
Abstract
We present a motion in-betweening framework to generate high quality, 
physically plausible character animation when we are given temporally sparse 
keyframes as soft animation constraints.  More specifically, we learn imitation 
policies for physically simulated characters by using deep reinforcement 
learning where the policies can access limited information only.  Once learned, 
the physically simulated characters are capable of adapting to external 
perturbations while following given sparse input keyframes.  We demonstrate 
the performance of our framework on two different motion datasets and also
compare our results with the the results generated by a baseline imitation 
policy.

Background
Motion in-betweening is a popular method to create skeletal animations, where 
users (artists) provide keyframe poses with less temporal granularity and the 
system automatically generates intermediate poses with finer granularity.

We demonstrate a new approach to solve motion in-betweening given sparsely 
keyframed poses using physically simulated characters for which control 
policies are trained with deep reinforcement learning (RL)

Using physically simulated characters provides several unique advantages over 
existing kinematics-based approaches. 
ü We can generate physically plausible motions even if bad input poses are 

given. 
ü Motions adapting to external perturbation can emerge during motion 

generation.
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Our system takes a sequence of keyframe poses (𝑃!
"#$, 𝑃"

"#$, 𝑃%"
"#$, ⋯ )

with a fixed coarse time interval as input (𝑘 = 1 in our model), then 
outputs a motion (𝑃!, 𝑃&, ⋯ , 𝑃"'&, 𝑃", ⋯ , 𝑃%"'&, 𝑃%", ⋯ ) at a desired dense 

time interval (𝑚 = (
)!

in our model). Our framework learns an RL based 

imitation policy. 

The state 𝑠* = (𝑠*
"#$, 𝑠*+,&) i.e., the keyframe state 𝑠*

"#$ =

(𝑃*
"#$, 𝑃*-(

"#$, 𝐹.//+#*
"#$ , 𝑡**0) and the simulated state 𝑠*+,& = 𝑆1.2$+,& , 𝐹.//+#*+,&

• (𝑃*
"#$, 𝑃*-(

"#$) : current and next input keyframes

• 𝐹.//+#*
"#$ : relative facing frame of next keyframe wrt current keyframe

• 𝑡**0 : time-to-arrival feature (time remaining to reach the next 
keyframe and temporal embedding of the current time step [1]

• 𝑆1.2$+,& : dynamic state of the simulated character [2]

• 𝐹.//+#*+,& : relative facing frame of the simulated character wrt the 
current keyframe.  

Method

Fig 1 shows a snapshot of intermediate postures generated by our model 
trained with LaFAN1 dataset, where the learned control policy can 
successfully match input sparse keyframes while generating motions 
that are physically plausible and resemble ground-truth motions.

Fig 3. Imitation reward for each frame of in-betweening of keyframes from unseen motions
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Fig 1. An overview of our system

Results

Fig 2. A deep RL control policy for motion in-betweening.

We trained a baseline imitation policy based on [3], where the policy 
consumes the densely specified keyframe postures (i.e., future reference 
motion).  Since such information is not available during test time, we 
provided pseudo-reference motion by linearly interpolating the input 
sparse keyframe postures.  Fig 3 shows the performance comparison 
over unseen motions (in-distribution). Our policy outperforms the 
baseline, that suffers from state mismatch between training/test time, 
by a large margin.
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The action 𝑎* in RL is a target pose for the stable PD controller, which 
computes joint torques 𝜏1.2$to actuate the simulated character.
Physics simulation then computes the next state 𝑠*-(.
We use the same multiplicative reward function 𝑟* used in ScaDiver [3].

Fig 2 is the encoder-decoder structure that we adopt for our control 
policy.  We employ the keyframe encoder to produce a reduced vector 
representation 𝑧 of the in-between pose for the current time step.
The output of the encoder is concatenated with the simulation state 
and fed to the dynamics decoder to produce an action.
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