
Hydra Attention:
Efficient Attention with Many Heads

Appendix

Daniel Bolya1,2⋆, Cheng-Yang Fu2, Xiaoliang Dai2, Peizhao Zhang2, and Judy
Hoffman1

1 Georgia Tech
{dbolya,judy}@gatech.edu

2 Meta AI
{chengyangfu,xiaoliangdai,stzpz}@fb.com

1 Other Kernels

In Tab. 1, we list all the kernel functions (instantiations of ϕ(·)) we’ve tried with
Hydra Attention. There are three main concerns we had while choosing these
kernels. Namely, should ϕ(·) be 1.) unbounded, 2.) allow for negative values, or
3.) be linear.

L2 normalization for cosine similarity (which is what we use in the paper),
for instance, is bounded, allows for negatives, and is linear. Sigmoid, on the other
hand, is bounded, is only positive, and is non-linear.

From our experiments, we’ve observed that while the function used for Q is
not that important, K significantly benefits from being both linear and allow-
ing negative values. Compared to L2 normalization, softmaxing K significantly
degrades performance. And out of the normalization techniques, we find L2 to
work the best (over L1 or constant normalization).

⋆ This work was done under an internship at Meta AI.

Kernel ϕ(Q) ϕ(K) Accuracy

Cosine Similarity x/||x||2 76.37
Tanh-L2 tanh(x) x/||x||2 76.17

Mean x/
√
T 75.95

CosSim + LN x/||x||2 75.74
Tanh-L2 + LN tanh(x) x/||x||2 75.22
Tanh-Softmax tanh(x) softmax(x) 74.18
Sigmoid-Softmax σ(x) softmax(x) 74.02
L1 Normalization x/||x||1 70.75

Table 1: More Kernels. We include other kernels we’ve tested here. Since most
are asymmetric, we list ϕ for Q and K separately.

2 D. Bolya et al.

Finally, since ϕ(K) (when not softmax) does not sum to 1, multiplying it by
V can produce magnitudes higher than standard attention. Thus, we thought it
might be useful to normalize the result of the attention layer. We test two kernels
with “+ LN”, where the attention operation is followed by a Layer Norm (before
the projection). This, however, does not seem to help, so it seems better to leave
the kernel unnormalized here.

2 More Visualizations

In Fig. 1, we include several more image visualizations to supplement those in
the main paper. These images were selected randomly from 12 different classes
(4 per class) from the ImageNet-1k validation set with the only selection criteria
being that the image is safe to view. The network predicts most of these images
correctly.

3 Code

Hydra attention is extremely simple to implement. We give a reference imple-
mentation with the cosine similarity kernel here in PyTorch:

def hydra(q, k, v):

"""

q, k, and v should all be tensors of shape

[batch, tokens, features]

"""

q = q / q.norm(dim=-1, keepdim=True)

k = k / k.norm(dim=-1, keepdim=True)

kv = (k * v).sum(dim=-2, keepdim=True)

out = q * kv

return out

Hydra Attention Appendix 3

Fig. 1: More Visualization. More visualization of the focus of the model using
the method described in the paper.

