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Abstract

Deriving sophisticated 3D motions from sparse
keyframes is a particularly challenging problem, due to
continuity and exceptionally skeletal precision. The action
features are often derivable accurately from the full series
of keyframes, and thus, leveraging the global context with
transformers has been a promising data-driven embedding
approach. However, existing methods are often with inputs
of interpolated intermediate frame for continuity using
basic interpolation methods with keyframes, which result
in a trivial local minimum during training. In this paper,
we propose a novel framework to formulate latent motion
manifolds with keyframe-based constraints, from which the
continuous nature of intermediate token representations is
considered. Particularly, our proposed framework consists
of two stages for identifying a latent motion subspace,
i.e., a keyframe encoding stage and an intermediate token
generation stage, and a subsequent motion synthesis stage
to extrapolate and compose motion data from manifolds.
Through our extensive experiments conducted on both the
LaFAN1 and CMU Mocap datasets, our proposed method
demonstrates both superior interpolation accuracy and
high visual similarity to ground truth motions.

1. Introduction
Pose-to-pose keyframing is a fundamental principle of

character animation, and animation processes often rely
on key pose definitions to efficiently construct motions
[6, 11, 30]. In computer animation, keyframes are tempo-
rally connected via interpolation algorithms, which derive
intermediate pose attributes to produce smooth transitions
between key poses. However, human motion is often com-
plex and difficult to be effectively represented by sparse
keyframe sequences alone. While this can be addressed
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Figure 1. An example of motion interpolation by our method (first
row), given the keyframes of a hopping motion (in blue), compared
with the ground truth (second row).

by producing denser sequences of key poses, this approach
is laborious for animators, thereby increasing the cost of
keyframed animation processes. Even with Motion Capture
(MoCap) workflows, artists must often resort to keyfram-
ing in order to clean artifacts, impose motion constraints,
or introduce motion features irreplicable by motion capture
performers.

Learning-based motion interpolation methods have re-
cently been proposed as an acceleration of the keyframed
animation process, by automatically deriving details within
keyframe transitions as shown in Figure 1. Various ma-
chine learning methods have been explored to enable more
realistic interpolation solutions from high quality MoCap
databases, e.g. by using recurrent networks [14, 15, 40] or
transformer-based approaches [10, 26, 31]. Guiding data-
driven interpolation with real motions is particularly attrac-
tive for keyframe animation workflows, as realistic motions
often require the greatest amount of keyframing, by virtue
of their subtle motion details and physical constraints.

Naturally, as a sequence in-painting problem, motion
interpolation can be formulated as a masked sequence-to-
sequence task, which the recent popular transformer ap-
proach is expected to learn effectively [4, 38, 42, 43]. How-
ever, sequential learning of masked continuous attributes
with transformers is largely impaired by the conventional
masked tokens for intermediate data. A token is defined
as an individual data element on the extendable axis of a
sequence, namely the temporal axis for motions. In cur-



rent sequence modelling formulations, a token is usually
represented by a one-hot vocabulary vector to specify in-
dividual words or masked elements, which poses a limita-
tion on continuous attributes. Since continuous attributes
can be assigned any real value, there exists no value by
which a masking token can be defined without correspond-
ing to an otherwise valid input. Previous approaches have
employed transformer decoder-level mask tokens and lin-
ear interpolation (LERP)-based tokens have been explored
to work around this issue [10, 16, 31]. However, these ap-
proaches have innate incompatibilities with the transformer
architecture. Singular mask token representations, regard-
less of their point of introduction, result in discontinuous
hidden representations, which are antithetical to the evalua-
tion of continuous motion data. On the other hand, the use
of LERP as a pre- or post-processing step necessarily intro-
duces an accurate starting estimate to the solution, which
transformer models are prone to becoming over-reliant on
[24, 45]. To fully address these limitations, we propose
a novel transformer-based framework that learns to model
keyframe sequences into latent motion manifold represen-
tations for intermediate tokens, which reflects the smooth
and continuous nature of human motion.

As illustrated in Figure 2, our proposed framework incor-
porates three stages with transformers to convert a keyframe
sequence into a complete motion sequence: Stage-I is a
keyframe encoding stage to formulate the overall motion
patterns from the keyframe sequence into keyframe context
tokens as a guidance for further modelling; Stage-II is an in-
termediate token generation stage, where temporal indices
are mapped into intermediate token representations with the
keyframe context tokens, which serve as an implicit latent
motion manifold constraint; and Stage-III, a motion synthe-
sis stage, takes the obtained intermediate tokens by inject-
ing them within the keyframe token sequence, and interpo-
lating them to derive a refined motion sequence estimation.

With this framework, our transformer-based approach
exhibits two key advantages over existing approaches that
enable its high-quality motion interpolation: a) Manifold
learning allows our framework to establish temporal con-
tinuity in its latent representation space, and b) The la-
tent motion manifold constrains our transformer model
to concentrate its attention exclusively towards motion
keyframes, as opposed to intermediate tokens derived from
non-keyframe poses, such as those derived from LERP,
thereby forcing a necessary alignment between the known
and unknown tokens adaptively.

In addition, we identify an adverse link between con-
tinuous features and normalisation methods with per-token
re-centering. Specifically, layer normalisation (LayerNorm)
[1], which is commonly used in transformer architectures,
constrains the biases of token features based on their in-
dividual distributions. Though this is well-known to be

effective with linguistic models [25, 42], continuous data
inherently contain biases that should be leveraged at se-
quence level. Therefore, we introduce a sequence-level
re-centering (Seq-RC) technique, where positional pose at-
tributes of keyframes are recentred based on their distribu-
tion throughout a motion sequence, and root-mean-square
normalisation (RMSNorm) [47] layers are then employed
to perform magnitude-only normalisation. Though RM-
SNorm was initially proposed as only a speedup to Lay-
erNorm, our observations demonstrate that Seq-RC leads to
superior performance in terms of accuracy and visual simi-
larity to MoCap sequences.

In summary, our paper’s key contributions are threefold:

1. We propose a novel transformer-based architecture
consisting of three cooperative stages. It constrains the
evaluation of unknown intermediate representations of
continuous attributes to the guidance of keyframe con-
text tokens in a learned latent manifold.

2. We devise sequence-level re-centering (Seq-RC) nor-
malisation to effectively operate with real scalar at-
tributes with minimal accuracy loss.

3. Extensive comparisons and ablation results obtained
on LaFAN1 and CMU Mocap strongly demonstrate the
superiority of our method over the state-of-the-art.

2. Related work
In this section, we explore existing machine learned

methods by which motion keyframes, or key tokens of other
mediums, can be used to generate full sequences. We also
review known methods for intermediate data prediction.

2.1. Motion synthesis and completion

The necessities of motion interpolation techniques have
existed since the early days of computer animation. A
key advantage of computer animation over traditionally
drawn animation is its ability to automatically evaluate
a smooth motion from a keyframe representation. The
widely accepted method for applying interpolation to mo-
tion keyframes is through the use of function curves (F-
Curves), by which various mathematical functions can be
defined between intervals. The common functions used to-
day for keyframed motion representation are often based on
Bézier spline curves [18,37], though any function can tech-
nically be employed for this purpose. In addition, inverse
kinematics-based constraints [34] have been used jointly
with Markov chain methods [23] and decision graphs [21]
to generate constrained keyframe or motion sequence tran-
sitions in interactive applications such as 3D video games.

More recently, deep learning methods have enabled ef-
fective motion completion from sparse keyframe represen-
tations. By formulating motion interpolation as a mo-
tion synthesis problem with keyframe constraints, a neural



network-assisted keyframed animation approach is emerg-
ing as a more effective solution to the current approaches.
Recurrent neural networks have been able to derive real-
istic motion details from motion keyframe compositions
[15, 22, 48] and real-time control schemes [40]. In addi-
tion, sequence masking approaches such as BERT-based
and autoencoder-based methods [7, 10, 19, 26, 29, 31] have
enabled full keyframe sequence analysis for completing
motions with a more comprehensive context. However,
these methods are severely affected by the tendency of
transformer-based networks that toward a trivial local min-
imum, given an initial LERP starting point. This limita-
tion in transformers has been thoroughly observed and doc-
umented as the result of early gradient instabilities in atten-
tion weights [2, 24, 42, 45].

Learned pose manifolds have become a prominent ap-
proach to synthesis plausible human poses, which restrain
pose attributes to a specified space [32, 41]. These meth-
ods mainly focus on dense poses from complete motion se-
quences. Our work extends this concept for an incomplete
and sparse scenario, by using the keyframes as constraints
to derive an implicit motion manifold.

2.2. Transformer-based temporal in-painting

Inter-frame video interpolation is a similar task to mo-
tion interpolation, due to its common goal of predicting
transitions between frames on the temporal axis. Like mo-
tion in-painting methods, temporal transformers for video
interpolation use blended inputs as masks for continuous
attributes [28]. Alternatively, when interpolating with an
individual interval, the mask tokens can be copied from
the previous keyframe, with positional encoding being the
sole difference between input tokens [27]. While the fea-
ture extraction process of video data can take full advantage
of the global context afforded by using transformers, other
mechanisms such as convolutions can be integrated with a
transformer for video in-painting as well [36]. For skeleton-
based motion data, existing studies suggest that graph con-
volutional networks can improve analytic and synthetic per-
formance [8, 13, 26, 30]; however, the application of pure
convolutional approaches for data synthesis is only valid
when the interval length between keyframes is constant.

2.3. Masked data modelling

Various mask-based machine learning techniques have
been proposed to estimate missing values of incomplete se-
quences based on their known values. The use of masked
token is well known to be highly effective for produc-
ing pre-trained linguistic transformer models [9,25,38,42].
However, due to aforementioned limitations on token repre-
sentations for continuous attributes, adapting transformer-
based masked data modelling for computer vision tasks has
largely focused on masking schemes. Discretised tokens

for visual data is a proposed workaround [3, 44]; however,
the information loss of tokenisation renders this technique
unfeasible for precise mediums like motion data. Masked
auto-encoders assign mask tokens to an encoded latent
space [16, 44], and adopt them to masked sequences at the
decoder level. This allows the transformer encoder to learn
solely from known tokens; however, the monolithic defini-
tion of masked tokens results in a discontinuous sequence
representation in latent space.

Additionally, masked convolutional networks have been
a consistently effective approach for image-based data. The
popular U-Net structure of convolutional models [33] in-
volves a data bottleneck, which elicits behaviours for ignor-
ing masked image regions [17, 39, 46]. However, the pool-
ing technique of convolutional models restrains the learned
features to a fixed scale, and struggles to extrapolate global
features with increased data scales, e.g. higher image res-
olutions or longer videos. Conversely, transformer-based
methods are particularly effective with long-range feature
learning, and as such, we believe them to be the more suit-
able for keyframe-guided sequential motion learning.

3. Methodology

We formulate the motion interpolation task as a data im-
putation problem from a sparse representation. The primary
objective of our solution is to define motion sequence rep-
resentations as a function of motion keyframes, which we
learn using a transformer-based model. As shown in Fig-
ure 2, our solution comprises of three cooperative stages to
learn a latent motion manifold using transformers to con-
vert a sequence K = {x0, xt1 , xt2 , ..., xN−1} at frames
TK = {0, t1, t2, ..., N − 1} into a complete motion se-
quence Y = {y0, y1, y2, ..., yN−1} with temporal indices
T = {0, 1, 2, ..., N − 1} (i.e. TK ⊂ T ):

• Stage-I, a keyframe encoding stage formulates the
keyframe sequence K into keyframe context tokens
Φkey(K) = {ϕ0, ϕt1 , ϕt2 , ..., ϕN−1}, which serves as
the motion encoding for further modelling.

• Stage-II, an intermediate token generation stage
maps the temporal indices t ∈ T \TK into intermediate
tokens Φimd(t|Φkey(K)) with the guidance of keyframe
context, which constrains the latent space to obtain an
implicit motion manifold.

• Stage-III, a motion synthesis stage injects the inter-
mediate tokens between the keyframe tokens Φkey(K),
and decodes the resulting token sequence with a
transformer Φsyn to derive a motion sequence Ŷ =
{ŷ0, ŷ1, ..., ŷN−1} as an estimation of Y .



Figure 2. Overview of our transformer architecture and its three main components: (I) Encoding transformer Φkey, (II) Intermediate token
generation transformer Φimd, and (III) Motion synthesis transformer Φsyn.

3.1. Keyframe poses to motion sequence context

Our pose representations are comprised of seven ele-
ments per joint: Pt ∈ RJ×3 values for global 3D positions
produced through forward kinematics (FK), and qt ∈ RJ×4

values for unit quaternion representations of local rotations,
that is, xt = [Pt, qt] ∈ RJ×7, where J represents the num-
ber of joints. In motion capture, local 3D positions for each
joint are generally constant, determined by its positional
offsets from its parent joint, and do not require explicit rep-
resentation for the input. The sole exception to this is the
root joint, where the global position is the local position.

In Stage-I, we encode the keyframe sequence K into a
learned keyframe context token representation Φkey(K). It
is used as a feature map for both the intermediate token gen-
eration and motion synthesis stages. First, we project the
pose data xt, t ∈ TK , of each keyframe into a pose em-
bedding vector x′

t ∈ Rd using a linear layer, where d is
the token embedding dimension. Next, we adopt sinusoidal
positional encoding (PE) PEpos [42] of n-dimension to x′

t.
Unlike natural language processing (NLP) approaches, we
do not add PE to our token representations, but instead con-
catenate a fixed-length PE for two key reasons:

• PE acts as a sliding binary vector, and thus can repre-
sent 2n positions using n elements. For our task, we
set n to 16, allowing our PE vector to produce 216 po-
sitions, which is sufficient for our purposes.

• Additive PE introduces minor disruptions in token rep-
resentations. While the discrete data of NLP can ben-
efit from slight variations in token representations, it
acts as a hindrance in continuous data due to the ne-
cessity of precision.

3.2. Sequence-level re-centering normalisation

Our Stage-I transformer Φkey includes a number of lay-
ers based on multi-head self-attentions, each followed by

GELU-activated feed-forward networks (FFNs). We re-
place all instances of LayerNorm the transformer encoders
with RMSNorm [47], which does not involve a re-centering
step. This avoids the token-level re-centering present in
LayerNorm, which we observed to be detrimental for our
regression tasks. We believe that this is due to feature bi-
ases that are present in and crucial to continuous attributes,
e.g. a pose with a high root position values will result in all
joints having similarly high position values. Therefore, we
introduce a sequence level re-centering scheme for normal-
isation at the transformer input-level only, re-centreing the
root positions of the input based on the mean root positions
of all keyframes in the input sequence.

3.3. Motion manifold with context-guided attention

In Stage-II, our intermediate token generation trans-
former Φimd aims to learn motion manifolds navigable by
temporal indices t ∈ N by the guidance of the keyfram-
ing context from Φkey(K). In detail, we accomplish this
through a keyframe context-guided attention mechanism,
where the attention derives key and value mappings exclu-
sively from linear transformations of Φkey(K). For each
intermediate token, the query is simply a sinusoidal embed-
ding of the token’s temporal position.

We constrain our manifold implicitly using two mecha-
nisms. Firstly, the intermediate tokens are entirely sourced
as a product of Φkey(K) value transformations, which inher-
ently limits the range of latent representations in the man-
ifold. Secondly, the 1D convolutional layers in Stage-III
entail feature dependencies between temporally adjacent to-
kens, which enables the disparately obtained Φkey and Φimd

tokens to converge towards coordination.

3.4. Interpolated motion synthesis

In Stage-III, a transformer Φsyn is introduced to take
the intermediate token representations mt and estimate the



complete motion sequence Ŷ . Since the primary role of
keyframe context tokens Φkey(K) is to derive the interme-
diate token embeddings, an additional projection is per-
formed using a single FFN FFN(Φkey(K)) to reformulate
the keyframing context tokens into keyframe tokens that ad-
here to the motion manifold. The intermediate tokens ob-
tained from Φimd are ready to be used directly. To this end,
we can construct the resulting motion manifold M̂ with a
token sequence {m̂0, m̂1, ..., m̂N−1} as follows:

m̂t =

{
FFN(Φkey(K)t), if t ∈ K

mt, otherwise
(1)

where Φkey(K)t is the context token representation for the
keyframe of index t in the sequence.

Before applying the transformer Φsyn, we feed the tokens
of M̂ through a 1D convolutional layer of kernel size 3. For
each layer of Φsyn, a self-attention function is followed by
a FFN. The output token sequence of Φsyn is fed through
another 1D convolutional layer before the final linear pro-
jection. The final output Ŷt consists of a root position esti-
mation p̂t,0 ∈ R3 of pt,0 and local quaternions q̂t ∈ RJ×4.
Note that pt,0 and qt jointly can be used to compute the
global position Pt and rotation Qt information by FK.

3.5. Loss functions

The stages in our method are trained jointly in an end-to-
end manner using a set of loss functions. To determine the
loss for a motion sequence of length N , we use ℓ1 distance
for the following features obtained from Ŷ and Y :

• Local/root position loss: With predicted and real co-
ordinate values of the root joint at the t-th frame as
p̂t,0 ∈ R3 and pt,0 ∈ R3 respectively,

Lroot =
1

N

N−1∑
t=0

||p̂t,0 − pt,0||1. (2)

• Local rotation loss: With predicted (pre-normalised)
and expected (unit-normalised) quaternion values of
all joints at frame t as q̂t,j ∈ R4 and qt,j ∈ R4 re-
spectively,

Lquat =
1

NJ

N−1∑
t=0

J−1∑
j=0

||q̂t,j − qt,j ||1. (3)

• Global position loss: With predicted and real FK-
derived coordinate values of all joints at frame t as
P̂t ∈ RJ×3 and Pt ∈ RJ×3 respectively,

LFKp =
1

NJ

N−1∑
t=0

||P̂t − Pt||1. (4)

• Global rotation loss: With predicted and real FK-
derived quaternion values of all joints at frame t as
Q̂t ∈ RJ×4 and Qt ∈ RJ×4 respectively,

LFKq =
1

NJ

N−1∑
t=0

||Q̂t −Qt||1. (5)

Although quaternions are unit-normalised in practice, we
found that calculating Lquat with non-normalised predic-
tions resulted in improved gradient stability during the train-
ing process and, in turn, greater training convergence.

In summary, our training loss function L is as follows:

L = αl(Lroot + Lquat) + αg(LFKp + LFKq ), (6)

where αl and αg are local and global feature loss scaling
parameters, respectively. The accuracy of local attributes
is best prioritised over that of global attributes, since nor-
malised quaternions remain in use for deriving global fea-
tures, which lead to gradient instability [10, 15].

4. Experiments and results
4.1. Datasets and metrics

We benchmark our method in the motion interpolation
task against both the state-of-the-art RNN-based network
[15] and BERT-based network [10] in motion transition
generation. To evaluate the effectiveness of each model,
they are to complete the following motion interpolation
task:

• Input: The model is provided with the keyframes K
of an N -frame ground truth motion. While keyframes
can be defined for any combination of frames, we place
each keyframe evenly every 5, 15, or 30 frames for
consistency, starting with the first frame, e.g., K =
{x0, x5, x10, ..., x|K|} for 5-frame intervals.

• Expected output: Each model is to output an N -frame
motion Ŷ = {ŷ0, ŷ1, ..., ŷN−1} given the keyframes
K. This output is compared with the ground truth with
the L2P and L2Q metrics used in state-of-the-art com-
parisons [10, 15]. These metrics measure the average
ℓ2 errors of all positional and rotational attributes re-
spectively for each pose. In addition, we apply the
Normalised Power Spectrum Similarity (NPSS) [12]
metric to measure visual similarities between the esti-
mated and actual motion outputs.

We source our motions for both training and evaluation
from the Ubisoft La Forge Animation (LaFAN1) dataset
[15] and the Carnegie-Mellon University Motion Capture
(CMU Mocap) dataset 2. The CMU Mocap motions are re-
sampled from their original 120 frames per second (FPS)
down to 30 FPS considering the computational cost, and
to match the frame rate of the LaFAN1 dataset. While
LaFAN1 focuses largely on motions with visibly dynamic
details such as locomotion and sports actions, CMU Mo-
cap provides a larger variety of motions, many of which
exhibit more minute details and ambiguous motion trajec-
tories. From a data-level perspective, this suggests that root

2Dataset available at: http://mocap.cs.cmu.edu/



Category CMU:acrobatics CMU:basketball CMU:golf
L2P L2Q NPSS L2P L2Q NPSS L2P L2Q NPSS

Interval 5 15 30 5 15 30 5 15 30 5 15 30 5 15 30 5 15 30 5 15 30 5 15 30 5 15 30
LERP 0.234 0.899 1.718 0.308 1.052 1.598 0.183 0.854 1.856 0.122 0.544 1.051 0.182 0.695 1.044 0.078 0.352 1.078 0.029 0.181 0.509 0.044 0.196 0.473 0.060 0.396 1.296
BERT 0.353 0.947 1.744 0.516 1.211 1.712 0.249 0.886 1.865 0.165 0.547 1.043 0.221 0.734 1.075 0.070 0.296 0.972 0.066 0.181 0.511 0.071 0.197 0.475 0.078 0.280 1.187

∆-interpolator 0.189 0.727 1.395 0.270 0.814 1.342 0.152 0.642 1.560 0.140 0.594 1.212 0.206 0.717 1.089 0.089 0.344 1.023 0.056 0.193 0.511 0.085 0.216 0.487 0.078 0.390 1.276
TGcomplete 0.400 0.982 1.624 0.499 1.177 1.772 0.297 1.004 2.054 0.181 0.482 0.921 0.255 0.718 1.116 0.106 0.291 0.769 0.113 0.222 0.461 0.121 0.244 0.458 0.110 0.208 0.635

MAE 0.295 0.697 1.156 0.730 1.219 1.511 0.444 0.878 1.444 0.163 0.405 0.739 0.252 0.620 0.915 0.095 0.255 0.855 0.080 0.139 0.214 0.110 0.185 0.267 0.114 0.177 0.316
Ours 0.217 0.471 0.791 0.328 0.643 0.931 0.167 0.410 0.769 0.101 0.274 0.456 0.165 0.473 0.668 0.054 0.160 0.329 0.048 0.083 0.116 0.083 0.138 0.182 0.081 0.104 0.155

Category CMU:salsa CMU:swim CMU:walk/run
LERP 0.272 1.091 2.087 0.362 1.265 2.193 0.212 0.788 2.114 0.114 0.475 0.925 0.169 0.630 1.167 0.205 0.873 1.242 0.070 0.366 0.720 0.095 0.327 0.512 0.028 0.133 0.506
BERT 0.337 1.131 2.164 0.509 1.395 2.315 0.233 0.800 2.111 0.184 0.506 0.958 0.256 0.677 1.214 0.175 0.771 1.213 0.107 0.374 0.707 0.129 0.346 0.516 0.040 0.115 0.458

∆-interpolator 0.287 1.124 2.176 0.391 1.297 2.183 0.217 0.780 2.093 0.125 0.498 0.938 0.193 0.650 1.145 0.242 0.650 1.369 0.083 0.375 0.757 0.124 0.355 0.565 0.049 0.152 0.616
TGcomplete 0.348 1.117 2.136 0.485 1.373 2.270 0.193 0.737 2.120 0.234 0.533 0.924 0.321 0.732 1.231 0.268 0.781 1.253 0.138 0.370 0.700 0.167 0.368 0.568 0.066 0.135 0.369

MAE 0.279 0.864 1.930 0.595 1.188 2.058 0.368 0.904 2.623 0.281 0.508 0.820 0.662 0.903 1.222 0.612 0.893 1.536 0.118 0.309 0.554 0.154 0.315 0.459 0.068 0.138 0.336
Ours 0.205 0.662 1.519 0.393 0.823 1.417 0.186 0.588 1.707 0.134 0.307 0.583 0.212 0.453 0.770 0.186 0.431 0.945 0.076 0.188 0.400 0.103 0.222 0.362 0.044 0.091 0.247

Category LaFAN1:crawl LaFAN1:dance LaFAN1:get up
LERP 0.088 0.481 1.045 0.093 0.365 0.671 0.082 0.512 1.541 0.141 0.683 1.287 0.150 0.583 0.984 0.111 0.516 1.232 0.095 0.505 1.118 0.104 0.402 0.704 0.072 0.458 1.385
BERT 0.181 0.522 1.075 0.166 0.403 0.699 0.143 0.422 1.432 0.209 0.717 1.311 0.212 0.622 1.012 0.100 0.467 1.158 0.190 0.545 1.147 0.182 0.446 0.734 0.099 0.394 1.290

∆-interpolator 0.097 0.437 0.970 0.106 0.351 0.660 0.120 0.518 1.497 0.164 0.703 1.308 0.178 0.607 1.014 0.139 0.507 1.255 0.126 0.584 1.279 0.136 0.459 0.797 0.098 0.442 1.345
TGcomplete 0.203 0.500 0.996 0.180 0.413 0.719 0.207 0.506 1.309 0.244 0.729 1.332 0.232 0.630 1.024 0.130 0.455 1.077 0.200 0.493 0.960 0.186 0.434 0.726 0.153 0.439 1.051

MAE 0.244 0.497 0.909 0.243 0.408 0.633 0.321 0.501 1.141 0.225 0.640 1.069 0.251 0.569 0.871 0.189 0.468 0.961 0.263 0.513 0.913 0.269 0.446 0.668 0.276 0.443 0.891
Ours 0.115 0.343 0.681 0.136 0.312 0.530 0.127 0.324 0.858 0.128 0.506 0.917 0.168 0.494 0.777 0.087 0.357 0.829 0.135 0.340 0.645 0.150 0.329 0.543 0.105 0.265 0.664

Category LaFAN1:jump/hop LaFAN1:obstacles LaFAN1:walk
LERP 0.178 0.837 1.327 0.146 0.544 0.779 0.073 0.304 0.642 0.153 0.796 1.616 0.126 0.497 0.818 0.049 0.256 0.757 0.124 0.669 1.451 0.117 0.467 0.793 0.052 0.265 0.950
BERT 0.277 0.886 1.331 0.222 0.584 0.803 0.092 0.280 0.602 0.227 0.830 1.629 0.183 0.529 0.834 0.062 0.230 0.696 0.182 0.682 1.442 0.169 0.492 0.801 0.059 0.228 0.882

∆-interpolator 0.173 0.777 1.331 0.153 0.520 0.811 0.094 0.301 0.727 0.150 0.732 1.484 0.134 0.486 0.805 0.070 0.271 0.879 0.134 0.647 1.389 0.135 0.471 0.799 0.067 0.242 0.872
TGcomplete 0.299 0.854 1.391 0.244 0.608 0.923 0.136 0.401 0.628 0.247 0.640 1.246 0.205 0.475 0.770 0.108 0.290 0.643 0.217 0.570 1.148 0.188 0.446 0.742 0.092 0.248 0.566

MAE 0.275 0.737 1.123 0.262 0.536 0.757 0.111 0.299 0.585 0.263 0.574 1.077 0.250 0.426 0.643 0.118 0.228 0.466 0.219 0.525 0.912 0.224 0.414 0.597 0.135 0.261 0.578
Ours 0.151 0.557 0.940 0.163 0.455 0.677 0.052 0.216 0.450 0.130 0.366 0.789 0.138 0.307 0.510 0.048 0.129 0.335 0.111 0.322 0.639 0.128 0.284 0.456 0.054 0.139 0.344

Table 1. Comparison of average L2P, L2Q, and NPSS performance on motion samples from various categories, each with 121 frames in
length. Lower values indicate more accurate predictions. The top performer of each test is highlighted in bold.

position accuracy is more important in the LaFAN1 dataset
compared to the CMU Mocap dataset. We employ both
datasets to demonstrate our method’s ability to adapt with
different levels of motion dynamics.

For our model, the positional data of each motion sam-
ple is recentred around the XY Z means of the keyframed
root positions. Given that unit quaternion values are re-
stricted to a range of [−1, 1], while positional values can
be of any scalar value, we rescale positional data such that
Lroot ≈ Lquat with initial model weights. During training,
we randomly select between [⌊ |Y |

24 ⌋, ⌊
|Y |
4 ⌋] keyframes for

each sampled motion Y , with the first and last frames being
stipulated as keyframes. Each motion sample batch has a
random length of |Y | ∈ [72, 144].

4.2. Implementation details

We implement our method with 8 layers for each trans-
former, with a token embedding size of d = 512, and an
FFN size of 4 × d. Each multi-head attention layer is split
between 8 attention heads. Since our method relies on coor-
dination between Stage-I and Stage-II, the training stability
of deeper models benefits greatly from larger batch sizes.
For our 8-layer setting, we found that a batch size of 64
motions per epoch is sufficient for convergence.

We train our model using the Adam optimiser [20] for
50,000 epochs with a scheduled learning rate. Specifically,
we employ both a warm-up and decay strategy for our learn-

Φsyn Key & Intermediate Input Layers Norm PE mode L2P L2Q NPSS
(a) N/A - No Φsyn 8 Seq-RC concat 0.665 0.699 0.640
(b) Φkey & Φimd 8 LayerNorm concat 0.539 0.620 0.581
(c) Φkey & Φimd 8 Seq-RC additive 0.587 0.661 0.565

(d)

keyframe embeddings & Φimd

2

Seq-RC concat

0.684 0.711 0.675
4 0.610 0.642 0.532
8 Divergence

12 Divergence

Φkey & Φimd

2

Seq-RC concat

0.652 0.691 0.609
4 0.534 0.608 0.501
8 0.438 0.530 0.384

12 0.416 0.515 0.380

Table 2. Ablation study of our architectural features: (a) Stage-III
manifold refinement (b) Seq-RC, (c) concatenated PE, (d) bridging
Φkey into Φsyn, convergability & depth comparison.

ing rate using the following strategy [42]:

lr(e) = 4e-4× min(e−
1
2 , e× 1000−

3
2 ), (7)

where e represents the number of current training epoch. In
addition, we linearly scale αg ∈ [0, 1] for 1,000 epochs af-
ter warm-up, in order to avoid conflicting gradients caused
by ambiguous quaternion polarity when backpropagating
through FK functions, i.e. FK(Q) = FK(−Q) for any
set of joint rotation quaternions Q. We set αl = 1 through-
out the training process.

4.3. Comparison to the state-of-the-art

We benchmark the performance of our method against
state-of-the-art models by evaluating their L2P, L2Q, and
NPSS metrics with testing datasets. Table 1 compares



Figure 3. An example of motion interpolation by each of the tested
methods, compared with the ground truth motion (first row). The
green curves indicate the offsets regarding the ℓ1 distance between
the interpolation and ground truth manifolds. Less turbulent off-
sets indicate more visually similar motion predictions.

the performance of our architecture against the BERT-
based motion in-painting transformer [10], the encoder-
decoder-based ∆-interpolator [31], the RNN-based ap-
proach TGcomplete [15], and the masked auto-encoder
(MAE) architecture [16].

The quantitative performance of our model is greatly im-
proved over all existing methods, as well as LERP, in a large
majority of keyframing scenarios. The performance im-
provement of our method compared to LERP increases with
the length of keyframe intervals, as using learning based
methods provides the opportunity to reconstruct non-linear
motion details. Note that for a short keyframe interval, a
linear estimation (f(x+∆x) = f(x)+ f̂ ′(x)∆x+ o(∆x))
of a continuous motion (function) can be relatively accu-
rate, which explains why similar performance is found be-
tween LERP and our method for the 5-frame interval set-
ting. However, other existing methods are significantly
worse than LERP. Our model notably outperforms both
TGcomplete and MAE with its single token mask in every
scenario. Thus, a clear motion interpolation improvement
can be observed from our decoupling strategy with motion
manifold technique, compared to the RNN model.

The BERT-based method [10] exhibits a clear disadvan-
tage in its performance due to its reliance on LERP-based
input mask tokens. By deriving the mask token embed-
dings from a sub-optimal estimation, self-attention mecha-
nisms tend to converge towards reproducing the input token

|Y | # Params 31 61 121
LERP - 0.0330 0.0360 0.0370
TGcomplete 15.6M 0.5001 1.0272 1.9774
BERT 29.3M 0.0541 0.0570 0.0596
MAE 54.9M 0.0755 0.0793 0.0820
Ours 83.2M 0.0793 0.0830 0.0850

Table 3. Inference time in seconds and parameter count for differ-
ent motion lengths |Y |. Keyframes of each evaluation were evenly
placed every 15 frames, starting from the first frame.

Figure 4. Sample motion manifolds obtained by t-SNE.

Figure 5. Performance improvement of our architecture by joints
in L2P + L2Q, compared to existing methods.

rather than composing more realistic poses, as it is close
to a trivial local minimum to learn. Consequently, such
models never learn to fully consider the keyframe tokens
as their main source of information. Figure 3 highlights the
near-identical latent manifolds of LERP output and BERT-
based evaluation. We observe a similar behaviour with the
∆-interpolator model, where LERP-based transformations
are applied as a post-processing step [31]. While its ∆-
mode strategy allows the model to perform marginal im-
provements over LERP more frequently, it is still heavily
reliant on the performance of LERP, which does not bode
well with longer keyframe intervals. To this end, we can
deduce that the realistic interpolation can be difficult with
LERP-reliant solutions. Conversely, our manifold learning
approach fully considers the continuous joint positions and
rotations of the input keyframes, and is able to converge
upon a significantly more optimal solution.

Table 2 documents an ablation study for each our ar-
chitecture’s contributions. Major improvements to the ar-
chitecture’s L2P, L2Q, and NPSS performance can be ob-
served for the inclusion of manifold self-attention in Stage
III, the replacement of LayerNorm with our sequence-level
re-centering normalisation scheme, and concatenation over
addition of PE. It should be noted that the Stages I and



L2P L2Q NPSS
Interval 5 15 30 5 15 30 5 15 30
LERP 0.35 1.28 2.46 0.22 0.66 1.17 0.0021 0.0430 0.2663

TGcomplete 0.22 0.64 1.25 0.17 0.45 0.68 0.0019 0.0247 0.1298
BERT 0.22 0.60 1.14 0.15 0.38 0.60 0.0016 0.0251 0.1270

∆-interpolator 0.16 0.53 1.05 0.12 0.33 0.59 0.0015 0.0238 0.1272
Ours 0.30 0.71 1.26 0.21 0.40 0.63 0.0019 0.0284 0.1393

Table 4. Motion completion performance of our method, based on
the Harvey et al. (2020) [15] setup.

II only variant of our model (i.e., (a) in Table 2) is struc-
turally identical to the ∆-interpolator model with ∆-mode
disabled [31]. In addition, we demonstrate the use of Φkey
token representations over separately trained keyframe em-
beddings in Stage-III, which leads to improved convergibil-
ity of deeper architecture settings. We further demonstrate
the importance of such deeper settings, which provide a sig-
nificant boost to our model’s evaluation accuracy.

Figure 4 visualises the latent motion manifolds in 2D and
3D spaces for our method, LERP and ground truth using
t-SNE analysis. The manifold of our method is obtained
from the inputs of Stage-III, and LERP and ground truth
are from the pose data. It can be observed that the lower-
dimensional curves (i.e., manifolds) represent the motion
of higher-dimensional in a smooth manner, and ours is very
close to the one associated with the ground truth, compared
with LERP. This indicates the superiority of our method to
derive a high-quality latent motion space. Figure 3 illus-
trates an example of hopping motion interpolated by dif-
ferent methods with quantitative metrics. The ground truth
data is reduced to a motion manifold with t-SNE. The offset
of the manifold from each interpolation method compared
to the ground truth one is obtained by ℓ1 distance for visu-
alization. Particularly, the offset values are enlarged for ob-
servation purpose. Our method gains the best motion mani-
fold with the least offset from the ground truth manifold.

Figure 5 dissects the L2P and L2Q improvements of
our method into individual joints. We can clearly observe
that the main improvements of our method over LERP ex-
ist within the global positions and rotations of foot joints,
whereas improvements are more widely spread compared
to the MAE and RNN-based methods. On average, our ap-
proach brings a L2P and L2Q benefit to all joints.

4.4. Inference latency

The inference time of different motion interpolation
methods was evaluated in our experiments, as the visual
latency of keyframe adjustments is important for efficient
animation work, as well as real-time applications. We im-
plemented these methods with PyTorch on an AMD Ryzen
9 3950X processor and an NVIDIA GeForce RTX 3090
GPU. Table 3 shows that the parallelism provided by the
transformer is highly beneficial to our method when inter-
polating complete motion sequences. Our method shows a

similar order of time complexity to the LERP method, being
consistently around 2.5× LERP inference time, and signifi-
cantly faster than the RNN-based approach. In addition, our
method is stable in terms of the inference time for different
sequence lengths, whilst the RNN-based approach shows
a significant increasing latency from 31-frame sequence to
121-frame sequence.

4.5. Extension to motion completion

Though our model is designed for sparse keyframe inter-
polation, we can additionally perform motion completion
as it can be defined as a specifically constructed keyframe
set. Table 4 compares the performance of our model against
linear interpolation and the state-of-the-art models for mo-
tion completion. With the benefit of the motion context,
our model outperforms LERP, but not to the efficacy of the
RNN-based [15] and transformer-based [10, 31] models.

4.6. Limitations and future work

One limitation of our approach is that its maximum mo-
tion length is limited by the length of its training samples.
Unlike most transformer-based solutions that can trivially
employ relative positional encodings [5,35], our method re-
lies on continuous positional vectors, such as sinusoidal en-
codings, for its manifold representations, and thus cannot
employ the same model to accept inputs of arbitrary length.
Further research for a compatible relative position represen-
tation would allow our approach to be seamlessly applied in
keyframed animation workflows for longer sequences.

5. Conclusion
This paper presents a three-stage transformer-based mo-

tion interpolation method. We begin by producing learned
motion keyframe context tokens in Stage-I. With context-
guided attention, Stage-II generates embeddings for inter-
mediate tokens by inferencing an implicitly constrained la-
tent motion manifold with the guidance of the keyframe
context tokens. Stage-III takes both the keyframe tokens
and intermediate tokens to compose the interpolated motion
sequence. In addition, we introduce a novel sequence-level
re-centreing technique to address the feature biases that
are more prevalent in sequences of continuous attributes.
We demonstrate that the superior interpolation accuracy of
our approach compared with existing RNN and masked
transformer methods. As our architecture is designed for
any masked sequence-to-sequence task with continuous at-
tributes, we believe that our architecture’s applications ex-
tend beyond motion interpolation.
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Sarafianos, Tony Tung, and Gerard Pons-Moll. Pose-ndf:
Modeling human pose manifolds with neural distance fields.
In European Conference on Computer Vision, pages 572–
589. Springer, 2022. 3

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017. 1, 2, 3, 4, 6

[43] Lintao Wang, Kun Hu, Lei Bai, Yu Ding, Wanli Ouyang,
and Zhiyong Wang. Multi-scale control signal-aware trans-
former for motion synthesis without phase. arXiv preprint
arXiv:2303.01685, 2023. 1

[44] Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen,
Xiyang Dai, Mengchen Liu, Yu-Gang Jiang, Luowei Zhou,
and Lu Yuan. Bevt: Bert pretraining of video transformers.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14733–14743, 2022. 3

[45] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin
Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei
Wang, and Tieyan Liu. On layer normalization in the trans-
former architecture. In International Conference on Machine
Learning, pages 10524–10533. PMLR, 2020. 2, 3

[46] Jie Yang, Zhiquan Qi, and Yong Shi. Learning to incorpo-
rate structure knowledge for image inpainting. In AAAI Con-
ference on Artificial Intelligence, volume 34, pages 12605–
12612, 2020. 3

[47] Biao Zhang and Rico Sennrich. Root mean square layer nor-
malization. Advances in Neural Information Processing Sys-
tems, 32, 2019. 2, 4

[48] Xinyi Zhang and Michiel van de Panne. Data-driven auto-
completion for keyframe animation. In Annual International
Conference on Motion, Interaction, and Games, pages 1–11,
2018. 3


