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Abstract
We present the largest and most comprehensive
empirical study of pre-trained visual representa-
tions (PVRs) or visual ‘foundation models’ for
Embodied AI. First, we curate CORTEXBENCH,
consisting of 17 different tasks spanning locomo-
tion, navigation, dexterous, and mobile manipu-
lation. Next, we systematically evaluate existing
PVRs and find that none is universally dominant.

To study the effect of pre-training data scale and
diversity, we combine over 4,000 hours of egocen-
tric videos from 7 different sources (over 5.6M
images) and ImageNet to train different-sized vi-
sion transformers using Masked Auto-Encoding
(MAE) on slices of this data. Contrary to infer-
ences from prior work, we find that scaling dataset
size and diversity does not improve performance
universally (but does so on average).

Our largest model, named VC-1, outperforms
all prior PVRs on average but does not univer-
sally dominate either. Finally, we show that task-
or domain-specific adaptation of VC-1 leads to
substantial gains, with VC-1 (adapted) achieving
competitive or superior performance than the best
known results on all of the benchmarks in COR-
TEXBENCH. These models required over 10,000
GPU-hours to train and can be found on our web-
site for the benefit of the research community.

1. Introduction
Eyesight is considered one of the greatest inventions of bio-
logical evolution (Lane, 2010). Out of the 38 known phyla
in the animal kingdom, only 6 have evolved eyes yet they
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Figure 1. An artificial visual cortex for embodied intelligence must
support a diverse range of sensorimotor skills, environments, and
embodiments; we curate CORTEXBENCH to systematically mea-
sure progress towards this ambitious goal. Our strongest model,
denoted VC-1 (adapted) above, is competitive with or outperforms
the best prior results (success rates) on all benchmarks in COR-
TEXBENCH. Notice that this comparison is particularly unforgiv-
ing because the best prior results are benchmark-specific and not
constrained to share any aspect of their design.

account for 95% of all species (Lane, 2010) – vision seems
to confer an enormous advantage. Of course, the evolution
of visual sensing via eyes progresses in concordance with vi-
sual perception – via a visual cortex, the region of the brain
that (together with the motor cortex) enables an organism to
convert sight into movement. In this work, we ask the same
question Fukushima (Fukushima, 1975; 1980) did nearly
50 years ago – how do we design an artificial visual cortex,
the module in a larger computational system that enables an
artificial agent to convert camera input into actions?

In contemporary AI, this question has been operationalized
as the design of pre-trained visual representations (PVRs) or

https://eai-vc.github.io
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visual ‘foundation models’ for embodied AI (EAI).1 Indeed,
recent work has shown that PVRs trained on large quanti-
ties of egocentric-videos and web-images can substantially
improve performance and learning efficiency for naviga-
tion (Khandelwal et al., 2022; Yadav et al., 2022b; 2023)
and manipulation tasks (Parisi et al., 2022; Nair et al., 2022;
Radosavovic et al., 2022; Ma et al., 2022). Unfortunately,
each study is fundamentally incommensurable, as each uses
different self-supervised learning (SSL) algorithms on dif-
ferent pre-training datasets, designed for, and evaluated on
different downstream EAI tasks. Naturally, one might ask:
is there a universally-dominant configuration? Essentially,
does an artificial visual cortex already exist?2

To answer this question, we conduct the largest and most
comprehensive empirical study to-date of visual foundation
models for EAI. First, we curate CORTEXBENCH, a new
benchmark for evaluating PVRs, consisting of 17 tasks span-
ning low-level locomotion (Tassa et al., 2018), table-top ma-
nipulation of rigid and articulated objects (Yu et al., 2020),
dexterous manipulation (Rajeswaran et al., 2018), multi-
finger coordinated manipulation (Wüthrich et al., 2020),
indoor visual navigation (Savva et al., 2019a), and mobile
manipulation (Szot et al., 2021). The visual environments
span from flat infinite planes to table-top settings to pho-
torealistic 3D scans of real-world indoor spaces. The agent
embodiments vary from stationary arms to dexterous hands
to idealized cylindrical navigation agents to articulated
mobile manipulators. The learning conditions vary from
few-shot imitation learning to large-scale reinforcement
learning. The exhaustiveness of this study enables us to
draw conclusions with unprecedented scope and confidence.

Our first finding is a negative result. We discover that
while existing PVRs generally outperform learning-from-
scratch baselines, none is universally dominant. Instead,
we find that PVRs tend to work best in the domains (lo-
comotion, manipulation, navigation) they were originally
designed for. We note that no claims of universality were
made in prior work, so this finding is illustrative rather than
refutative. Overall, serendipity did not come to pass – an
artificial visual cortex does not already exist.3 However,
curiously, the kinds of PVRs that are locally-dominant in
CORTEXBENCH differ significantly in the size and type of
pre-training datasets: CLIP (Radford et al., 2021) was pre-
trained on 400M image-text pairs from the web; MVP (Ra-
dosavovic et al., 2022) on 4.5M frames from web-images
and many egocentric-video datasets; R3M (Nair et al., 2022)
on ∼5M frames from Ego4D – yet, each performs best on
some subset of tasks in CORTEXBENCH. This leads to a
natural question: how does scaling model size, dataset size,

1We use embodied AI (EAI) as an umbrella term for all commu-
nities studying visuomotor control such as robot learning, vision-
based reinforcement learning, egocentric computer vision, etc.

2To the degree of our ability to measure it.

or diversity affect performance on CORTEXBENCH? Can
we use scaling as a means to learn a single PVR that works
for all of the diverse tasks in CORTEXBENCH?

To study these questions, we combine over 4,000 hours of
egocentric videos from 7 different sources containing hu-
mans manipulating objects and navigating indoor spaces
encountered in daily life, together with ImageNet. From
this union, we create 4 pre-training datasets of varying size
and diversity, with the largest containing over 5.6M images.
We train vision transformers (ViT-B and ViT-L) (Dosovit-
skiy et al., 2020) on these 4 datasets using Masked Auto-
Encoding (MAE) (He et al., 2021), and systematically ana-
lyze their performance on CORTEXBENCH. To benefit the
EAI community, we will open-source these models, which
required over 10,000 GPU hours to train.

We do find evidence supporting the scaling hypothesis, but
the picture that emerges is more nuanced than what a super-
ficial reading might suggest. Our largest model trained on
all data, named VC-1, outperforms the best existing PVR by
1.2% on average. However, VC-1 does not universally dom-
inate either – i.e., there are PVRs trained on smaller amounts
of data that outperform it on specific tasks. A similar trend
emerges for data diversity – more is better on average, but
not universally. For instance, the best performance on the
Mobile-Pick task from Habitat 2.0 (Szot et al., 2021) is
achieved by pre-training on the subset of video data focused
on manipulation; presumably because the mobility involved
in the task is fairly limited. Thus, our second key finding is:
Naively scaling dataset size and diversity does not improve
performance uniformly across benchmarks.

Our findings reveal a challenge and opportunity for the com-
munity – the search for a PVR that is universally dominant
(or ‘foundational’) for EAI calls for innovations in architec-
ture, learning paradigm, data engineering, and more. As the
final step in this paper, but as a first step towards this open
problem, we study adapting VC-1 with either task-specific
training losses or datasets (via MAE (He et al., 2021)) to
specialize VC-1 for each domain. We find that adapting
VC-1 results in it becoming competitive with or outper-
forming the best prior results on all of the benchmarks
in CORTEXBENCH. We highlight that this comparison is
particularly unforgiving, since best prior results are highly
domain-specific and are not constrained to share any aspect
of their design. To our knowledge, VC-1 (adapted) is the
first PVR that is competitive with (or outperforms) state-of-
art results on such a diverse set of EAI tasks ( Figure 1).

We will release code for CORTEXBENCH to enable the
EAI, robotics, and CV communities to benchmark their
own models, and share our pre-trained models (including
VC-1) that we believe can serve as a starting point for all
visuomotor tasks of interest today.
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2. Related Work
Pre-trained visual representations (PVRs). The last few
years have seen increasing interest in the self-supervised
learning (SSL) of visual representations (He et al., 2021;
Caron et al., 2020; Baevski et al., 2022b; Chen et al., 2020;
2021). These algorithms use contrastive (Chen et al., 2020;
2021), distillation-based (Caron et al., 2020; Baevski et al.,
2022b), or reconstructive (Bao et al., 2021; He et al., 2021)
objectives for training. Recently, a flurry of works have
proposed using the vision transformers (ViTs) (Dosovitskiy
et al., 2021) with masked image modeling (He et al., 2021;
Baevski et al., 2022a; Yao et al., 2022), which among
other benefits reduces the computation time required for
pre-training. In this work, we use one such pre-training
algorithm (MAE (He et al., 2021)) to explore scaling and
adapting pre-trained visual representations (PVRs).

PVRs for embodied AI. Inspired by the advancements
in self-supervised learning, recent work has incorporated
visual representation learning into the training pipelines
for EAI agents (Parisi et al., 2022; Nair et al., 2022; Ra-
dosavovic et al., 2022; Ma et al., 2022; Khandelwal et al.,
2022; Yadav et al., 2022b; 2023). Specifically, Parisi et al.
(2022) evaluate several PVRs trained with supervised or self-
supervised learning on a range of EAI tasks, demonstrat-
ing promising results under a few-shot imitation learning
evaluation protocol. Nair et al. (2022); Radosavovic et al.
(2022); Ma et al. (2022) introduce new methods for pre-
training visual representations using egocentric video data,
targeting robotic manipulation tasks. Similarly, Khandelwal
et al. (2022); Yadav et al. (2022b; 2023) use pre-trained
visual representations to improve performance on multiple
visual navigation tasks. Closely related, Radosavovic et al.
(2022) demonstrate that MAE pre-training on internet-scale
video and image data can produce effective visual repre-
sentations for robotic manipulation tasks. In contrast, our
work studies a larger range of embodied AI tasks (collected
in CORTEXBENCH) to understand how PVRs can provide
a general-purpose foundation for embodied agents and ex-
plores in-domain model adaptation for various tasks.

Scaling model and dataset size. Several works have
showed that scaling model and dataset size improves per-
formance on vision tasks like image classification (Zhai
et al., 2022; Tian et al., 2021; Goyal et al., 2021). In EAI,
Radosavovic et al. (2022) find that scaling model and data
sizes improves downstream policy performances for robotic
manipulation tasks. While such prior works have been con-
fined to narrow domains like image classification and robotic
manipulation, our work is the first to study if scaling can
provide better models on a broad range of EAI tasks.

Adapting PVRs. When and how to adapt PVRs for down-
stream applications remains an open research question (Ku-
mar et al., 2022; Wijmans et al., 2022; Kirichenko et al.,

Benchmark
Suite

Observation
Space

Action
Space

Goal
Specification

Policy
Learning

Adroit (AD) RGB + proprio. Continuous - IL
Metaworld (MW) RGB + proprio. Continuous - IL
DMControl (DMC) RGB + proprio. Continuous - IL
Trifinger (TF) RGB + proprio. Continuous Goal Image/Position IL
ObjectNav (ON) RGB + proprio. Discrete Object Category IL
ImageNav (IN) RGB Discrete Goal Image RL
MobilePick (MP) RGB + proprio. Continuous Goal Position RL

Table 1. CORTEXBENCH includes tasks from 7 diverse bench-
marks with different combinations of observations, actions, and
goals as well as different standard policy learning paradigms.

2022; Lee et al., 2022; Goyal et al., 2022). In the con-
text of EAI, Parisi et al. (2022) and Hansen et al. (2022b)
show that naively fine-tuning PVRs with behavior cloning
can reduce performance in simulation, and Radosavovic
et al. (2022) observe minimal gains in real-world tasks ma-
nipulation tasks. In large-scale RL settings, Yadav et al.
(2022b; 2023) show that end-to-end finetuning considerably
improves performance for indoor visual navigation. By com-
parison, Pari et al. (2021) find simple k-nearest-neighbor
adaptation works well for real-world visual imitation tasks.
Our work neither aims nor expects to be the final word on
this fertile topic.

3. Benchmarking Progress Towards an
Artificial Visual Cortex for Embodied AI

This section describes CORTEXBENCH, a curated set of
EAI tasks designed to evaluate the ability of pre-trained
visual representations (PVRs) to support a wide variety of
EAI applications. Specifically, CORTEXBENCH includes
17 tasks drawn from 7 existing EAI benchmarks as shown
in Figure 1. For each task, we delineate a downstream policy
learning paradigm (e.g., few-shot imitation learning) and
evaluation protocol that follows community standards in
each domain (Section 3.2). By fixing the tasks and down-
stream learning methods as shown in Figure 2, we are able
to focus our evaluations on the contribution of PVRs, which
allows us to measure progress towards the development of
an artificial visual cortex for embodied intelligence. We use
CORTEXBENCH to conduct the largest and most compre-
hensive empirical study to-date of PVRs from prior work
(Section 4).

We recommend two metrics to evaluate overall performance:
Mean Success and Mean Rank. Mean Success: the average
success rate across all benchmarks. Mean Rank: for each
benchmark, we rank PVRs based on their success rate; then
we average these rankings across all benchmarks.

3.1. Embodied AI Tasks in CORTEXBENCH

CORTEXBENCH includes tasks from 7 benchmarks listed
in Table 1, illustrated in Figure 1, and described here:

Adroit (AD) (Rajeswaran et al., 2018) is a suite of chal-
lenging dexterous manipulation tasks in which an agent
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Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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Figure 1: Pre-Training Reusable Representations for Robot Manipulation (R3M): We pre-train a visual
representation using diverse human video datasets like Ego4D [16], and study its effectiveness for downstream
robot manipulation tasks. Our representation model, R3M, is trained using a combination of time-contrastive
learning, video-language alignment, and an L1 sparsity penalty. We find that R3M enables data efficient imitation
learning across several simulated and real-world robot manipulation tasks.

NLP tasks. In this backdrop, we ask the pertinent question: can visual representations pre-trained on
diverse human videos enable efficient downstream learning of robotic manipulation skills?

We hypothesize that a good representation for vision-based robotic manipulation consists of three
components. First, it should contain information necessary for physical interaction, and thus should
capture the temporal dynamics of the scene (i.e. how states might transition to other states). Second,
it should have a prior over semantic relevance, and should focus on task relevant features like objects
and their relationships. Finally, it should be compact, and not include features irrelevant to the above
criteria (e.g. backgrounds). Towards satisfying these three criteria, we study a representation learning
approach that combines (1) time contrastive learning [19] to learn a representation that captures
temporal dynamics, (2) video-language alignment to capture semantically relevant features of the
scene, and (3) L1 and L2 penalties to encourage sparsity. Our experimental evaluation in Section 4.4
finds that all three components are important for training highly performant representations.

In this work we empirically demonstrate that representations pre-trained on diverse human video
datasets like Ego4D [16] can enable efficient downstream policy learning for robotic manipulation.
Our core contribution is an artifact – the pre-trained vision model – that can be used readily in
other work. Concretely, we pre-train a reusable representation for robotic manipulation (R3M),
which can be used as a frozen perception module for downstream policy learning in simulated and
real robot manipulation tasks. We demonstrate this via extensive experimental results across three
existing benchmark simulation environments (Adroit [20], Franka-Kitchen [21], and MetaWorld
[22]) as well as real robot experiments in a cluttered apartment setting. R3M features outperform
a wide range of visual representations like CLIP [12], (supervised) ImageNet [2], MoCo [23, 24],
and learning from scratch by over 10% when evaluated across 12 tasks, 9 viewpoints, and 3 different
simulation environments. On a Franka Emika Panda robot, R3M enables learning challenging
tasks like putting lettuce in a pan and folding a towel with a 50+% average success rate, given
less than 10 minutes of human demonstrations (see Figure 1), which is nearly double the success
rate compared to CLIP features. Overall, on the basis of these results, we believe that R3M has
the potential to become a standard vision model for robot manipulation, which can be simply
downloaded and used off-the-shelf for any robot manipulation task or environment. See https:

//sites.google.com/view/.robot-r3m for pre-trained models and code.

2 Related Work
Representation Learning for Robotics. Our work is certainly not the first to study the problem of
learning general representations for robotics. One line of work focuses on learning representations
from in-domain data, that is, using data from the target environment and task for training the
representation. Such methods include contrastive learning with data augmentation [25, 26, 27, 28],
dynamics prediction [29, 30], bi-simulation [31], temporal or goal distance [32, 33], or domain
specific information [34]. However, because they are trained on data exclusively from the target
domain and task, the learned representations fail to generalize and cannot be re-used to enable faster
learning in unseen tasks and environments.
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Fig. 5. Sample visualization of the input image pair (le�), our inferred MPI representation (middle), where we show the alpha-multiplied color image at a
subset of the depth planes from near to far (top to bo�om, le� to right), and novel views rendered from the MPI (right). The predicted MPI is able to capture
the scene appearance in a layer-wise manner (near to far) respecting the scene geometry.

of 1.0 for PSNR, for example, would mean that this method always
had the highest PSNR score.

We �nd that 1) our network architecture is signi�cantly more ef-
fective than the simple 4-layer network used in the original Kalantari
paper; 2) the VGG perceptual loss helps improve the performance
over the pixel reconstruction loss (see Section 5.4 for discussion);
3) our model outperforms the better of the two Kalantari variants
(VGG with our network architecture), indicating the high-quality
of novel views rendered from the MPI representation.

We also observe that when rendering continuous view sequences
of the same scene, our results tend to be more spatially coherent
than Kalantari, and produce fewer frame-to-frame artifacts. We hy-
pothesize that this is because, unlike the Kalantari model, we infer
a single scene-level MPI representation that is shared for render-
ing all target views, which implicitly imposes a smoothness prior
when rendering nearby views. Please see the video for qualitative
comparisons of our method to Kalantari on rendered sequences.

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.

Evaluation 
Results

Figure 2. Overview of CORTEXBENCH. We assemble relevant datasets and visual representation learning algorithms to produce candidate
Visual Cortex models, which are then evaluated using either reinforcement or imitation learning on a set of highly diverse tasks.

must control a 28-DoF anthropomorphic hand to perform
a variety of tasks. We study the two hardest tasks from
Adroit: Relocate and Reorient-Pen. In these tasks,
an agent must manipulate an object into a goal position and
orientation, where the goal must be inferred from the scene.

MetaWorld (MW) (Yu et al., 2020) is a collection of tasks
in which an agent commands a Sawyer robot arm to ma-
nipulate objects in a tabletop environment. We consider
five tasks from MetaWorld: Assembly, Bin-Picking,
Button-Press, Drawer-Open, and Hammer, which
follows the evaluations performed in (Nair et al., 2022).

DeepMind Control (DMC) (Tassa et al., 2018) is a
widely studied benchmark for image-based continuous
control in which an agent performs low-level locomo-
tion and object manipulation tasks. We consider five
tasks from DMC: Finger-Spin, Reacher-Hard,
Cheetah-Run, Walker-Stand, and Walker-Walk,
which follows the work in (Parisi et al., 2022).

TriFinger (TF) is a robot, introduced in (Wüthrich et al.,
2020), that is composed of a three-finger hand with 3-DoF
per finger. We consider two TriFinger tasks: Reach-Cube
and Push-Cube. The Push-Cube task was part of the
Real Robot Challenge 2020 (Real Robot Challenge 2020).
We also consider the easier Reach-Cube task, which (Dit-
tadi et al., 2021) also studies. In these tasks, the agent must
either touch the cube with one finger (Reach-Cube) or
push the cube and move it to a goal location (Push-Cube).

Habitat (Savva et al., 2019a) is a simulation platform that
includes several visual navigation tasks in which agents
explore highly photo-realistic unseen 3D environments.
We consider two semantic navigation tasks in Habitat:
image-goal navigation (ImageNav) (Zhu et al., 2017)
and object-goal navigation (ObjectNav) (Batra et al.,
2020). In both tasks, the agent starts at a random location
in an unknown 3D environment and must find a goal
location – specified with an image taken from the goal
location in ImageNav or with the name of an object (e.g.,

‘chair’) in ObjectNav. Evaluation is conducted on unseen
environments, thus testing the generalization capabilities
of the visual encoder and policy.

Habitat 2.0 (Szot et al., 2021) includes a set of mobile ma-
nipulation tasks in which an agent controls a Fetch robot
with a 7-DoF arm, mobile base (Gu et al., 2022), and suc-
tion gripper to rearrange objects in apartment scenes. We
consider a challenging version of the Mobile-Pick (MP)
task from Habitat 2.0, in which an agent must pick up a
target object from a cluttered receptacle (e.g., a counter)
while starting from a position in which the object is outside
of the robot’s reach (thus, requiring navigation). We relax
the dense goal specification as described in Appendix A.6.

3.2. Downstream Policy Learning
Given a frozen PVR, an agent needs to learn a policy for
each task. The EAI community has developed a range of
policy learning algorithms from few-shot imitation learning
(IL) to large-scale reinforcement learning (RL). For each
task in CORTEXBENCH, we conform to the community stan-
dard for achieving state-of-art performance in that domain.

“MuJoCo Tasks” On the tasks from the Adroit, MetaWorld,
and DMC suites we train policies using behavior cloning
on a small number of expert demonstrations (100 for Adroit
and DMC and 25 for MetaWorld), which follows Parisi et al.
(2022); Nair et al. (2022). Specifically, we train policies for
100 epochs and report the average rollout performance on
the test set for the best intermediate policy during training.
For all tasks, the policy is a 3-layer MLP. When using vision
transformers (ViT) based PVRs, we use the [CLS] token as
input to the policy, and with ResNets we use features from
the final convolutional layer after global average pooling.
These design choices follow prior work such as Radosavovic
et al. (2022); Nair et al. (2022).

“Trifinger Tasks” For TriFinger, we train policies using
behavior cloning on 100 demonstrations per task. Specif-
ically, we train a policy network composed of a 3-layer
MLP for 100 epochs for Reach-Cube and 1,000 epochs
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for Move-Cube. We report the average score for the best
checkpoint over the course of training. As in the “Mu-
JoCo Tasks”, the input to the policy is the [CLS] token for
ViT-based PVRs and average pooled features from the last
convolutional layer for ResNet-based models.

“Habitat Tasks” We train ObjectNav policies with be-
havior cloning on 77k human demonstrations (Yadav et al.,
2022c) collected by Habitat-Web (Ramrakhya et al., 2022b),
totaling 360M environment steps. For ImageNav and the
Habitat 2.0 Mobile-Pick task, we use RL for 500M en-
vironment steps with DD-PPO (Wijmans et al., 2020) and
VER (Wijmans et al., 2022). We use patch representations
for ViT-based PVRs and grid-features from last convolu-
tional layer for ResNet models, passed through a compres-
sion layer (Savva et al., 2019a) for a lower dimensional rep-
resentation for use by the policy layers, which is a 2-layer
LSTM for navigation and a 2-layer GRU for manipulation.

More details on tasks and training are in Appendix A.6.

4. Do we already have a foundation model?
First, we evaluate several existing pre-trained visual rep-
resentations (PVRs) on CORTEXBENCH to study whether
existing open-sourced visual backbones can consistently
perform well across all tasks. For all evaluations we con-
sider frozen visual representations to disentangle the effect
of learned representations from downstream task learning.
Specifically, we include the following models:

– CLIP (Radford et al., 2021) Contrastive image-language
pre-training objective; Trains on 400M images-text pairs
from the internet (WIT); ViT-B backbone.

– R3M (Nair et al., 2022) Time-Contrastive video-language
alignment pre-training objective; Trains on 5M images
from a subset of Ego4D; ResNet-50 backbone.

– MVP (Radosavovic et al., 2022). Pre-trains with MAE;
Trains on 4.5M images from Egocentric videos and Ima-
geNet; ViT-B and ViT-L backbones.

– VIP (Ma et al., 2022). Goal-conditioned value function
pre-training objective; Trains on 5M images from a subset
of Ego4D; ResNet-50 backbone.

These models cover a wide range of architectures, pre-
training objectives, and pre-training datasets, constituting
a solid set for comparisons. Additionally, we include ran-
domly initialized ViTs with both frozen weights and fine-
tuned weights to assess the necessity of pre-training and the
limitations of pure end-to-end in-domain learning.

Table 2 shows the evaluation results aggregated by bench-
mark; no single model excels in all cases. Among all of
the models evaluated, R3M performs the best on Adroit,
MetaWorld, and DMControl. While MVP (ViT-L) performs
best on Trifinger, ImageNav, and Mobile Pick. CLIP, on the

other hand, achieves the best results on ObjectNav.

1 2 3 4 5 6 7 8
Rank per Task

MVP (VIT-L)

MVP (VIT-B)

R3M (RN-50)

CLIP (VIT-B)

VIP (RN-50)

Random finetune (VIT-B)

Random (VIT-L)

Random (VIT-B)

Figure 3. Rank distribution per model. For every model, we com-
pute the ranks it achieved on each of the 7 benchmarks. We visual-
ize them as vertical lines, where each rank number x receives a tick
if that model achieved such rank x. For instance, MVP (ViT-L)
achieves ranks 1,1,1,2,3,3,4 across the 7 benchmarks. Significant
variability exists in the performance of PVRs across benchmarks.

The variance in performance of existing PVRs on COR-
TEXBENCH is further illustrated in Figure 3. Indeed, PVRs
can be successful on some benchmarks but fail on others;
for instance, while CLIP is the best model for ObjectNav
(ranking first), its performance is poor on Adroit and Meta-
World (ranking fifth). This variance highlights that we do
not yet have one strong performing artificial visual cortex
for embodied AI yet.

5. Analyzing the Scaling Hypothesis for EAI
The previous section investigated models pre-trained on
datasets of varying size and diversity. Interestingly, while
the model pre-trained on the largest dataset (CLIP) performs
well on one benchmark (ObjectNav) it does not perform well
across all tasks. We now ask: how much does the relevance
and diversity of the pre-training dataset and the model size
matter? To study this, we fix the pre-training objective –
MAE (He et al., 2021) – and then vary the composition of the
pre-training dataset and the size of the visual backbone (ViT-
B with 86M parameters and ViT-L with 307M parameters).
We measure the corresponding changes in performance on
CORTEXBENCH. MAE is selected for these experiments
due to the strong performance on CORTEXBENCH of the
MVP (Radosavovic et al., 2022) models (Table 2), which
use the MAE pre-training objective.

5.1. Constructing a Pre-training Dataset for EAI
To evaluate the impact of dataset size and diversity on our
benchmark tasks, which involve various navigation and ma-
nipulation challenges, we employ a combination of nine
datasets. These datasets include Ego4D (Grauman et al.,
2022), 100 Days of Hands (100DOH) (Shan et al., 2020),
Something-Something v2 (SS-V2) (Goyal et al., 2017),
and Epic Kitchens (Damen et al., 2018). This subset con-
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Imitation Learning Reinforcement Learning Mean

# Model Adroit MetaWorld DMControl Tri-Finger ObjectNav ImageNav Mobile Pick Rank Success

1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Best prior result (Frozen PVR) 75 80 77 - 54.4 61.8 -

3 Random (ViT-B) Frozen 2.0 ± 2.0 0.5 ± 0.5 10.1 ± 0.6 57.8 ± 0.5 19.2 ± 0.9 42.1 ± 0.8 10.8 ± 1.4 7.2 20.4
4 Random (ViT-L) Frozen 2.7 ± 1.8 0.5 ± 0.5 9.1 ± 0.2 57.2 ± 0.9 19.3 ± 0.9 45.2 ± 0.8 20.6 ± 1.8 6.9 22.1
5 Random (ViT-B) Fine-tuned 44.0 ± 2.0 49.9 ± 7.3 43.5 ± 2.4 56.1 ± 1.3 28.5 ± 1.0 62.5 ± 0.7 47.6 ± 2.2 5.3 47.4

6 MVP (ViT-B) 48.0 ± 3.3 91.2 ± 2.9 65.9 ± 2.4 59.7 ± 0.3 51.2 ± 1.1 64.7 ± 0.7 56.0 ± 2.2 3.1 62.4
7 MVP (ViT-L) 53.3 ± 4.1 87.5 ± 3.4 69.2 ± 1.5 74.1 ± 0.3 55.0 ± 1.1 68.1 ± 0.7 65.4 ± 2.1 2.1 67.5
8 CLIP (ViT-B) 47.3 ± 3.0 75.5 ± 3.4 55.5 ± 1.4 62.0 ± 0.5 56.6 ± 1.1 52.2 ± 0.8 49.8 ± 2.2 3.9 57.0
9 VIP (RN-50) 54.0 ± 4.8 90.1 ± 2.2 72.5 ± 2.7 66.7 ± 0.2 26.4 ± 1.0 48.8 ± 0.8 7.2 ± 1.2 4.0 52.3
10 R3M (RN-50) 73.3 ± 2.0 96.0 ± 1.1 81.1 ± 0.7 69.2 ± 0.8 22.7 ± 0.9 30.6 ± 0.7 33.2 ± 2.1 3.4 58.0

Table 2. Performance of different frozen pre-trained visual representations on a diverse suite of evaluation domains. Best prior results
means that the results are the best reported in literature prior to this work. Overall, we find that no single PVR consistently performs the
best across all benchmarks. However, we find that several of these pre-trained models often outperform a random training from scratch
baseline. Best prior results sources (row 1): Adroit and MetaWorld approximated from (Nair et al., 2022), DMControl from (Parisi et al.,
2022), ImageNav from (Yadav et al., 2022b), ObjectNav from (Ramrakhya et al., 2023). Frozen PVR Sources (row 2): Adroit, MetaWorld,
and DMControl are the same as SOTA, ImageNav from (Yadav et al., 2022b), ObjectNav from (Deitke et al., 2022b).

Name Frames Used

Ego4D 2,790,520
Ego4D+M (Manipulation) 3,538,291
Ego4D+N (Navigation) 3,593,049
Ego4D+MN (Manipulation, Navigation) 4,340,820
Ego4D+MNI (Manipulation, Navigation, ImageNet) 5,621,987

Table 3. Datasets assembled to study effects of pre-training dataset
size, diversity, and relevance – the largest of which (Ego4D+MNI)
has 5.6M frames. For a detailed breakdown of the composition of
each dataset, see Table 6 in Appendix A.2

sists of videos showcasing people manipulating objects and
are comparable to the datasets used in MVP (Radosavovic
et al., 2022). Additionally, we use two egocentric indoor
navigation datasets: the Real Estate 10K dataset (Zhou
et al., 2018) and the OpenHouse24 dataset (described in Ap-
pendix A.2.1). Finally, we include ImageNet (Deng et al.,
2009) as a representative static internet image dataset.

We strategically select combinations of these datasets (listed
in Table 3 and below) to answer the following questions:

– What is the impact of scaling dataset size and diversity?
– How does the inclusion of less-relevant datasets influence

the performance of PVRs on embodied AI tasks?

Ego4D (Grauman et al., 2022) is our base pre-training
dataset and encompasses a wide range of egocentric videos
consisting of daily life activities such as home, leisure, trans-
portation, and workplace activities.

Ego4D+M extends Ego4D with three object manipulation-
centric datasets: 100DOH, SS-v2, and Epic Kitchens. This
results in a dataset comprising 3.5 million frames that is
primarily focused on manipulation scenarios.

Ego4D+N extends Ego4D with two egocentric indoor nav-
igation datasets: OpenHouse24 and RealEstate10K. This
results in a dataset with 3.5 million frames, which is similar

in size to Ego4D+M, but is more diverse because it contains
a larger proportion of navigation data than the manipulation-
centric datasets Ego4D and Ego4D+M3.

Ego4D+MN combines Ego4D with both the three object
manipulation-centric datasets and two indoor navigation
dataset, resulting a dataset with 4.3 million frames. While
larger than Ego4D+M and Ego4D+N, it does not include
any new types of data beyond the manipulation and navi-
gation videos in the previous subsets. Thus, it is no more
diverse than Ego4D+N (which includes both types of data).

Ego4D+MNI includes Ego4D, all of the manipulation-
centric and indoor navigation datasets, and ImageNet for a
total of 5.6M frames. This dataset allows us to explore the
impact of static internet images on our benchmark tasks.

5.2. Scaling Hypothesis Findings
We now turn to analyzing the effect of increasing model size,
dataset size, and dataset diversity. The full set of results is
shown in Figure 4 and Table 4. The key takeaways are:

Model Size. We find that increasing model size positively
impacts performance on CORTEXBENCH. Specifically,
in Figure 4a, we find that with all pre-training datasets,
switching from ViT-B to ViT-L improves average perfor-
mance on CORTEXBENCH. However, in Table 4, we find
exceptions where this general trend does not hold. For in-
stance, when pre-trained on Ego4D+MNI, the ViT-B model
outperforms the ViT-L model on MetaWorld and Trifinger.

Dataset Size and Diversity. Figure 4b shows that, in gen-
eral, increasing dataset size and diversity leads to improved
performance. Models are are ordered from right to left by
increasing size and the diversity of their pre-training dataset,

3While Ego4D does contain navigation data (e.g., people mov-
ing from location to another), the dataset is heavily skewed towards
object manipulation activities.
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(c) ranking of all models
Figure 4. Scaling experiments: Visualizing model performance averaged across all benchmarks in Table 4. Overall, we demonstrate
modest but positive scaling trends in both (a) scaling model size, and (b) dataset diversity. c) Average ranking across all benchmarks. We
compare existing PVRs (baselines) (Table 2) and scaling models (Table 4) by showcasing their ranking across all benchmarks, VC-1:
Ego4D+MNI (ViT-L) achieves the highest average rank.

and we mostly see improvements for both ViT-B and ViT-L.

For instance, Ego4D+M slightly improves upon Ego4D by
0.6 and 0.9 points (62.2 → 62.8 and 63.5 → 64.4) in the case
of ViT-B and ViT-L, respectively. The gains with Ego4D+N
are larger and it outperforms Ego4D by 1.6 points using
ViT-B (62.2 → 63.8) and by 3.6 points for ViT-L (63.5 →
67.1). It is interesting to note that Ego4D+N has a larger
improvement over the base Ego4D dataset than Ego4D+M,
even though Ego4D+N and Ego4D+M dataset are similar
in size. In these results, we find that increasing diversity by
adding indoor navigation data improves performance more
than adding additional manipulation data to Ego4D.

Additionally, we find that pre-training on Ego4D+MN is
roughly on par with pre-training on Ego4D+N. We see a 0.3
and 0.1 point difference (63.8 → 64.1 and 67.1 → 67.2) for
ViT-B and ViT-L, respectively, even though Ego4D+MN has
about 800K more training frames. Together with the results
from above this demonstrates that increasing data diversity
seems to matter more than simply increasing dataset size.

Next, we analyze the effect of including static internet im-
age data. Specifically, we find that adding ImageNet pos-
itively impacts average performance on CORTEXBENCH.
For example, models pre-trained on Ego4D+MNI outper-
form those pre-trained on Ego4D+MN by 1.9 points (64.1
→ 66.2) for ViT-B and 1.5 points (67.2 → 68.7) for ViT-
L. Interestingly, these results demonstrate that including
static internet images can significantly boost performance
on EAI tasks. This finding further highlights the importance
of seeking data diversity to build better representations.

Finally, on average, our largest model (ViT-L) pre-trained
on all datasets (Ego4D+MNI), achieves the highest rank
when averaged across all benchmark tasks (Table 4 row 11),
with a mean rank of 2.4. This performance is superior to the
second-best model (Ego4D+MN ViT-L, Table 4 row 9) that
has an average rank of 3.1. We call this model VC-1, and
will open-source it.

However, upon further dis-aggregation, we observe we find

that while VC-1 performs best on average, it is not the best
for each benchmark. For example, the best model for Mo-
bile Pick, a mobile manipulation task, is a ViT-L trained on
Ego4D+M and the best model for ImageNav, an indoor nav-
igation task, is the ViT-L trained on Ego4D+N. These find-
ings suggest that task-specific pre-training datasets could
enhance the performance of models on individual tasks.
However, it is important to note that this approach would
lead to multiple pre-trained models, each tailored to a spe-
cific task, and not a unified visual foundation model.

5.3. How does VC-1 compare to existing PVRs?
We now compare VC-1 with existing PVRs from Section 4.
On average it ranks as the best model across all bench-
marks Figure 4c. We focus on R3M, MVP, and CLIP, since
they achieved the highest success in at least one benchmark;
we also compare to fine-tuning from scratch to demonstrate
the impact of end-to-end fine-tuning. In terms of mean suc-
cess, VC-1 (Table 4 row 11) outperforms MVP (ViT-L) by
+1.2 points (67.5 → 68.7), R3M by +10.7 (58.0 → 68.7),
CLIP by +11.7 (57.0 → 68.7), and end-to-end fine-tuning
from scratch +19.6 (49.1 → 68.7).

Impressively, VC-1 outperforms CLIP on every benchmark
(Figure 5), despite training on a 70X smaller dataset, em-
phasizing the importance of egocentric interaction datasets.
VC-1 also outperforms fine-tuning from scratch on ev-
ery benchmark, indicating that PVRs trained with out-of-
domain data can outperform end-to-end learning.

When compared to R3M, VC-1 demonstrates superior per-
formance on average and on 4 out of 7 benchmarks (Fig-
ure 5). It is outperformed by R3M on Adroit, MetaWorld
and DMControl benchmarks. It is unclear whether this gap
is caused by the different training objective, pre-training
dataset, or backbone. This highlights the need for compara-
ble evaluations on benchmarks like CORTEXBENCH.

The MVP model is the most similar in terms of results,
architecture, and pre-training objective to VC-1, with the
main difference being the addition of a convolutional stem
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# Benchmark Adroit Meta-World DMControl Trifinger ObjectNav ImageNav Mobile Pick Mean Rank Mean Success

1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Rand (ViT-B) fine-tuned 44.0 49.9 34.2 55.0 28.5 65.0 47.6
3 Best result Table 2 (Frozen PVR) 73.3 96.0 81.1 74.1 56.6 68.1 65.4

4 Ego4D (VIT-B) 48.7 ± 1.3 86.1 ± 2.1 64.1 ± 2.3 68.3 ± 1.1 46.8 ± 1.1 64.0 ± 0.7 57.4 ± 2.2 8.6 62.2
5 Ego4D (VIT-L) 50.0 ± 1.2 92.9 ± 2.4 60.8 ± 3.3 69.7 ± 0.5 47.6 ± 1.1 55.8 ± 0.8 67.6 ± 2.1 5.9 63.5
6 Ego4D+N (VIT-B) 50.0 ± 2.4 86.4 ± 2.9 59.5 ± 2.4 67.8 ± 1.3 54.7 ± 1.1 68.7 ± 0.7 59.4 ± 2.2 7.2 63.8
7 Ego4D+N (VIT-L) 54.0 ± 1.2 89.1 ± 2.9 66.4 ± 1.7 66.9 ± 0.4 57.4 ± 1.1 70.5 ± 0.7 65.2 ± 2.1 3.5 67.1
8 Ego4D+M (VIT-B) 51.3 ± 2.4 83.5 ± 2.6 64.3 ± 1.8 69.1 ± 0.4 47.3 ± 1.1 65.8 ± 0.7 59.8 ± 2.2 7.0 63.0
9 Ego4D+M (VIT-L) 52.0 ± 1.3 88.3 ± 3.2 64.7 ± 2.4 64.7 ± 0.9 47.3 ± 1.1 65.5 ± 0.7 68.6 ± 2.1 6.0 64.4
10 Ego4D+MN (VIT-B) 48.7 ± 2.4 85.3 ± 5.2 64.2 ± 1.9 70.3 ± 0.5 52.8 ± 1.1 68.9 ± 0.7 58.6 ± 2.2 6.9 64.1
11 Ego4D+MN (VIT-L) 52.7 ± 4.2 86.7 ± 3.9 69.7 ± 3.3 72.4 ± 0.5 58.4 ± 1.1 69.1 ± 0.7 61.2 ± 2.2 3.1 67.2
12 Ego4D+MNI (VIT-B) 54.0 ± 4.0 89.6 ± 3.9 63.8 ± 2.7 72.2 ± 0.6 55.4 ± 1.1 67.9 ± 0.7 60.6 ± 2.2 4.4 66.2

11 VC-1: Ego4D + MNI (VIT-L) 59.3 ± 5.2 88.8 ± 2.2 66.9 ± 1.4 71.7 ± 0.4 60.3 ± 1.1 70.3 ± 0.7 63.2 ± 2.2 2.4 68.7

Table 4. Average success per benchmark of scaling hypothesis models. We highlight the best model from the set of models trained to
evaluate the scaling hypothesis in bold. We find that on average the VC-1 EGO4D+MNI (VIT-L) model performs best, but is not the
best for each benchmark. Our best model outperforms in-domain from scratch learning on all benchmarks.
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Figure 5. Comparison of VC-1 with existing PVRs. VC-1 matches
or exceeds existing PVRs on all benchmarks except R3M on AD,
MW, and DMC, indicating an opportunity for model adaptation.

in MVP. VC-1 outperforms MVP VIT-L by 1.3 points on
mean success and performs better on four out of seven
benchmarks, likely due to the use of a more diverse dataset.

Overall, VC-1 is an effective model across a broad set of
tasks and thus a reasonable starting point for novel EAI
problems. However, it is not always the best performing
model for a specific task. This leads us to theorize that
there is a domain gap that might be bridged with dataset
engineering or adaptation of the PVR.

6. Adapting VC-1
In prior sections, we focused on evaluating VC-1 as a frozen
PVR for EAI. We now study if adapting VC-1 can improve
results in downstream tasks. We use a broad definition of
adaptation (Bommasani et al., 2021), which, in the context
of large pre-trained foundation models, can take several

forms from simple prompting (Wei et al., 2022), to selec-
tively updating some or all weights of the backbone (Kumar
et al., 2022; Hansen et al., 2022a; Yadav et al., 2023).

In the context of PVRs for EAI, adaptation can serve at least
two purposes. The first is task-specialization in the feature
extraction stage. Since VC-1 was trained with MAE (He
et al., 2021), it captures features that are generally useful
for reconstructing images. Adaptation can specialize the
visual backbone to extract features required for performing
specific downstream tasks such as object rearrangement.
Secondly, adaptation can also help mitigate domain-gap
that might exist between pre-training and evaluation settings.
In general, domain-gap can arise for several reasons such
as poor coverage in pre-training data collection or deploy-
ment in novel conditions (e.g., on robots) not seen in the
pre-training data (e.g., in human-centric video datasets). Do-
main gap is naturally instantiated in our setup, since VC-1
was pre-trained on real-world, human video data while our
downstream evaluation in CORTEXBENCH uses simulated
EAI domains with different visual characteristics.

End-to-end (E2E) fine-tuning with a task-specific loss
function can in-principle capture both of the aforementioned
benefits of adaptation, and is widely used in computer vision
literature (He et al., 2020; Caron et al., 2021; He et al.,
2021; Baevski et al., 2022b). To study E2E fine-tuning of
VC-1, we use the same policy learning methods described
in Section 3.2, except we allow the gradients to flow through
the VC-1 backbone and update the weights.

In Table 5, we find an interesting mixed result. In domains
that involve large-scale IL or RL (ObjectNav, ImageNav,
and Mobile Pick), we use the strategy proposed in Yadav
et al. (2023) and observe that adapting VC-1 with E2E
fine-tuning significantly improves performance as compared
to using a frozen VC-1 backbone. Specifically, we see
an improvement in ObjectNav success rate (SR) of +7.4
(60.3 → 67.7), ImageNav SR of +11.3 (70.3 → 81.6), and
Mobile Pick SR of +10.8 (63.2 → 74.0). Overall, these
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# Method Adroit MetaWorld DMControl Tri-Finger ObjectNav ImageNav Mobile Pick

1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Best result from our experiments 73.3 96.0 81.1 74.1 60.3 70.5 68.6
3 In-domain MAE baseline 47.3 83.4 77.6 80.4 39.9 47.6 51.6

4 VC-1 59.3 88.8 66.9 71.7 60.3 70.3 63.2
5 VC-1 E2E fine-tuning 15.9 22.7 6.7 70.9 67.7 81.6 74.0
6 VC-1 MAE adaptation 72.0 96.0 80.9 80.6 57.4 67.0 62.4

Table 5. Adapting VC-1 with end-to-end fine-tuning or self-supervised learning (MAE) on in-domain data leads to substantial gains.

results suggest that E2E fine-tuning of VC-1 can achieve the
benefits of both task-specialization and domain adaptation.
Additional qualitative analysis is provided in Appendix A.4.

However, in few-shot IL domains (Adroit, MetaWorld,
DMC, and Tri-Finger), we find E2E fine-tuning does not re-
sult in performance improvement. In fact, in most few-shot
IL domains, it leads to a significant drop in performance,
a finding that is consistent with prior work (Parisi et al.,
2022; Hansen et al., 2022b). We hypothesize that the poor
performance of E2E fine-tuning in few-shot IL domains is
caused by overfitting, due to fine-tuning a large model with
307M parameters on a small dataset (≤ 50K frames).

MAE adaptation to mitigate domain-gap. As an alter-
native to E2E fine-tuning, we explore adapting VC-1 with
self-supervised learning (SSL). Specifically, in MAE adap-
tation we continue training the backbone network with the
MAE (He et al., 2021) pre-training objective on task-specific
data. Then, we freeze these adapted representations and use
them to learn task-specific policies. We note that in MAE
adaptation, the backbone is adapted using the same data
that is used for training the policy (e.g., frames from ex-
pert demonstrations), and no additional in-domain datasets
are used. While this adaptation strategy cannot address
task-specialization, it may serve to mitigate domain gap.

For MAE adaptation, we initialize with VC-1 weights, and
then train with MAE for 100 epochs. In domains where
expert demonstrations are available (i.e., Adroit, MetaWorld,
DMControl, Tri-Finger, and ObjectNav), we use the RGB
frames from these demonstrations for adaptation. In the
remaining two benchmarks (ImageNav and Mobile Pick)
we sample frames from training environments to create
adaptation datasets. Finally, to isolate the importance of
initializing with VC-1 weights, we train in-domain MAE
baselines by starting from a random initialization and then
following the same approach used for MAE adaptation.

In Table 5, we observe that MAE adaptation substantially
improves performance in few-shot learning domains. Specif-
ically, on Adroit performance improves by +18.7 (59.3 →
72.0), MetaWorld by +7.2 (88.8 → 96.0), DMC by +14.0
(66.9 → 80.9), Trifinger by +7.4 (72.7 → 80.1). Interest-
ingly, in DMC and Trifinger, the in-domain MAE baseline
(Table 5 row 3) performs surprisingly well, highlighting the
importance of in-domain data for representation learning.

Finally, in large-scale IL or RL domains (ObjectNav, Image-
Nav, and Mobile Pick), we find MAE adaptation results in
small reductions in performance from VC-1 (Table 5 row 4
vs. 6). In these domains, where substantial amounts of data
is available for task-specific training (large-scale IL or RL),
we find that E2E fine-tuning is the superior approach for
adaptation. In aggregate, these results suggests that MAE
adaptation should be explored particularly in few-shot do-
mains or when E2E fine-tuning leads to poor performance.

Overall, we find adapting VC-1 results in competitive per-
formance on all benchmarks. On MetaWorld, DMControl,
and Tri-Finger VC-1 with MAE adaptation (Table 5 row
6) is comparable with the best known results (SoTA) and
the best results from previous sections (Table 5 rows 1 and
2). Similarly, on ImageNav and Mobile Pick, VC-1 with
E2E fine-tuning (Table 5 row 5) matches or exceeds the best
results. Together, these results demonstrate that adaptation
is a powerful paradigm for using PVRs for EAI.

7. Discussion
This work introduced CORTEXBENCH, which comprises of
17 different embodied AI (EAI) task spanning locomotion,
indoor navigation, and dexterous and mobile manipulation.
Enabled by CORTEXBENCH, we performed the most com-
prehensive study to-date of visual foundation models for
EAI. Specifically, we evaluated state-of-art open-sourced
foundation models and find that we do not yet have a strong
backbone for all tasks. However, models trained via masked
auto-encoders (MAEs) are the most promising. Furthermore,
our study finds that naively scaling model size and pre-
training data diversity does not improve performance univer-
sally across all tasks, but does so on average. Finally, we find
that adapting our largest pre-trained model (VC-1) results
in performance that is competitive with or outperforms the
best known results on all benchmarks in CORTEXBENCH.

One of our primary contentions is that in order for the re-
search community to make progress on foundation mod-
els for EAI, we need to develop strong benchmarks – for
a PVR to be foundational, it must be broadly applicable.
Furthermore, as a community we should converge on best
practices and a rigorous reproducible experimental method-
ology; we hope CORTEXBENCH will help the community
make progress towards that.
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Wüthrich, M., Widmaier, F., Grimminger, F., Akpo, J., Joshi,
S., Agrawal, V., Hammoud, B., Khadiv, M., Bogdanovic,
M., Berenz, V., Viereck, J., Naveau, M., Righetti, L.,
Schölkopf, B., and Bauer, S. Trifinger: An open-source
robot for learning dexterity. CoRR, abs/2008.03596, 2020.

https://real-robot-challenge.com/2020
https://real-robot-challenge.com/2020


VC-1: An Artificial Visual Cortex for Embodied Intelligence

URL https://arxiv.org/abs/2008.03596. 2,
4

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J., and
Savarese, S. Gibson env: Real-world perception for em-
bodied agents. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
9068–9079, 2018. 17

Yadav, K., Ramakrishnan, S. K., Turner, J., Gokaslan, A.,
Maksymets, O., Jain, R., Ramrakhya, R., Chang, A. X.,
Clegg, A., Savva, M., et al. Habitat challenge 2022,
2022a. 17

Yadav, K., Ramrakhya, R., Majumdar, A., Berges, V.-P.,
Kuhar, S., Batra, D., Baevski, A., and Maksymets, O.
Offline visual representation learning for embodied navi-
gation. In arXiv preprint arXiv:2204.13226, 2022b. 2, 3,
6

Yadav, K., Ramrakhya, R., Ramakrishnan, S. K., Gervet, T.,
Turner, J., Gokaslan, A., Maestre, N., Chang, A. X., Batra,
D., Savva, M., et al. Habitat-matterport 3d semantics
dataset. arXiv preprint arXiv:2210.05633, 2022c. 5, 17

Yadav, K., Majumdar, A., Ramrakhya, R., Yokoyama, N.,
Baevski, A., Kira, Z., Maksymets, O., and Batra, D. Ovrl-
v2: A simple state-of-art baseline for imagenav and ob-
jectnav. arXiv preprint arXiv:2303.07798, 2023. 2, 3,
8

Yao, Y., Desai, N., and Palaniswami, M. Masked contrastive
representation learning. arXiv preprint arXiv:2211.06012,
2022. 3

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094–1100. PMLR,
2020. 2, 4

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12104–12113, 2022. 3

Zhou, T., Tucker, R., Flynn, J., Fyffe, G., and Snavely,
N. Stereo magnification: Learning view synthesis using
multiplane images. arXiv preprint arXiv:1805.09817,
2018. 6

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A. K.,
Fei-Fei, L., and Farhadi, A. Target-driven Visual Naviga-
tion in Indoor Scenes using Deep Reinforcement Learn-
ing. ICRA, 2017. 4

https://arxiv.org/abs/2008.03596


VC-1: An Artificial Visual Cortex for Embodied Intelligence

A. Appendix
A.1. Limitations

The study presents a thorough examination of visual foundation models but has several limitations. Firstly, in proposing the
benchmark, we sought to find a balance between task diversity and the computational resources required for evaluation.
However, new and challenging benchmarks in embodied AI, such as those presented in (Deitke et al., 2022a), continue
to emerge and may merit inclusion in future studies to track progress in this field. Additionally, while we have focused
on masked auto-encoders as the pre-training objective and ViT as the architecture in our study, there may be other SSL
algorithms that exhibit different scaling behaviors or superior performance on the proposed datasets in our benchmark.
Lastly, the adaptation step of the PVR model necessitates separate training on in-domain datasets, as well as careful tuning
of hyperparameters such as the number of training epochs and sampling ratio of the dataset. This results in a significant
effort to produce a separate adapted PVR model for each benchmark evaluated on our benchmark, and the overall effort
increases proportionately with the number of benchmarks included in the study.

In conclusion, it is important to note that although we utilize real-world images and videos for pre-training our visual
representation models (PVRs), the evaluation benchmarks used in this study serve as proxies for actual robotic tasks, and
thus, the performance of the PVR models on real robots may differ from the rankings established in this study. Further
research is necessary to fully evaluate the effectiveness of these models in real-world scenarios.

A.2. Scaling Hypothesis Datasets

Name Contains Total Frames Frames used

Ego4D Ego4D 418,578,043 2,790,520

Ego4D+M (Manipulation)

Ego4D 418,578,043 2,790,520
100DOH 99,899 99,899

SS-v2 25,209,271 315,115
Epic Kitchens 19,965,439 332,757

Total 3,538,291

Ego4D+O (OpenHouse24)
Ego4D 418,578,043 2,790,520

OpenHouse24 27,806,971 499,442

Total 3,289,962

Ego4D+N (Navigation)
Ego4D 418,578,043 2,790,520

OpenHouse24 27,806,971 499,442
RealEstate10K 10,000,000 303,087

Total 3,289,962

Ego4D+MN (Manipulation, Navigation)
Ego4D+M 3,538,291 3,538,291

OpenHouse24 27,806,971 499,442
RealEstate10K 10,000,000 303,087

Total 4,340,820

Ego4D+MNI (Manipulation, Navigation, ImageNet)
Ego4D+MN 4,340,820 4,340,820

ImageNet 1,281,167 1,281,167

Total 5,621,987

Table 6. Overview of the assembled datasets used for our scaling hypothesis experiments, using up to 5.6M frames.
A.2.1. OPENHOUSE24 DESCRIPTION

The OpenHouse24 dataset (OH24) is a collection of video walk-throughs of furnished residential real estate properties. Over
1600 homes are represented in the dataset, totaling 139 hours of video footage. Each home is traversed in a continuous
shot with a stable HD RGB camera by an operator that efficiently visits each room. The dataset represents a diverse set of
properties, including (but not limited to) small and large suburban homes, high-rise apartments, ranch homes, and condos.
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The ensuing walk-throughs range from under a minute to 14 minutes in length, with the average taking 5 minutes and 12
seconds. The dataset will be open-sourced by a separate research project.

A.3. Do we already have a foundation model? Additional Plots

We study the distribution of ranks for both the models of scaling hypothesis and the existing PVRs.

In relation to the models we examined for dataset and model scaling, as illustrated in Figure 6, we provide additional
evidence of the significance of data diversity. For instance, we observed that the ViT-L models trained in Ego4D+M and
Ego4D+N datasets, achieve the best result in one of the benchmarks, but performs the worst and second-worst in other
benchmarks. However, by including data diversity in the Ego4D+MN and Ego4D+MNI models, we noticed a decrease in
the variance of the rank distribution. Notably, the Ego4D+MNI model exhibited consistently good performance across all
benchmarks and ranks among the top models.
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Figure 6. Rank distribution per model - scaling hypothesis.
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Figure 7. Rank distribution per model - existing PVRs and scaling hypothesis models

A.4. Attention Visualizations of VC-1

To visualize the attention we apply a mean pooling operation to the attention matrices of the ViT encoder’s final layer during
inference for downstream tasks. The resulting values are then overlaid onto the image.
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We start by noticing the effect of MAE pre-training; frozen VC-1 attention maps appear to focus on the contours and general
features of the image. We hypothesize that this results from the MAE reconstruction-based training objective, as contours
provide essential information for reconstructing images.

Additionally, we study the attention maps after end-to-end fine-tuning of VC-1 on the downstream tasks. The attention
appears to focus on regions of the image that are important for the task (e.g., the objects being manipulated). Thus, through
adaptation (via E2E fine-tuning), the model learns to drop attention on areas irrelevant to the specific task.

Figure 8. Attention Visualization: We overlay the mean attention matrix in the last layer of the ViT encoder in one of our tasks -MobilePick-
. We notice the effect of MAE pre-training on VC-1: The attention focuses in general features of the image; and of task-adaptation: the
attention concentrates in task-specific regions of the image

A.5. Does increasing model size improve performance on CORTEXBENCH? Additional Plot

Scaling model size has a positive effect on every benchmark and on fifteen out of the seventeen tasks.

A.6. CORTEXBENCH Tasks and Training Details

We discuss in more details task specification from Section 3.1 in this section.
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(a) scaling model size per benchmark (b) scaling model size per task
Figure 9. Scaling model size has a positive effect on (a) every benchmark and on (b) fifteen out of the seventeen tasks.

ImageNav Benchmark. Our study conducts ImageNav experiments using the standard dataset presented in (Mezghani
et al., 2021). This benchmark utilizes the Habitat simulator (Savva et al., 2019b; Szot et al., 2021) and is situated within the
Gibson (Xia et al., 2018) environments, which comprise 72 training scenes and 14 validation scenes. The validation set
includes 300 episodes for each scene, for a total of 4,200 episodes. In this benchmark, agents are modeled as cylinders
with a height of 1.5m, radius of 0.1m, and sensors located 1.25m above the center of the base. The RGB camera has a
resolution of 128×128 and a 90◦ field-of-view. Agent is able to take up to 1000 steps within the environment and are
deemed successful if they reach a location within 1m of the goal position and call STOPACTION.

To train the agents within the Gibson environments, we utilize 500M timesteps (25k updates) with 320 environments
running in parallel. Each environment collects up to 64 frames of experience, which is followed by 2 PPO epochs utilizing
2 mini-batches. Unless otherwise specified, we use a learning rate of 2.5 × 10−4 for training the agents and update the
parameters using the AdamW optimizer with a weight decay of 10−6. We train agents with the reward functions presented
in (Al-Halah et al., 2022) utilizing the following settings: success weighting cs = 5.0, angle success weighting ca = 5.0,
goal radius rg = 1.0, angle threshold θg = 25◦, and slack penalty γ = 0.01. We evaluate performance every 25M steps of
training and report metrics based on the highest success rate (SR) achieved on the validation set.

ObjectNav Benchmark. We present an evaluation of object navigation (ObjectNav) using the HM3D-SEM dataset (Ya-
dav et al., 2022c). The dataset is comprised of 80 training, 20 validation, and 20 testing scenes and utilizes the Habitat
simulator (Savva et al., 2019b; Szot et al., 2021) and HM3D (Ramakrishnan et al., 2021) environments. Our results
are reported on the v0.1 HM3D-SEM VAL split, which was used in the 2022 Habitat Challenge (Yadav et al., 2022a)
ObjectNav benchmark. The agent in this evaluation is modeled after the LocoBot (Gupta et al., 2018) with a height of
0.88m, radius of 0.18m, and sensors placed at the top of the agent’s head. The RGB camera has a 640×480 resolution and
a 79◦ horizontal field of view. The task for the agent is to locate objects from one of 6 categories: ‘chair’, ‘bed’, ‘plant’,

‘toilet’, ‘tv/monitor’, and ‘sofa’ within 500 steps. Successful episodes are determined by the agent stopping within 0.1m of a
viewpoint that is (a) within 1m of any instance of the target object and (b) from which the object is visible, as outlined in the
evaluation protocol of (Batra et al., 2020).

We utilize a dataset of human demonstrations for training our imitation learning agent in the task of ObjectNav. The
dataset was collected using Habitat-Web (Ramrakhya et al., 2022a; Yadav et al., 2022c) and Amazon Mechanical Turk,
and consists of 77k demonstrations for 80 scenes from the HM3D-SEM dataset (Yadav et al., 2022a). Each scene contains
approximately 158 episodes, each with a unique goal object category and a randomly set start location, resulting in
approximately 950 demonstrations per scene. The dataset includes a total of ∼12.1 million steps of experience, with an
average of ∼159 steps per episode. By leveraging this human demonstration data, our imitation learning agent is able to
learn a more effective policy for navigating to objects in complex environments.

We trained object navigation (ObjectNav) agent in the HM3D environment for an approximate total of 400 million steps,
utilizing 25,000 updates and 512 parallel environments. Similar to our previous image-based navigation (ImageNav)
experiments, we employed a weight decay of 10−6 and utilized different learning rates for the visual encoder and other
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elements of the model. Specifically, we used a learning rate of 10−4 for the visual encoder and 10−3 for all other elements,
with the AdamW optimizer. To ensure the quality of our trained models, we evaluated checkpoints after every 10M steps
and only reported metrics for the checkpoints with the highest validation success rate.

Habitat 2.0 Rearrangement We investigate the Habitat 2.0 Rearrangement task proposed by (Szot et al., 2021). This task
involves a mobile manipulation scenario in which a Fetch robot navigates an ReplicaCAD apartment to pick up a target
object from a cluttered receptacle using a mobile base (Gu et al., 2022). The robot starts from a non-trivial position and
must utilize a variety of sensors, including an egocentric RGB camera, proprioceptive joint sensing, and an object grasping
indicator. The action space for the robot includes continuous control over the robot’s 7-DOF arm, base movement, and
suction gripper. We relax the dense goal specification, where the relative position between the end-effector and the target
object must be updated at each step, to a sparse goal specification, where this information is only provided at the start of the
episode. This relaxation places greater emphasis on visual input and makes the task significantly more challenging.

TriFinger Tasks The TriFinger tasks are implemented in Pybullet. For Reach-Cube, the state for the BC policy is
[xft

t , zt], where xft
t is the current fingertip position and zt is the latent visual state vector, obtained by passing the current

image observation through the PVR. The success metric captures how close the fingertip is to the optimal distance from the
center of the cube, accounting for the half=width of the cube. For Move-Cube, the state for the BC policy is [xft

t , zt, ∆xc
g],

where ∆xc
g is the goal position for the cube, specified as a displacement from its initial position. Here the success is the

distance of the center of the cube to the target goal position. We train a policy network with hidden layers of size 2000 and
learning rate 10−4 for up to 100 epochs for the reach task and 1000 epochs for the move cube task.

A.7. Experiment Details of Training PVRs

To train the MAE models, we use the official codebase released by the authors on GitHub (He et al., 2021) and use the
default hyperparameters provided by the repo to train the ViT-B and ViT-L models. We found the default values worked
well on the CORTEXBENCH. However, we do vary the number of epochs we use to train the different models in Section 5
given the different dataset sizes. We choose the number of epochs per run such that the number of model updates remain
constant across all runs and match the number of model updates taken by MAE on the ImageNet dataset. We provide details
about the dataset sizes and the epochs calculated for the different runs in Table 7.

Dataset Name Epochs Frames used

Ego4D+N (VIT-B) 289 3,538,291
Ego4D+N (VIT-L) 289 3,538,291
Ego4D+M (VIT-B) 414 3,289,962
Ego4D+M (VIT-L)) 414 3,289,962
Ego4D+MN (VIT-B) 236 4,340,820
Ego4D+MN (VIT-L) 236 4,340,820
Ego4D+MNI (VIT-B) 182 5,621,987
VC-1 (Ego4D+MNI (VIT-L)) 182 5,621,987

Table 7. Experiment Details of Training PVRs.
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task assembly bin picking button press cheetah run drawer open finger spin hammer imagenav mobile pick move cube objectnav pen reach cube reacher relocate walker stand walker walk
model

CLIP (VIT-B) 70.7 68.0 48.0 22.7 100.0 74.6 90.7 52.2 49.8 40.1 56.6 72.0 83.8 89.9 22.7 64.9 25.4
MAE Ego4D (VIT-B) 81.3 76.0 80.0 29.1 100.0 76.9 93.3 64.0 57.4 54.0 46.8 74.7 82.6 79.8 22.7 84.3 50.5
MAE Ego4D (VIT-L) 98.0 84.0 84.0 20.7 100.0 76.5 98.7 55.8 67.6 57.0 47.6 76.0 82.4 71.9 24.0 78.4 56.3
MAE Ego4D+M (VIT-B) 76.0 58.7 84.0 31.9 100.0 75.5 98.7 65.8 59.8 57.5 47.4 77.3 80.7 89.3 25.3 80.7 44.3
MAE Ego4D+M (VIT-L) 89.3 73.3 84.0 33.5 100.0 75.6 94.7 65.5 68.6 47.2 47.3 74.7 82.1 85.8 29.3 76.2 52.3
MAE Ego4D+MN (VIT-B) 82.7 74.7 77.3 32.0 100.0 77.5 92.0 68.9 58.6 62.1 52.8 73.3 78.5 85.6 24.0 84.1 41.8
MAE Ego4D+MN (VIT-L) 93.3 70.7 74.7 38.1 100.0 77.0 94.7 69.1 61.2 62.4 58.4 78.7 82.4 91.7 26.7 83.0 58.9
MAE Ego4D+MNI (VIT-B) 88.0 78.7 82.7 32.3 100.0 76.0 98.7 67.9 60.6 60.6 55.4 76.0 83.9 82.6 32.0 83.5 44.7
MAE Ego4D+MNI (VIT-L) 88.0 84.0 80.0 32.8 100.0 76.8 92.0 70.3 63.2 60.2 60.3 80.0 83.3 88.0 38.7 83.3 53.7
MAE Ego4D+N (VIT-B) 86.7 76.0 73.3 28.1 100.0 75.8 96.0 68.7 59.4 54.1 54.7 77.3 81.6 78.7 22.7 72.4 42.6
MAE Ego4D+N (VIT-L) 89.3 73.3 89.3 33.3 100.0 76.2 93.3 70.5 65.2 52.7 57.4 76.0 81.1 88.6 32.0 83.4 50.7
MVP (VIT-B) 92.0 73.3 92.0 33.9 100.0 76.9 98.7 64.7 56.0 44.3 51.2 69.3 75.0 86.3 26.7 84.7 47.9
MVP (VIT-L) 89.3 78.7 70.7 36.9 100.0 76.4 98.7 68.1 65.4 63.4 55.0 76.0 84.8 90.2 30.7 83.2 59.3
R3M (RN-50) 97.3 93.3 89.3 66.1 100.0 77.1 100.0 30.6 33.2 51.9 22.6 81.3 86.5 98.4 65.3 93.8 70.1
Random (VIT-B) 0.0 0.0 2.7 0.4 0.0 0.1 0.0 42.1 10.8 41.3 19.2 4.0 74.3 23.4 0.0 22.7 4.0
Random (VIT-L) 0.0 0.0 0.0 0.5 0.0 0.2 2.7 45.2 20.6 39.4 19.3 5.3 74.9 19.9 0.0 20.1 4.6
Random finetune (VIT-B) 61.3 34.7 20.0 10.2 40.0 48.6 93.3 62.5 47.6 37.6 28.5 73.3 74.5 26.8 14.7 73.6 58.1
VIP (RN-50) 93.3 76.0 88.0 53.2 100.0 76.1 93.3 48.8 7.2 47.2 26.4 81.3 86.2 83.2 26.7 86.6 63.4

Table 8. The success rate for each task and each model we evaluate during the study before being aggregated by benchmark.


	Introduction
	Related Work
	Benchmarking Progress Towards an Artificial Visual Cortex for Embodied AI
	Embodied AI Tasks in CortexBench
	Downstream Policy Learning

	Do we already have a foundation model?
	Analyzing the Scaling Hypothesis for EAI
	Constructing a Pre-training Dataset for EAI
	Scaling Hypothesis Findings
	How does VC-1 compare to existing PVRs?

	Adapting VC-1
	Discussion
	Appendix
	Limitations
	Scaling Hypothesis Datasets
	OpenHouse24 description

	Do we already have a foundation model? Additional Plots
	Attention Visualizations of VC-1
	Does increasing model size improve performance on CortexBench? Additional Plot
	CortexBench Tasks and Training Details
	Experiment Details of Training PVRs


