps. Here, we show that these “costs” also ap-

pear in more traditional threshold models, once the possibility of permanent aban-

donment of the product (also referred to as “churn”) is introduced. Furthermore,

through simulations on networks with a clear community structure, our earlier work

showed that seeding approaches that focus on one of the clusters can often outper-

form approaches that seed the entire network. In this paper, we show that there are

conservative seeding approaches that do not rely on clear-cut community structure,

but which still lead to greater longer-term adoption than universal seeding. After

demonstrating the robustness of our previous results in these two different ways,

we then attempt to abstract away general principles for when product developers

ought to factor these considerations into their product deployment decisions.
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The rest of this paper is structured as follows. Section 2 places our work in the

context of prior research on overexposure in IM. With this context in place, in

Section 3, we introduce the repeated-usage and threshold models that we study

in this paper. Next, in Section 4, we study each of these models on certain, very

special network structures, developing intuitions for why overambitious seeding can

be problematic in both models. In practice, of course, we will want to see how the

models behave on more realistic network structures, and to that end, in Section 5

we introduce the real-world network structures that we use in our numerical simula-

tions. Sections 6 and 7 then report our simulation results, showing how two different

conservative seeding approaches can outperform universal seeding. In Section 8, we

extract some general principles for when overambitious seeding can be costly before

concluding in Section 9 by reviewing our findings and pointing out opportunities

for extensions.

2 Related Work
In this section, we review research on overexposure and overambitious seeding in

influence maximization. Our goal here will be to examine the implications of various

previously explored models for the fundamental question articulated above: in the

absence of a budgetary constraint on the seeding process, is it optimal to seed

everyone immediately? This survey of prior research helps distill the reasons why it

is interesting that, in each of the models studied in this paper, the answer to this

question is often “no.”

In [16], Kempe et al. showed that the classic independent cascade and linear

threshold models obey a monotonicity property, where a subset of a cohort of ini-

tial adopters cannot lead to higher long-term adoption than the entire cohort. Fur-

thermore, they generalized these models to a larger class of so-called “triggering”

models, in which each subset of a person i’s neighbors is associated with a probabil-

ity of i adopting, and showed that triggering models also exhibit monotonicity [16].

If this monotonicity property holds, and if each person accepts the seed indepen-

dently, then the optimal approach in the unbudgeted case clearly involves seeding

everybody: an unseeded individual’s probability of adoption in the seed round is 0,

and by monotonicity, it would be preferable if that probability was non-zero.

Models of overexposure generally try to show that there are plausible assumptions

about real-world IM settings that can violate monotonicity. One path to overexpo-

sure involves introducing some type of negative payout for rejection of the product.

A recent example of this is reference [18], in which Abebe, Adamic, and Kleinberg

study a diffusion process where there are positive payouts for adopters and negative

payouts for rejecters. If someone adopts, that person will refer the product to his

or her friends, which could result in further adoptions or rejections. In this model,

there can be circumstances where it is detrimental to seed an individual i, because

the costs of the product being exposed to i’s friends may outweigh the benefits of

i’s adoption. In the unbudgeted case, the optimal strategy still does not generally

involve seeding everyone, because that would expose the product to many rejecters,

leading to potentially avoidable negative payouts [18]. The results of Abebe et al.

echo empirical findings such as the so-called Groupon effect, where exposure to a

larger audience can have unintended negative effects (e.g., upon Yelp ratings) [19].
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Other authors have studied overexposure effects arising from more direct negative

externalities of adoption, such as “negative word-of-mouth” [20]. Empirical research

actually suggests that dissatisfied adopters spread their perspective more often than

satisfied adopters, sharing their negative sentiment with up to ten friends [21]. Cui

et al. recently reported results for a model where satisfied adopters can enhance the

probability of subsequent adoption by their friends, while dissatisfied adopters can

reduce that probability [22]. In such a setting, it may be preferable to seed people

who are likely to spread positive word-of-mouth and avoid seeding others.

“Non-conformist” or “hipster” effects comprise yet another class of negative ex-

ternalities. “Hipsters” in these models refrain from adopting products that are too

popular and / or abandon products if they become too popular [23]. Although not

strictly framed as an IM study, the recent work of Juul and Porter shows how the

presence of hipsters can have dramatic effects upon the long-term adoption of two

competing products. Indeed, in some cases, the product that begins the process

with no adopters at all ends up accounting for the majority in the steady state [24].

Kempe, Kleinberg, and Tardos referred to models in which adopters can revert

to the non-adopting state as “non-progressive” models, to contrast with “progres-

sive” models where people can only transition into the adopting state. If we want

to consider the product experiences of people after they make their initial adop-

tion decision, then some form of non-progressive model is appealing. Kempe et al.

showed that the simplest non-progressive extensions of monotonic triggering mod-

els (e.g., where people abandon the product if enough of their friends do) inherit

the monotonicity property. This is because these models can be mapped to their

progressive counterparts on a temporal network in which people are represented by

a node in each temporal layer, and there are links between each person i at time

t and their friends at time t − 1[1] [16]. This argument for monotonicity does not

work if the original progressive model is itself non-monotonic, or if people abandon

the product permanently after a fixed number of adoptions.

In reference [1], we previously argued that it can be detrimental to seed everyone

at the start of an unbudgeted IM process in a certain type of non-progressive model,

even in the absence of the mechanisms studied in the previous literature surveyed

above. Our model was motivated by “social products” that are used by friends to

communicate with one another, and it considered the product experiences of people

after adoption instead of focusing exclusively upon the binary adoption / rejection

process. A key point of our earlier paper was that taking into account these product

experiences naturally leads to the emergence of costs of overambitious seeding,

even in the absence of negative payouts of rejection, negative word-of-mouth, and

non-conformism effects. However, reference [1] made this point in a model that

is rather structurally different from classic models of IM. Here, we show that the

[1]If such a mapping holds and the non-progressive model is monotonic, it still may

make sense to employ a gradual seeding approach in a budgeted scenario. Indeed,

Jankowski et al. have recently explored the benefits of gradually seeding parts of the

network that have not been activated by previous seeding rounds, instead of seeding

all at once and possibly wasting resources on parts of the network that would have

adopted anyway [25]. Note, however, that the notion of “wasting” seeding resources

in that work depends upon the existence of a budget.
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same mechanisms can lead to costs of overambitious seeding in traditional threshold

models, once the possibility of permanent churn is included.

3 Models of Social-Product Usage
In this section, we introduce two models of how people adopt, use, and abandon

social products. First, we review the model of repeated product usage that was

proposed in reference [1], which considers the gradual impact of individual product

experiences upon people’s subsequent behavior. Then, we propose a modification of

the traditional threshold model as a “coarser-grained” model of long-term adoption

decisions.

Both models are intended to describe the choices of people embedded in an undi-

rected social network. Each node i represents a person who can potentially use or

adopt the product. Each edge ij represents a friendship tie between two people.

Repeated-Usage Model: Our repeated-usage model proceeds in a sequence of

time steps, beginning with t = 0. At any time t, a person i can either have access

to the product or not. If the person has access, then the person uses the product in

that time step with probability pi(t) and abstains otherwise. At the time ti when a

person i initially gets access, pi(ti) is initialized to a value p0.

We associate a threshold si with each person. If i uses the product in time step

t, then si is the number of friends of i who also need to use the product at time t

for i to be satisfied. Then, i adjusts his or her probability of subsequent usage up

or down as follows:

pi(t+ 1) =


pi(t) + δ if > si more than si friends use in time step t

pi(t) if exactly si friends use in time step t

pi(t)− δ if < si fewer than si friends use in time step t

(1)

We allow pi(t) to grow to 1 or drop to 0. While pi(t) = 1 is not necessarily a

permanent state, pi(t) = 0 is permanent, because the person will no longer have any

product experiences. Consequently, the person will no longer have any it guarantees

that the person will no longer have any product experiences, and consequently, will

have no opportunities to increment their usage.

In this model, in situations where we do not give access to everyone at time t = 0,

we need some protocol for implementing the gradual expansion of access. As in [1],

we expand access to a new person when they have had at least two friends using

the product in each of five consecutive time steps. This is one example of a more

conservative seeding strategy than universal seeding at t = 0. Other variants of this

rule can certainly be considered and may even lead to better long-term outcomes,

but this choice suffices to demonstrate our main results.

Threshold Model with Churn: Various types of threshold models have been

proposed in a number of contexts, from models of percolation in statistical physics

[26] to collective models of social behavior [13, 15]. When these models are used to

study the decisions of people situated in a social network, the general idea is that

people are able to take on one of two states, which we can refer to as “adopting”

and “non-adopting.” Certain people begin in the adopting state (e.g., through the

outcome of a seeding process). Then, others may adopt if sufficiently many of their
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friends are in the adopting state. The adoption rule may be formulated in terms of

the absolute number of friends, or alternatively, it may be formulated in terms of

a percentage of friends. Generally, the adoption rule is iteratively applied until no

more people would adopt.

In “non-progressive” threshold models, people can also transition out of the adopt-

ing state. For example, as an outcome of the seeding process, some people can find

themselves in a situation where insufficiently many of their friends are adopting.

In these circumstances, they may transition back to the non-adopting state. This

can, in turn, leave others in a situation where they have too few adopting friends,

leading to more defections. These transitions out of the non-adopting state will, in

general, cooccur and compete with transitions into the adopting state over time. If

people are willing to adopt the product an arbitrary number of times, then the non-

progressive model can be mapped to a progressive model and is monotonic in the

size of the original seed set [16]. However, if people permanently churn after a fixed

number of adoptions, then the non-progressive model is not necessarily monotonic.

The threshold model that we study here proceeds as follows:

• Seeding Stage: At time t = 0, certain people within a social network are

offered the product, which they adopt with acceptance probability pa.

• State Updates: At each subsequent time step t = 1, 2, 3, . . ., people up-

date their states in two successive waves, which continue until the process

converges:

1 Adoption Round: People who are not currently adopting look at the

states of their friends after the lastprevious churn round (at time step

t− 1) and adopt if at least si of their friends are adopting.

2 Churn Round: People who are currently adopting look at the states of

their friends after the lastprevious adoption round (at time step t) and

churn if fewer than si of their friends are adopting.

• Constraints on State Changes: The state updates described above are

constrained by the following two rules:

1 One-Time-Step Commitment: People who adopt in an adoption

round do not churn in the immediately following churn round. There

is a rate limit to these state changes because we are modeling long-term

changes in people’s attitudes towards the product.

2 Single Adoption per Person: People give the product only one chance

before churning permanently.

Comparing the Two Models: In [1], we motivated the repeated-usage model

through the following assumptions about social product usage:

1 Need for social support: a person’s satisfaction with a product experience

depends upon how many of their friends are using it.

2 Rate-of-usage adjustments: When people gain access to the product, they

begin using it at a low rate p0 and then gradually ramp their rate of usage up

or down depending upon whether they are satisfied with their experiences.

3 Possibility of permanent churn: if people have enough unsatisfying prod-

uct experiences, they churn permanently and are unwilling to try the product

again.
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Our threshold model also clearly satisfies the “need for social support” assumption

and, like the repeated-usage model, encodes this property through the parameters

si. Moreover, the threshold model satisfies the “possibility of permanent churn”

assumption. The threshold model does not, however, incorporate gradual “rate-of-

usage adjustments” but, rather, binary state changes between adoption and non-

adoption. This is in keeping with its being a temporally coarse-grained model of

adoption decisions.

In [1], we also emphasized that the repeated-usage model excludes:

1 a budgetary constraint on seeding

2 rejection of the seed

3 negative word-of-mouth or nonconformism effects

Our threshold model also excludes budgetary constraints, negative word-of-mouth,

and nonconformism effects. However, when pa < 1, we do allow rejection of the seed.

Since there are no negative externalities to adoption in our model, there can be no

costs to overambitious seeding if the seeding process is universally successful. We

will show, however, that costs naturally emerge if the success of the seeding process

is stochastic. Still, there is no direct cost to someone rejecting the seed, so the path

to overambitious seeding here is distinct from the one explored, for example, in [18].

Comparing the roles of the parameters p0 and pa in the repeated-usage and thresh-

old models respectively, we can refine our fundamental question for each context.

In the repeated-usage model, by fixing a low p0, we pose the question: is it optimal

to seed everyone at time t = 0 if every seeded person adopts, but subsequently uses

at a low rate? Meanwhile, by fixing a low pa in the threshold model, we pose the

question: is it optimal to seed everyone at time t = 0 if seeding succeeds only at a

low rate? The simulation results of Sections 6 and 7 show that the answer to both

of these questions is often “no.”

4 Toy Examples
Before proceeding to the simulation results, we dedicate this section to analytical

investigation of our models on certain, very special network structures. These “toy”

examples illustrate the mechanisms through which overambitious seeding can reduce

long-term adoption. Then, the simulation results of subsequent sections show that

these mechanisms are relevant in more general contexts.

Repeated-Usage Model: Suppose we run the repeated-usage model on a network

with a very strong core-periphery structure [27]. In particular, consider a situation

where the “core” consists of a complete N -graph (i.e., N people who are all friends

with the N − 1 others) and the “periphery” consists of N people, each of whom

is friends with one person in the core. An example of such a network is shown in

Figure 1a.

As usual in the repeated-usage model, rates of usage pi(t) are initialized to p0
when people receive access. However, for the present purposes, suppose that update

rule for pi(t) is a much simpler variant of the one proposed in equation (1):

pi(t+ 1) =

0 if no friends use in time step t

1 if at least 1 friend uses in time step t
(2)

The simplified update rule (2) has certain important corrollaries:
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Figure 1 (a) An example of the type of network used in the toy-example calculation for the
repeated-usage model, with a complete N -graph for the “core” and N people in the periphery.
(b) An example of the type of network used in the toy-example calculation for the threshold
model, with N people each in core, intermediate, and periphery layers. The dark blue line
connecting the core indicates that it is a complete N -graph. (c) Expected asymptotic adoption
fractions under two seeding strategies in the repeated-usage model. Computations are for a
network of the type shown in panel a, but with N = 50. (d) Expected steady-state adoption
fractions under two seeding strategies in the threshold model. Computations are for a network of
the type shown in panel b, but with N = 50.

1 Satisfaction is reciprocal: because everyone only needs one active friend

to be satisfied, if a person i is satisfied with a product experience, then so are

all of i’s active friends.

2 The state where pi(t) = 1 is permanent: this follows from item 1, because

any i with pi(t) = 1 has at least one friend j with pj(t) = 1. This implies that

all of i’s subsequent product experiences will be satisfying.

3 Churn is only possible on the first product experience: this follows

from item 2, because if a person i does not churn on the first product experi-

ence, then that person ends up in the state where pi(t) = 1.

When coupled with the special network structure of Figure 1a, there is another

important implication: once one person in the core has had a satisfying experience,

then everyone who is subsequently active in the core will be satisfied.

First, we consider the case where we only give access to the core at time t = 0.

The probability that at least two people are active in the core in the first time step



Iyer and Adamic Page 9 of 24

is:

1− (1− p0)N −Np0(1− p0)N−1 (3)

If this occurs, then all of the active people then those two people will be satisfied

with their experience and update their rates of usage to 1. Then, in the ensuing time

steps, others in the core will try out the product, have satisfying experiences, and

update their rates of usage to 1 as well. This process will take some time, since each

person’s initial choice to be active is independent and will take time 1
p0

on average.

However, if we wait until everyone in the core is consistently active, we can then

grant access to the periphery in circumstances where all people in the periphery

are guaranteed to have satisfying experiences. Thus, equation (3) is a lower bound

on the probability with which we can end up with all 2N people adopting. This

actually gives a very conservative underestimate of the average adoption fraction[2],

but the bound implied by equation (3) is sufficient to demonstrate our main point.

To see why, let us now consider the case where we grant access to everyone at time

t = 0. Here, we can lower bound the probability that a person i in the periphery will

churn. In particular, we can bound it by the sum over all times T of the probability

that i is first active in time step T and that i’s friend in the core is not active at all

up to and including time step T [3]. This gives:

∞∑
T=0

(1− p0)2T+1p0 =
p0(1− p0)

1− (1− p0)2
(4)

Then, we can upper bound the average long-term adoption fraction by assuming

that everyone except this fraction adopts:

1− p0(1− p0)

2(1− (1− p0)2)
(5)

We compare equation (3) to equation (5) in Figure 1c. This shows that a lower

bound on the adoption under seeding the core beats an upper bound on the adoption

under seeding everyone over a broad range of values of p0. The reasoning above

exposes why this is the case: by granting access to the periphery too early, we

expose people in the periphery to the product before they are likely to be satisfied

with their product experiences. Furthermore, except at very low p0, this premature

[2]Because we have not added in possible scenarios where, for instance, no one in

the core is active in the first time step but two are active in the second, where one

person in the core churns in each of the first two time steps but two people are active

in the third, etc. In each of these cases, a very large fraction of the population can

nevertheless be active asymptotically.
[3]Here, we are neglecting situations where i’s friend in the core already churned

due to having an unsatisfying experience before time T. This is a small effect as

N gets large because of the low likelihood of having bad experiences in the core.

Meanwhile, if p0 is small, it takes each person 1
p0

time steps on average to be active

at all, so it is quite likely that a specific individual in the core is inactive at early

time T . This is the effect that we capture in equation (4).
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exposure of the periphery confers no benefit to the core, which is sufficiently dense

to produce satisfying experiences all on its own. It is better to wait until the core

is activated and only then to grant access to the periphery.

Threshold Model with Churn: Next, we consider running our threshold model

on the network shown in Figure 1b [27]. This is a network with a dense “core” of

N people who are all connected to one another and who are represented by the

blue nodes. There is an “intermediate” layer of N people who are each friends with

two randomly chosen people in the core; the people in this “intermediate” layer are

represented by the green nodes. Finally, there is a “periphery” of N people who

are friends with two randomly chosen people in the intermediate layer and who are

represented by red nodes. We will consider a case where si = 2 for all people in the

network and where pa can vary. We will then ask whether it is better, in terms of

asymptotic adoption, to seed everyone or to only seed the core.

First, we consider the case where we only seed the core. The probability that fewer

than 2 people in the core adopt under seeding is given by:

(1− pa)N +Npa(1− pa)N−1 (6)

With this probability, adoption dies out completely. On the other hand, if at least

2 people adopt under seeding, then by time t = 1, the entire core will adopt.

Potentially, some people in the intermediate layer will as well, if they happen to

have two friends in the core who adopted during the seeding round. By time t = 2,

the entire intermediate layer will adopt, because every person in the intermediate

layer has two adopting friends in the universally adopting core. Potentially, some

people in the periphery will adopt as well, if they happen to have two intermediate

layer friends who adopted by time t = 1. Finally, by time t = 3, the entire periphery

will adopt as well, because every person in the periphery has two adopting friends

in the universally adopting intermediate layer. Thus, as long as 2 people in the core

adopt during the seeding round, the entire network eventually adopts. This means

that the average final adoption fraction is:

1− (1− pa)N −Npa(1− pa)N−1 (7)

Next, we turn to the case where we seed everyone. The probability that at least

two people in the core adopt under seeding remains the same. If that happens, then

no one in the intermediate layer will churn, including those who happened to adopt

under seeding. This is because, as of the adoptions that occur at t = 1, every person

in the intermediate layer will have 2 adopting friends in the core. However, people

in the periphery who adopt under seeding can churn. For a t = 0 adopter in the

periphery to not churn, one of the following must be true by the first churn round:

1 Their two friends in the intermediate layer adopted under seeding.

2 One of their friends in the intermediate layer adopted under seeding, and the

other had two friends in the core who adopted under seeding.

3 Neither of their friends in the intermediate layer adopted under seeding, but

both had two friends in the core who adopted under seeding.
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In principle, in case 3, the four friends-of-friends in the core need not all be distinct;

however, as N grows very large, we can ignore this possibility. Then, the probability

that a person in the periphery churns is approximately:

pa
[
1− p2a − 2(1− pa)p3a − (1− pa)2p4a

]
(8)

Hence, in the case where at least two people in the core adopt upon seeding, we can

expect the final fraction of adopters to approximately be:

2

3
+

1

3

[
1− pa + p3a + 2(1− pa)p4a + (1− pa)2p5a

]
(9)

When fewer than two people in the core adopt upon seeding everyone, it is still

possible for long-term adoption to be sustained if sufficiently many people adopt

in the intermediate and periphery layers. This exemplifies how seeding everyone

can sometimes be beneficial, especially at small values of pa. Nevertheless, when

pa >>
2
N , equation (9) will still be a good approximation to the average adoption

[4]. We compare equations (7) and (9) in Figure 1d. Here too, we see that it is

preferable to seed only the core over a large range of pa. Yet again, the costs of

overambitious seeding originate in the premature exposure of the people in the

periphery to the product. These people’s abandonment of the product is avoidable

under a more conservative seeding strategy that focuses on the densest part of the

network.

Comparing Figure 1d to Figure 1c, we see that the costs of overambitious seeding

are maximized at some intermediate value of pa for the threshold model, while

these costs get bigger as p0 gets lower in the repeated-usage model. This is due to

pa playing a dual role in the threshold model, determining both the proportion of

the population that is exposed early and the average social support that population

can expect. We will return to this point in Section 8, when we discuss general

settings in which overambitious seeding can be especially problematic.

5 Networks Used in Simulations
In [1], to argue that overambitious seeding can be problematic on real-world net-

works, we ran simulations of the repeated-usage model on portions of the Facebook

friendship graph, known as Social Hash (SH) clusters. The SH clustering was orig-

inally developed to enable faster data retrieval by physically collocating data for

people who communicate frequently. Thus, many (but not all) of a person’s fre-

quently contacted friends belong to the same SH cluster [28, 29].

This property is well matched to the type of cluster-level approaches that we

tested previously [1], and the same is true here. Therefore, in this paper as well,

[4]Note that equation (9) is a poor approximation to the adoption fraction when

pa ≈ 2
N or lower for at least three reasons. First, we need to incorporate corrections

to (8) arising from the fact that we condition on at least two people in the core

adopting under seeding in that calculation. Second, to produce a good estimate in

this regime, we cannot neglect the case of fewer than two core adopters accurately.

Third, a good approximation in this regime must approach zero adoption as pa goes

to zero; equation (9) does not exhibit this behavior.



Iyer and Adamic Page 12 of 24

we will report simulation results modeled on de-identified SH clusters containing

US Facebook users who visited in a 28 day period. When we discuss cluster-based

seeding of the repeated-usage model (in Section 6), we report data from simulations

on SH clusters computed on 2018-04-29. The properties of the SH clusters used in

these simulations can be found in [1]. All other simulations were performed on SH

clusters computed for active US users who visited in the 28 days leading up to

2019-01-27.

As in reference [1], we also select three-cluster networks such that each cluster

has average out-of-cluster degree 〈koc〉 >= 1[5]. Tables 1 and 2 report statistics of

the distributions of the within-cluster degree kic and out-of-cluster degree koc for

the various SH clusters and three-cluster networks. These tables show that there is

considerable structural diversity amongst these clusters and networks[6].

Figure 2 shows an example of a three-cluster SH network. This is the network qrs

from Table 2.

6 Simulation Results: Cluster-Based Seeding
Previously [1], we demonstrated the costs of overambitious seeding in the repeated-

usage model by showing that seeding a single cluster can lead to greater long-term

adoption than seeding all three clusters in a variety of SH networks. In this section,

we recap the results of [1] for the repeated-usage model and then move on to show

that the same phenomenon can be observed in the threshold model as well, albeit

in a quantitatively weaker form.

Repeated-Usage Model: Figure 3 shows simulation results for the repeated-

usage model on three-cluster SH networks. These are the three-cluster networks

that we introduced in reference [1], and they can be distinguished from the newer

clusters used in subsequent sections by the use of uppercase letter labels. In these

simulations, we fix si = 2 for all people, vary p0, and ask which of the following

strategies leads to most long-term adoption:

1 Seed the cluster with the highest median within-cluster degrees kic.

2 Seed the two clusters with the highest median within-cluster degrees kic.

3 Seed all three clusters.

[5]On average, each person in each cluster has at least one out-of-cluster friend.
[6]Table 1 reports structural properties for 25 SH clusters. The first 10 of

theseClusters a-j were sampled for the purpose of comparing k-core seeding and

universal seeding in the two models. We did not end up reporting results for clus-

ters c and g in Figures 5 and 6 because these clusters do not have a 10-core, so

they are excluded from Table 1. In Figure 5, we also did not run simulations for

clusters b, d, and j because the repeated-usage model is expensive to simulate, and

these clusters ended up being too large. The last 15 clusters in Table 1Clusters

k-y were sampled for the purpose of comparing cluster-based seeding approaches

in the threshold-model. These clusters form parts of three-cluster networks whose

properties are reported in Table 2. The size of the three-cluster network can differ

slightly from the size of the three clusters individually because, in both cases, we

exclude people with zero degree, who would inevitably churn under our model. In a

small percentage of cases, a person who has no within-cluster friends may still have

friends in another cluster when three clusters are considered together.
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SH Cluster Properties
ID Nc 〈kic〉 P5 kic P50 kic P95 kic p10-core C r
a 1214 12.8 1 8 39 28.75% 0.20 0.17
b 52985 123.6 3 58 464 84.62% 0.16 0.07
d 40643 119.0 1 56 454 79.64% 0.27 0.16
e 1868 14.0 1 9 42 29.23% 0.24 0.37
f 13726 51.6 4 40 135 85.56% 0.20 0.24
h 7306 11.5 1 8 34 18.30% 0.30 0.16
i 4919 29.9 2 18 100 64.73% 0.18 0.12
j 36238 94.8 1 44 362 78.27% 0.33 0.15
k 4797 124.9 4 75 429 88.60% 0.23 0.12
l 2717 12.4 1 6 43 28.34% 0.07 0.16
m 3546 20.7 2 14 62 55.89% 0.11 0.24
n 6605 8.0 1 5 25 4.19% 0.22 0.27
o 4223 8.0 1 5 25 3.29% 0.22 0.10
p 1139 9.8 1 5 34 22.04% 0.23 0.10
q 4473 105.6 1 58 349.4 68.99% 0.45 0.35
r 851 37.2 1 4 151.5 40.54% 0.40 0.23
s 1561 18.0 1 8 66 38.24% 0.26 0.34
t 13194 33.8 4 21 111 75.62% 0.27 0.28
u 7576 37.7 3 20 133 70.67% 0.20 0.16
v 3562 18.9 1 11 61 48.74% 0.31 0.07
w 986 8.9 1 6 25 3.45% 0.23 0.18
x 3085 43.6 2 28 137 76.11% 0.24 0.29
y 11349 36.3 1 21 126 66.27% 0.28 0.22

Table 1 Statistics of individual SH clusters. Here, kic refers to the within-cluster degree, p10−core is
the percentage of people who belong to a 10-core when the cluster is considered in isolation, C is the
clustering coefficient, and r is the degree assortativity. In response to a comment from reviewer 1, we
have dropped unused clusters 3 and 4 from this table

SH Network Properties
Percentage of people whose koc

ID N = 0 = 1 = 2 = 3 > 3
klm 11158 19.6% 12.4% 9.0% 6.7% 52.3%
nop 12224 45.5% 22.4% 11.9% 7.1% 13.1%
qrs 6891 68.3% 10.8% 5.5% 3.1% 12.2%
tuv 24406 36.9% 18.6% 10.9% 7.7% 25.9%
wxy 15447 57.6% 14.8% 8.0% 4.6% 15.0%

Table 2 Statistics of networks composed of three SH clusters from Table 1. Here, koc is the
out-of-cluster degree.
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Figure 2 Empirical three-cluster Social-Hash network qrs. See the text of Section 5 and Tables 1
and 2 for details about the Social-Hash clusters. In each cluster, we highlight one person in red;
we color that person’s within-cluster links yellow and out-of-cluster links light blue.

We report the average adoption in the last 100 time steps of 10000 time step sim-

ulations. Simulation results from reference [1] showed that 10000 time steps are

generally sufficient for adoption to reach its asymptotic value.

The left-hand panels of Figure 3 show the fraction of the network that has access

at late times, and the right-hand panels show the fraction that is active. In these five

three-cluster networks, we see that seeding one cluster consistently beats seeding

three clusters in the low p0 regime. The “costs” of overambitious seeding here can

be substantial: for networks LMN , OPQ, and RST , we observe up to 35-45% less

activity under the universal seeding strategy. There is only one network (FGH)

where universal seeding at t = 0 ever wins, and then only at high p0. Meanwhile,

the left-hand panels of Figure 3 show that, when the single-cluster seeding policies

win, it is often despite the fact that there are people who are never given access.

We put forward an argument for why seeding a single-cluster is so often preferable

in reference [1], which goes as follows: at early times in the repeated-usage model,

we are faced with a fundamental tradeoff. There are costs to seeding a cluster,

because by assumption, the rate of initial activity p0 is low. Therefore, some people

will adopt in unfavorable contexts, meaning that they will typically be unsatisfied

by how many of their friends are active when they are. This will result in some

permanent churn. On the other hand, there are also costs to not seeding a cluster:

in particular, people in other clusters lose out on the social support of people in the

unseeded cluster. We saw the same tradeoff at play in the toy example of Section 4.
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In reference [1], through simulations on synthetic networks, we demonstrated mul-

tiple regimes where this tradeoff plays out in different ways. When p0 is very low,

activity is not sustained in the long-term under any seeding strategy. As p0 is tuned

up from this regime, we initially enter a regime where the combined early activity in

all three clusters is sufficient to sustain long-term activity (i.e., the universal seeding

policy wins). At higher values of p0, two clusters can sustain long-term activity in

isolation, and it is “costly” in terms of asymptotic activity to seed the third. In

other words, seeding the third cluster at time t = 0 results in churn that could

have been avoided by waiting and granting access to the third cluster under more

favorable circumstances, when people in the two seeded clusters are active at very

high rates. Finally, if p0 is sufficiently high, a single cluster can sustain long-term

activity in isolation, and it is costly to seed any more at t = 0.

When studying this model on empirical networks, we typically only observe the

final regime, because of the inherent heterogeneity in the within-cluster degree dis-

tribution. If we seed a single cluster, there is usually some subnetwork of that

cluster (e.g., perhaps involving the highest-degree people) where long-term activity

can build up in isolation. Then, the activity in that subnetwork is usually sufficient

to bootstrap the spreading of favorable contexts for adoption through the rest of

the three-cluster network. Note that the other two regimes (where it is preferable

to seed 2 or 3 clusters) presumably still exist; we just do not observe them in Figure

3 because they occur in a very narrow and low range of p0. Furthermore, idiosyn-

crasies of graph topologies in empirical networks can produce cases like FGH, where

at high p0 we reenter a regime where seeding all three clusters is preferable. Despite

these anomalies, seeding one cluster very generally beats seeding three when the

repeated-usage model is simulated on real-world networks.

Threshold Model with Churn: In the case of the threshold model, simulations

are efficient enough that we can simulate every possible cluster-based seeding strat-

egy for each of the five three-cluster networks. We simulate a case where si = 5 for

all people. The final adoption curves vs. seed acceptance probability pa are shown

in Figure 4 .

The clearest case here is network nop. At the lowest values of pa, the strategy of

seeding all clusters leads to the highest asymptotic activity. This is for the same

reasons that we discussed in the case of the repeated-usage model: there is a tradeoff

at early times between exposing people to the product prematurely and missing out

on the social support that these people could provide to others. Asymptotic activity

first develops when the combined early activity in all three clusters is sufficient

to sustain long-term usage. As pa increases though, we observe a small regime

(around pa = 0.08) where seeding two clusters is optimal. Finally, we enter a regime

where seeding just one cluster (cluster p) beats out all other strategies in terms of

asymptotic activity.

The other three-cluster networks show similar effects, although the “costs” of

overambitious seeding are quantitatively much smaller. For example, in the case of

network klm, it is clear that the key ingredient in maximizing long-term adoption is

to seed cluster k. Seeding the other clusters is, at best, superfluous throughout the

simulated range and incurs some small costs as pa grows. In the cases of networks

qrs and wxy, a similar story holds for cluster q and y respectively. For network
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Figure 3 Comparison of cluster-based seeding approaches in the repeated-usage model. Different
rows correspond to different three-cluster networks from Table 2 of reference [1]. The left-hand
column shows the average asymptotic percentage of the population with access; the right-hand
column shows the average asymptotic percentage that is active. Legends are shared by the left
and right panels in each row. The parameters si = 2 and δ = 0.005 in these simulations. Each
data point is an average over 50 simulations. In this and all subsequent plots, we include 95%
confidence intervals, but they are sometimes smaller than the plot line.

tuv, seeding either cluster t or cluster u is sufficient, and seeding v is superfluous.

In all cases, the zoomed-in views on the right-hand side of Figure 4 show that, at

high pa, a single-cluster-seeding strategy performs best, although as noted above,

the “costs” of other seeding strategies are often very small.

7 Simulation Results: k-Core Seeding
We now turn our attention to a different type of seeding that can lead to better

long-term outcomes than universal seeding, even when there is no obvious cluster-

structure to leverage. Specifically, we will consider seeding, at t = 0, only the k-

core of the network under consideration. Here, the k-core is defined as usual: it

is the subnetwork that remains after repeatedly removing people with degree less

than k and all friendship edges incident to these people. The k-core, if it exists,

thus corresponds to a dense subnetwork of the original network. Such a seeding

approach has been motivated by much of the argumentation above. In particular,
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Figure 4 Comparison of cluster-based seeding approaches in the threshold model. Different rows
correspond to different three-cluster networks from Table 2. The left-hand column shows the final
percentage of the network adopting under various cluster-based seeding strategies; the right-hand
column shows the difference in the number adopting under seeding the single cluster with the
highest median degree vs. all three clusters. The parameter si = 5 in these simulations. Each data
point is an average over 100 simulations.
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it is motivated by the toy examples for both models, where seeding a dense core of

the network can be preferable to seeding the entire network.

Repeated-Usage Model: Figure 5 compares seeding the 10-core of various SH

clusters to seeding the entire cluster at time t = 0 in the repeated-usage model. As

in Section 6, we set all si = 2 here, meaning that everyone needs two active friends

to be satisfied during a product experience. We vary p0 and check which strategy

(10-core seeding or universal) wins out in the long-time limit. The asymptotic access

and activity values plotted in Figure 5 are again averages over the last 100 time

steps of 10000 time-step simulations.

The simulation results of Figure 5 show that 10-core seeding leads to more long-

term adoption than universal seeding over large ranges of the low p0 regime for

five different SH clusters. The costs of universal seeding, as compared to the 10-

core strategy, are often very large. Our interpretation of these results, echoing our

analysis of the toy examples of Section 4, is that it is preferable to allow activity

to build up in the core before expanding access to the periphery. This is because

people in the core, by virtue of having more friends overall, are much more likely

to have satisfying experiences when rates of activity are low. Meanwhile, people in

the periphery, because they depend on the usage of a few friends in order to have

satisfying experiences, are more likely to have positive product experiences if they

receive access after activity has built up in the core.

Threshold Model with Churn: We now study k-core seeding in the threshold

model. We will again set si = 5 in these simulations, meaning that each person

needs five active friends to become or remain active. We will compare the strategy

of seeding the 10-core of each SH cluster to seeding the entire cluster.

The simulation results in Figure 6 generally show three different regimes of behav-

ior. At very low pa, neither approach leads to substantial long-term adoption. As

pa grows, there is a regime where universal seeding outperforms 10-core seeding. At

still higher pa, 10-core seeding generally wins out. In several cases, 10-core seeding

wins by a few percentage points in terms of the total cluster size (clusters a, e, and

h). In others, the benefits of 10-core seeding are smaller, but still statistically robust

(clusters b, d, f , i, and j).

Again, the tradeoff here is similar to what we have observed previously: in the

regime where universal seeding outperforms 10-core seeding, the benefits of early

activity in the periphery for the core outweigh the costs to the periphery. Gener-

ally though, at high enough pa, the tradeoff flips, with the costs to the periphery

outweighing benefits to the core. Thus, the more conservative seeding strategy (i.e.,

10-core seeding) prevails.

8 Discussion: When is Overambitious Seeding Costly?
As we noted above in Section 3, in the repeated-usage model, the question of over-

ambitious seeding amounts to: is it beneficial to seed everyone if everyone whom

you seed will accept, but will use at a low rate? On the other hand, in the threshold

model, the question is: is it beneficial to seed everyone if only some of those people

will accept? Our simulation results show that the answer to both of these questions

can be “no” and that various conservative seeding strategies can do substantially

better. In this section, we will attempt to abstract from these observations some

general principles around when overambitious seeding should be a cause for concern.
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Figure 5 Comparison of 10-core and universal seeding in the repeated-usage model. Different
rows correspond to different SH clusters from Table 1. The left-hand column shows the average
asymptotic percentage of the population with access; the right-hand column shows the average
asymptotic percentage that is active. Legends are shared by the left and right panels in each row.
The parameters si = 2 and δ = 0.005 in these simulations. Each data point is an average over 50
simulations. We have amended the left-hand y-axis label in this plot in response to reviewer 1’s
comment that the previous version was not consistent with other plots in the paper.

In both cases, context is the key factor in explaining why overambitious seeding

is costly. If seeded individuals adopt in contexts where insufficiently many of their

friends are adopting or where their friends are not using sufficiently often, they may

churn. Meanwhile, if these same individuals are not seeded, better contexts may

emerge at later times for them to begin using the product. Thus, one rule-of-thumb

for when to worry about overambitious seeding is the following: overambitious seed-

ing can be costly whenever seeding results in contextually-unaware adoption choices

(e.g., people adopting uniformly at random, people using at a rate that’s indepen-

dent of their friends’ rates) but where continued usage crucially depends on context.

Note, however, that the effects of overambitious seeding are much more pro-

nounced in the repeated-usage model than in the threshold model. To understand

why this is the case, we should note one important distinction between the parame-

ter pa in the threshold model and the parameter p0 in the repeated-usage model. In

the threshold model, the parameter pa influences both whether a person adopts the
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Figure 6 Comparison of 10-core and universal seeding in the threshold model. Different rows
correspond to different SH clusters from Table 1. The left-hand column shows the final percentage
of the network adopting under various cluster-based seeding strategies; the right-hand column
shows the difference in the number adopting under seeding the 10-core vs. the entire cluster. The
parameter si = 5 in these simulations. Each data point is an average over 100 simulations.
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product at all and how much social support that person can expect at early times.

When pa is low, a person can expect little social support, but it is also less likely

that it matters, since the person is also less likely to adopt in the first place. When

pa is higher, a person is more likely to “accept” the product, but is also more likely

to experience social contexts that favor continued usage. This restricts the range of

pa where overambitious seeding is likely to be relevant. It also restricts the magni-

tude of the effect because, typically, the people who incur the costs of overambitious

seeding are those who adopt during the seeding round (i.e., in a context-unaware

way); pa constrains this proportion of the population.

We can contrast this with the role of p0 in the repeated-usage model. Here, p0

determines how much social support a person can expect at early times and also

determines the time scale over which a person will choose to have his or her initial

product experiences. Meanwhile, this parameter does not determine whether the

person has product experiences at all. At low values of p0, a large proportion of

people can still end up having bad experiences and churning. Hence, there is both a

wider range of p0 where overambitious seeding can be relevant and the proportion

of the population that can be “lost” due to a bad seeding strategy is large. This

suggests another principle around when we should be especially wary of the costs

of overambitious seeding: the problem can be especially severe when people’s initial

decisions to adopt the product are less correlated with the amount of social support

that they can receive at early times.

It is interesting to also consider recent related work by Sela et al. in this context.

These authors study product adoption through an SIR model, where a person adopts

(transitioning from the S to the I state) either in a budgeted seeding round or

because they subsequently have enough adopting friends. After adopting, a person

transitions from the influential (I) to non-influential (R) state after a fixed amount

of time. When there is a seeding budget b and people are prioritized for seeding by

eigenvector centrality, Sela et al. find that the final adoption rate is non-monotonic

in the budget b. They call this phenomenon the “flip anomaly” [30]. The “flip

anomaly” of Sela et al. also admits a contextual explanation along the lines of those

that we have proposed above: if a seeded person is the only adopting friend in

a non-seeded person’s local network, then the non-seeded person may not adopt

before the seeded person becomes non-influential. If better contexts for the non-

seeded person’s adoption emerge later on, the now non-influential friend has no

opportunity to contribute to that adoption [30].

There are two interesting points of comparison between the model of Sela et al.

and those that we have studied here. First, Sela et al. note that their “flip anomaly”

must reverse as the budget grows, because adoption is universal in their model [30].

This is also true of other models with similar properties that have recently been

reviewed by Centola [31]. Meanwhile, our results show how analogues of the flip

anomaly of Sela et al. can still persist with no seeding budget. Indeed, based on

the arguments in this paper, we conjecture that the “flip anomaly” would persist

in the unbudgeted case of the model of Sela et al. if adoption under seeding was

probabilistic rather than universal. A perhaps more interesting distinction is that

Sela et al. show how overambitious seeding can be costly even in the absence of

churn, because someone in the R state of their SIR model is still interpreted as
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an adopter. This shows that the “possibility of permanent churn” assumption that

we encoded into both of the models studied in this paper is not strictly necessary

for overambitious seeding to be a problem. Instead, we can make a more general

conjecture: overambitious seeding can be costly whenever it results in premature

exhaustion of opportunities for further spreading that would better be delayed to

later in the spreading process.

9 Conclusion
In this paper, we have revisited a question that we originally posed in [1]: suppose

a product developer wants to introduce a new social product to a population of

potential adopters and is unconstrained by any seeding budget. In this case, should

the developer give the product to everyone immediately (as implied by many classic

influence-maximization models), or should the developer adopt a more conservative

approach?

We have extended the results of [1] in various ways:

1 We have shown that overambitious seeding is not just a concern in the

repeated-usage model of [1] but can be a problem in more traditional threshold

models as well, once the possibility of churn is introduced.

2 We have studied both types of models analytically on certain simplified net-

work structures and thereby developed intuitions for why overambitious seed-

ing can be costly.

3 We have explored k-core seeding as an alternative to cluster-based seeding,

showing that the results of our earlier work are not tied to the cluster-based

approach; there are multiple conservative seeding strategies that can outper-

form seeding everyone at once.

Drawing upon simulation results, we have proposed some general principles

around when the possibility of overambitious seeding ought to be considered:

1 Overambitious seeding is a concern whenever early adoption can result in the

premature exhaustion of a resource for future spreading that would be better

delayed to a more favorable context for that spreading.

2 Overambitious seeding is especially a concern when people’s initial decisions

to adopt the product are less correlated with the amount of social support

that they can receive at early times.

We emphasize again that the models considered here exclude other pathways to

overexposure in the influence maximization problem, including negative word-of-

mouth, direct costs to rejection of the seed, and hipster effects. We have excluded

these effects to make the case that overambitious seeding can be detrimental in the

context of social products, even if none of these factors are at play. Of course, all of

these alternative mechanisms are important in real-world settings, and together with

the mechanism discussed in this paper, they make the case that product developers

should not always expend all of the marketing resources at their disposal.

There are many possible interesting extensions of this work. For example, we have

always assumed a homogeneous value of p0 and pa across the whole population of

potential adopters. The costs of overambitious seeding will vary if this assumption

of homogeneity is relaxed. If people with many friends have higher values of p0 or pa

and the friendship network is assortative by degree, presumably seeding everyone
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would produce an outcome that is more similar to just seeding the core, diminishing

the costs of overambitious seeding. On the other hand, if p0 and pa are negatively

correlated with degree, that could exacerbate the costs of overambitious seeding

and make the considerations of this paper more important.

Another consideration that would mitigate the costs of overambitious seeding in

the threshold model would be to allow multiple adoptions per person (i.e., if a person

is willing to adopt m times, where m > 1). This is because adoptions after the first

would happen in contextually aware (and thus, favorable) circumstances, because

the person has enough adopting neighbors to adopt. In such a setting, it would be

interesting to ask if enriching the model with other aspects of real-world complexity

(e.g., some amount of spontaneous churn, some within-person variance over time in

social expectations for the product) might reintroduce the costs of overambitious

seeding, or fundamentally change the tradeoffs considered here in some unforeseen

way.

Here and in [1], we have always taken the perspective that what matters in in-

fluence maximization is adoption in the long-time limit. However, it is possible

to consider scenarios where there are time constraints, and the goal is to maximize

adoption within a fixed time [32]. This too could fundamentally change the tradeoffs

discussed here, perhaps shifting them in favor of seeding less conservatively.

On the other hand, a very interesting recent line of work in the influence max-

imization literature considers other target outcomes besides maximum adoption

[33, 34, 35, 36, 37, 38]. As one example, references [33] and [34] consider maxi-

mizing the diversity of information shared in a social network. Are “overambitious

seeding” considerations relevant in such a setting, or is seeding as widely as possi-

ble beneficial for promoting diversity? This seems like a fruitful question to pursue,

given the findings of this paper for the more traditional influence-maximization

problem.
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