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ABSTRACT
We introduce the Web-Enabled Simulation (WES) research agenda,
and describe FACEBOOK’sWW system.We describe the application
of WW to reliability, integrity and privacy at FACEBOOK1, where
it is used to simulate social media interactions on an infrastructure
consisting of hundreds of millions of lines of code. TheWES agenda
draws on research frommany areas of study, including Search Based
Software Engineering, Machine Learning, Programming Languages,
Multi Agent Systems, Graph Theory, Game AI, and AI Assisted
Game Play. We conclude with a set of open problems and research
challenges to motivate wider investigation.
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1 INTRODUCTION
A Web-Enabled Simulation (WES) is a simulation of the behaviour
of a community of users on a software platform. It uses a (typically
web-enabled) software platform to simulate real-user interactions
and social behaviour on the real platform infrastructure, isolated
from production users. Unlike traditional simulation [32, 41], in
which a model of reality is created, a WES system is thus built on a
real–world software platform.

In order to model users’ behaviour on a WES system, a multi
agent-based approach is used, in which each agent is essentially
a bot that simulates user behaviour. This user behaviour could be
captured in a rule-based system, or could be learnt, either supervised
from examples, or unsupervised in a reinforcement learning setting.

The development of approaches to tackle the challenges posed
by WES may thus draw heavily on recent advances in machine
learning for software games, a topic that has witnessed many recent
breakthroughs [51].
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In this paper we set out the general principles for WES systems.
We outline the development of FACEBOOK‘s WW simulation of
social media user communities, to illustrate principles of and chal-
lenges for the WES research agenda. WW is essentially a scaled
down simulation of FACEBOOK’s platform, the actions and events
of which use the same infrastructure code as the real platform itself.
We also introduce two new approaches to testing and optimising
systems: Social Testing and Automated Mechanism Design.

Social Testing tests users’ interactions with each other through
a platform, while Automated Mechanism Design combines Search
Based Software Engineering (SBSE) and Mechanism Design to au-
tomatically find improvements to the platforms it simulates.

Like any software testing system, the WES approach helps find
and fix any issues, e.g., with software changes and updates. In
common with testing systems more generally, WES operates in a
safely isolated environment. The primary way in whichWES builds
on existing testing approaches lies in the way it models behaviour.
Traditional testing focuses on system behaviour rather than user
behaviour, whereas WES focuses on the interactions between users
mediated by the system.

It is a subtle shift of emphasis that raises many technical and
research challenges. Software systems involve increasing levels of
social interaction, thereby elevating the potential for issues and
bugs relating to complex interactions between users and software.
It is the emergence of these kinds of social bugs and issues that
necessitate the need for a WES-style approach, and the research
agenda that underpins it. FACEBOOK’s WW simulation is WES
that uses bots that try to break the community standards in a safe
isolated environment in order to test and harden the infrastruc-
ture that prevents real bad actors from contravening community
standards.
WidespreadApplicability:Community behaviour is increasingly
prevalent in software applications, for example for travel, accom-
modation, entertainment, and shopping. These systems use social
interactions so that each user can benefit from the collective expe-
rience of other users. Although this paper focuses on FACEBOOK’s
WW system, the concepts and approach could also find application
in platforms used by other organisations.
Realism:WES interactions between bots are achieved through the
real platform infrastructure, whereas a more traditional simulation
approach would first model this infrastructure. This is important
because the platform infrastructures that mediate user interactions
are increasingly complex. For instance, FACEBOOK’s WW simula-
tion is built on a social media infrastructure consisting of several
hundreds of millions of lines of code. While a traditional simulation
modelling approach is applicable, there are many issues that are
better understood using a WES approach, as we shall see.
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Platform realism does not necessarily mean that the interactions
between users need to be realistic representations of the end users’
experience. A WES system could, for instance, allow engineers
to experiment with new features for which, by definition, there
is no known realistic user behaviour. It can also be used to focus
on atypical behaviours of special interest to engineers, such as
those of bad actors. A WES system could even be used for counter-
factual simulation; modelling what users cannot do. We use the
terms ‘platform realism’ and ‘end user realism’ for clarity. The
term ‘platform realism’ refers to the degree to which the simulation
uses the real platform. The term ‘end user realism’ refers to the
degree to which simulated interactions faithfully mimic real users’
interactions. The former is inherent to the WES approach, while
the latter may be desirable, but is not always essential.
Opportunities for Researchers: It may not be possible for re-
searchers to experiment with WES systems directly (for example,
where they are built from proprietary software platforms). Nev-
ertheless, many open questions can be tackled using traditional
simulation, with results extended or extrapolated for application to
WES systems. Researchers can also experiment with and evaluate
novel techniques and approaches using WES systems built from
open source components.

We report on our plans for the further future development of
WW. The WES research agenda resides at an exciting intersection
between many topics including, but not limited to, Search Based
Software Engineering (SBSE) [24], Multi Agent Systems [54], Ma-
chine Learning [47], Software Testing [7], Graph Theory [53], Game
Theory [42], and Game AI [55]. We hope that this paper will serve
to stimulate interest in activity in the development of research on
WES approaches.

The primary contributions of this paper are:

(1) The introduction of the WES approach to on-platform simu-
lation of real-world software user communities;

(2) The introduction of the concepts of Automated Mechanism
Design and Social Testing, both of which are relevant toWES
systems, but also have wider applications;

(3) An outline of the FACEBOOK WW system; an example of a
WES system, applied to social media user communities;

(4) A list of open problems and challenges for the WES research
agenda.

2 WEB-ENABLED SIMULATION
A WES simulation can be seen as a game, in which we have a set
of players that operate to fulfil a certain objective on a software
platform. This observation connects research on WES systems with
research on AI Assisted Game Play [51]. In an AI Assisted Game,
reinforcement learning can be used to train a bot to play the game,
guided by a reward (such as winning the game or achieving a higher
score). Similarly, a WES simulation can also use reinforcement
learning to train bots.

For example, with FACEBOOK’sWW simulation, we train bots to
behave like bad actors, guided by rewards that simulate their ability
to behave in ways that, in the simulation, contravene our commu-
nity standards [15]. The users whose behaviour is stimulated by
other WES approaches could be end-users of the software platform
but, more generally, could also be any software user community.

For example, a simulation of the users of a continuous integration
system, would be a simulation of a developer community, while an
App Store WES system may involve both developers and end users.
We define the following generic concepts that we believe will be
common to many, if not all, WES systems:

Bot: A bot is an autonomous agent. Note that bots can create
‘new’ data as they execute. For instance, social networking bots
may weave connections in a social graph as they interact, ‘just as
the Jacquard loom weaves flowers and leaves’ [34].

Action: An action is a potentially state-changing operation that
a bot can perform on the platform.

Event: An event is a platform state change that is visible to some
set of users.

Observation: An observation of the platform’s state does not
change the platform state. It is useful to distinguish actions (state
changing), from observations (which are pure functional). This
means that some apparent observations need to be decomposed
into action and observation pairs. For example, the apparent obser-
vation ‘read a message’, may update notifications (that the message
has been read). Therefore, it is decomposed into the (state-changing)
action of getting the message (which happens once) and the obser-
vation of reading the message (which is side–effect free and can
occur multiple times for those messages that permit multiple reads).

Read-only bot: a read-only bot is one that cannot perform any
actions, but can observe state. Read-only bots can potentially op-
erate on real platform data, because they are side–effect free, by
construction.

Writer bot: a writer bot that can perform actions and, thereby,
may affect the platform state on which it acts (e.g. the social graph
in the case of social media applications).

Fully isolated bot: a fully isolated bot can neither read from
not write to any part of state that would affect real user experience,
by construction of the isolation system in place (See Section 2.2).

Mechanism: The mechanism is the abstraction layer through
which a bot interacts with the platform. Actions, events and obser-
vations may be restricted and/or augmented by the mechanism. For
instance, the mechanism might constrain the actions and events so
that the bot can only exhibit a subset of real behaviours of particu-
lar interest, such as rate limiting, or restricted observability. The
mechanism might also augment the available actions and events to
explore novel approaches to the platform configuration, products
and features, before these are released to end users. This opens up
the potential for automated mechanism design, as we discuss in
Section 2.3. The mechanism is also one way in which we achieve
isolation (see Section 2.2).

One obvious choice for a mechanism would be to provide a
bot with a user interface similar to the one that the GUI offers
to a real user. However, there is no need for a WES system to
interface through the GUI. There may be practical reasons why it
is advantageous to implement interactions more deeply within the
infrastructure. For example, it is likely to bemore efficient for aWES
bot to bypass some levels of abstraction between a normal user and
the core underlying platform. Of course, there is a natural tension
between the twin objectives of platform realism and efficiency, a
topic to which we return in Section 5.
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Script: A script run is akin to a single game episode. Scripts cap-
ture, inter alia, the type of environment created, how bots interact,
simulation stopping criteria and measurement choices.

Simulation time: The simulation may compress or expand the
apparent time within the simulation in order to simulate a desired
use case more efficiently or effectively. However, there will always
be a fundamental limitation, because the simulation can only be as
fast as the underlying real platform environment will permit. This
is another difference between WES and traditional simulation.

Monitor: The monitor captures and records salient aspects of
the simulation for subsequent analysis.

2.1 Bot Training
Bots behave autonomously, though training to exhibit particular
behaviours of interest. In the simplest use case, bots merely explore
the platform, randomly choosing from a predefined set of actions
and observations. More intelligent bots use algorithmic decision
making and/or ML models if behaviour. The bots could also be
modelled to cooperate towards a common goal.

2.2 Bot Isolation
Bots must be suitably isolated from real users to ensure that the
simulation, although executed on real platform code, does not lead
to unexpected interactions between bots and real users. This isola-
tion could be achieved by a ‘sandbox’ copy of the platform, or by
constraints, e.g., expressed through the mechanism and/or using
the platform’s own privacy constraint mechanisms.

Despite this isolation, in some applications bots will need to ex-
hibit high end user realism, which poses challenges for the machine
learning approaches used to train them. In other applications where
read only bots are applicable, isolation need not necessarily prevent
the bots from reading user information and reacting to it, but these
read only bots cannot take actions (so cannot affect real users).

Bots also need to be isolated from affecting production monitor-
ing and metrics. To achieve this aspect of isolation, the underlying
platform requires (some limited) awareness of the distinction be-
tween bots and real users, so that it can distinguish real user logging
data from that accrued by bot execution. At FACEBOOK, we have
well-established gate keepers and configurators that allow us to
do this with minimal intervention on production code. These gate
keepers and configurators essentially denote a Software Product
Line [12] that could also, itself, be the subject of optimisation [22].

Finally, isolation also requires protection of the reliability of the
underlying platform.We need to reduce the risk that bots’ execution
could crash the production system or affect it by the large scale
consumption of computational resources.

2.3 Automated Mechanism Design
Supposewewant to experimentwith the likely end user behavioural
response to new privacy restrictions, before implementing the re-
strictions on the real platform. We could fork the platform and
experiment with the forked version. However, WES offers a more
‘light touch’ approach: we simply adjust the mechanism through
which bots interact with the underlying platform in order to model
the proposed restrictions. The mechanism can thus model a possible
future version of the platform.

Figure 1: Generic WES System Infrastructure. Real users
and bots reside on the same overall platform infrastructure.
There is a conceptual isolation layer between them that de-
termines the level of interaction possible, if any, between
bots and real users. There is also a mechanism layer that
mediates the actions and observations that the bots can per-
form through the platform.

Like all models, the mechanism need not capture all implemen-
tation details, thereby offering the engineer an agile way to explore
such future platform versions. The engineer can now perform A/B
tests through different mechanism parameters, exploring the differ-
ential behaviours of bot communities under different changes.

Using this intermediate ‘mechanism’ layer ameliorates two chal-
lenges for automated software improvement at industrial scales:
build times and developer acceptance. That is, build times can run
to minutes [6] or even hours [27], so an automated search that
insists on changes to the code may incur a heavy computational
cost. Even where cost is manageable, developers may be reluctant
to land code changes developed by a machine [45]. We have found
that a ‘recommender system’ approach sits well with our develop-
ers’ expectations at FACEBOOK [38]. It ensures that the developer
retains ultimate control over what lands onto the code base.

The ease with which the mechanism can be adjusted without
needing to land changes into the underlying platform code means
that this exploration process can be automated. Automated Mecha-
nism Design is thus the search for optimal (or near optimal) mech-
anisms, according to some fitness criteria of interest. In the domain
of AI Assisted Game Play, this is akin to changing the rules of the
game as the player plays it, for example to make the game more
challenging for an experienced player [33].

Borrowing the terminology of economic game theory [28], we
use the term ‘Automated Mechanism Design’ to characterise the
automated (or semi automated) exploration of the search space of
possible mechanisms through which WES bots interact with the
underlying infrastructure. Automated Mechanism Design is there-
fore also another application of Search Based Software Engineering
(SBSE) [23, 24]. As with AI Assisted Game Play, we wish to make
the platform more challenging, for example, to frustrate bad actors.
However, the applications of Automated Mechanism Design are far
wider than this because it offers a new approach to automated A/B
testing, at volumes never previously considered.
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2.4 Social Testing
WES systems bear some relationships to testing, in particular, end-
to-end system level testing. Indeed, FACEBOOK’sWW traces its
origins back to observations of the behaviour of multiple execu-
tions of FACEBOOK’s Sapienz automated test design platform [3].
However, even with only a single bot, a WES system differs from
traditional testing, because a WES bot is trained, while a traditional
test follows a specific sequence of input steps.

Furthermore, unlike end-to-end tests, which typically consider
the journey of a single user through the system and avoid test
user interaction lest it elevate test flakiness [25], a WES system
specifically encourages test user interaction to model community
behaviour. Therefore, WES systems can reveal faults that are best
explored and debugged at this ‘community’ level of abstraction. We
give several examples of such faults, encountered in our work at
FACEBOOK. Our analysis of the most impactful production bugs
indicated that as much as 25% were social bugs, of which at least
10% has suitable automated oracles to support a WES approach.

Such social bugs, arising through community interactions, re-
quire a new approach to testing: Social Testing; testing emergent
properties of a system that manifest when bots interact with one
another to simulate real user interactions on the platform. WES sys-
tems are clearly well-suited to Social Testing. However, we believe
other approaches are also viable; Social Testing is an interesting
new level of abstraction (lying above system testing levels of ab-
straction). It is worthy of research investigation in its own right.

In theory, all such ‘social faults’ could be found at the system
level. Indeed, all system level faults could, in theory, be found at unit
level. In practice, however, it proves necessary to stratify testing.
We believe that social testing (at the whole platform level) is just
a new level of abstraction; one that is increasingly important as
systems themselves become more social.

3 FACEBOOK’S WW
At FACEBOOK, we are building a WES system (called WW), ac-
cording to the principles set out in Section 2. WW is an environ-
ment and framework for simulating social network community
behaviours, with which we investigate emergent social properties
of FACEBOOK’s platforms. We are usingWW to (semi) automati-
cally explore and find new improvements to strengthen Reliability,
Integrity and Privacy on FACEBOOK platforms. WW is a WES
system that uses techniques from Reinforcement Learning [49] to
train bots (Multi Agent Reinforcement Learning) and Search Based
Software Engineering [24] to search the product design space for
mechanism optimisations: Mechanism Design.

Bots are represented by test users that perform different actions
on real FACEBOOK infrastructures. In our current implementation,
actions execute only the back-end code: bots do not generate HTTP
requests, nor do they interact with the GUI of any platform surface;
we use direct calls to internal FACEBOOK product libraries. These
users are isolated from production using privacy constraints and a
well-defined mechanism of actions and observations through which
the bots access the underlying platform code. However, when one
WW bot interacts with another (e.g., by sending a friend request or
message) it uses the production back-end code stack, components
and systems to do so, thereby ensuring platform realism.

3.1 TrainingWW bots
To train bots to simulate real user behaviour, we use Reinforcement
Learning (RL) techniques [49]. Our bot training top level approach
is depicted in Figure 2. As can be seen from Figure 2 theWW bot
training closely models that of a typical RL system [49]. That is, a
bot executes an action in the environment, which in turn, returns
an observation (or current state), and an eventual reward to the bot.
Using this information, the bot decides to take an action, and thus
the SARSA (State-Action-Reward-State-Action) loop is executed
during a simulation.

However, when considering the environment, we explicitly tease
apart the mechanism from the underlying platform. The platform is
out ofWW’s control: its code can change, since it is under continual
development by developers, butWW cannot change the platform
code itself. Furthermore, WW cannot determine the behaviour
of the platform. The platform may choose to terminate and/or
it may choose to allocate different resources on each episode of
the simulation. Furthermore, the social graph at the heart of the
database is also continually changing.

The mechanism helps to maintain a consistent interface forWW
bots, so that their code is insulated from such changes. It also
mediates the actions and observations a bot can make and witness,
so that many different mechanisms can be explored without any
need to change the platform. As can be seen from Figure 2, the
mechanism is separated from the platform. Each bot contains its
own set of mechanism parameters, so that each can report the
fitness of a different mechanism parameter choice. At the same
time, the bots seek to achieve their goals, guided by reinforcement
learning.

For example, to simulate scammers and their targets, we need at
least two bots, one to simulate the scammer and another to simulate
the potential target of the scam. The precise technical details of
how we impede scammers onWW are obviously sensitive, so we
cannot reveal them here. Nevertheless, we are able to outline the
technical principles.

The reinforcement learning reward for the scammer bot is based
on its ability to find suitable candidate targets, while the candidate
targets are simulated by rule-based bots that exhibit likely target
behaviours. The mechanism parameters residing in the scammer
bots are used to compute fitness in terms of the mechanism’s ability
to impede the scammers in their goal of finding suitable targets.

This use case need not involve a large number of bots. However,
the ability to simulate at scale gives us automated parallelisation for
increased scalability of the underlying search, and also supports av-
eraging fitness and reward results over multiple parallel executions.
Such averaging can be useful for statistical testing since results are
inherently stochastic.

3.2 Top Level Implementation
The top level components of the FACEBOOKWW system are de-
picted in Figure 3. This is a very high level view; there is, of course,
a lot more detail not shown here. We focus on key components
to illustrate overall principles. WW consists of two overall sub-
systems: the general framework classes, which are the core of our
simulation platform (and remain unchanged for each use case), and
the per-use-case classes (that are tailored for each use case).
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Figure 2:WWReinforcement LearningArchitecture: bots ex-
ecute actions in the environment, which in turn, returns an
observation, and an eventual reward. The platform’s code
is unchanged by simulation, while the mechanism through
which the bots interact with the platform is subject to
change during the simulation process (to explore optimisa-
tions of the underlying platform).

ScriptRunner

Monitor

Objective

Model

General framework

Script

Bot

Per-use-case

Figure 3: WW implementation: general framework compo-
nents form the core platform, while per-use-case compo-
nents are specialised to each use case.

3.2.1 General Framework classes.

ScriptRunner: entry point to theWW simulation. It is responsi-
ble for building the environment necessary for a WW script,
executing the state machine, and setting up monitoring of the
results.

Monitor: responsible for recording events and collecting data for
post-analysis, as the Script is run.

Objective: represents an objective that a Script is aiming to achieve.
Possible objectives include time, steps, episodes, ‘results’ (such
as vulnerabilities found, etc.). The objective is also used to de-
termine when to end the simulation.

Algorithm 1: Pseudo-code of the ScriptRunner loop
1 Setup
2 Script creates the environment and the Bots.
3 while Objective is not reached do
4 Advance the virtual-time clock.
5 Execute the action of the next Bot.
6 Observe and log events and data.
7 End
8 Finalize the simulation (cleanup).

Model: a machine learning model for the bot, e.g., a Policy Gradi-
ent model with determined parameters.

3.2.2 Per-use-case classes. The coreWW platform consists of the
general framework class together with a set of components from
which the per-use case classes are defined. In order to define each
use case, we simply define a script and a bot class, using the com-
ponents and deploy them on the general framework.
Script: describes the user community (e.g., the size of the graph),

and the environment where the users will interact (e.g., groups
with fake news).

Bot: an automated agent (represented by a test user) with a partic-
ular behaviour defined by actions. For example, a FACEBOOK
Messenger user. A bot interacts with other users (as defined by
its behaviour), and can have its own learning model.

4 APPLICATIONS OFWW AT FACEBOOK
We believe many of these application use cases forWW may gen-
eralise to other WES systems, but we give them here in their FACE-
BOOK context to illustrate WES applications with specific concrete
use cases. At the time of writing we are focusing our engineering
effort on the applications of WW to integrity challenges, but we
fully anticipate application to the other areas listed in the section
in due course. Indeed, we expect many more use cases to emerge
as the development of the WW infrastructure matures.

4.1 Integrity and Privacy
In any large scale system, not all user behaviour will be benign;
some behaviours are perpetrated by bad actors, intent on exploiting
the platform and/or its users. On the Facebook platform such bad
actor user behaviour includes any actions that contravene FACE-
BOOK’s Community Standards [15].

We are using WW to enhance our ability to detect bad actor
behaviours. We are also developing Automated Mechanism Design
approaches that search product design space to find ways to harden
the platform against such bad actors, thereby promoting the in-
tegrity of the platform and its users. In this section, we illustrate
both with applications ofWW to the challenges of detecting and
preventing contravention of integrity constraints.

WW also provides us with a realistic, yet safely isolated, way to
investigate potential privacy issues on the real platform. Because
the WW bots are isolated from affecting real users, they can be
trained to perform potentially privacy–violating actions on each
other.
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On the other hand, because the bots use the real infrastructure,
the actionability of any potential issues found through such simula-
tion is considerably increased (compared to a traditional simulation
on a purely theoretical model).
Simulating bad actors: Consider the problem of users trying to
post violating content on the Facebook platform. Even though we
employ state-of-the-art classifiers and algorithms to protect the
platform, we need to be proactive in our exploration of the space
of potential exploits; WW provides one way to do this. If our bots
succeed in finding novel undetected contravening behaviours, the
WW simulation has allowed us to head off a potential integrity
vulnerability.
Search for bad content: Bad actors use our platform to try to
find policy–violating content, or to try to locate and communicate
with users who may share their bad intent. Our bots can be used to
simulate such bad actors, exploring the social graph. This enables
them, for example, to seek out policy–violating content and the
violators that create it. WW bots can also search for clusters of
users sharing policy–violating content.
Searching for mechanisms that impede bad actors: We use
automated mechanism design to search for ways to frustrate these
bad actors from achieving their goals within the simulation. This
makes the optimisation problem amulti–objective one, in which the
bots seek to achieve bad actions, while the system simultaneously
searches for mechanisms that frustrate their ability to do so. The
search is also multi objective because we require new mechanisms
that simultaneously frustrate the achievement of bad actions, while
having little or no noticeable impact on normal users. In this way
we useWW automated mechanism design to explore the space of
potential changes that may also lead to greater integrity of the real
platform.

Interestingly, this is a problem where preventing bad activity
does not require the ability to detect it. Automated search may
yield mechanisms that frustrate scamming, for example by hiding
potential victims from scammers, without necessarily relying on
classifiers that detect such scammers. This is reminiscent of the way
in which removing side effects (which may be computable), does
not require the ability to detect side effects (which is undecidable,
in general) [21].
Bots that break privacy rules: In the Facebook infrastructure,
every entity has well–defined privacy rules. Creating bots trained
to seek to achieve the sole purpose of breaking these privacy rules
(e.g., to access another bot’s private photos) is thus a way to surface
potential bugs, as well as unexpected changes in the system’s be-
haviour. For example, if a bot was never previously able to perform
a certain action (e.g., access another bot’s message), but becomes
able to do so after a code change, this could highlight a change in
privacy rules that resulted in unexpected behaviours.
Data acquiring bots: Even with the privacy rules currently in
place, a Facebook user has the ability to access another users’ data
(with consent, of course). This functionality is a necessary part
of the normal usability of the platform. Nevertheless, we need
to maintain a constantly vigilant posture against any potential to
exploit this fundamentally important ability. By creating bots whose
sole purpose is to accrue as much data as possible from each other,
we are able to test our preventative measures and their effectiveness
against this type of behaviour.

Figure 4: Traditional testing methods such as unit tests, or
end-to-end tests, only succeed in capturing a subset of all
possible bugs. WW gives developers the option to test on
a new level of abstraction, one that takes community be-
haviour and interactions into account.

4.2 Reliability
Large organisation like Facebook naturally face challenges of relia-
bility at scale.WW is not only a simulation of hundreds of millions
of lines of code; it is a software system that runs on top of those
very same lines of code. In order to cater for the reliability of the
WW system itself, we use a DevOps approach, commonly used
throughout the company [16].WW runs in continuous deployment
as a production version, underpinned by suitable maintenance pro-
cedures, such as time series monitoring and analysis, alarms and
warnings and on-call rotations. However, WW can also be used to
explore the reliability of the platform as we outline in this section.
Social Bugs:WW provides tools for social testing, whereby failures
can be expressed as percentages, rather than more traditional binary
success/fail. All traditional tests might execute successfully, yet we
still observe an ‘social bug’ issue in production. Examples include
drops in top line product metrics, significant changes in machine
learning classification outcomes, big jumps in data pipeline line
breakages.

These kind of bugs have many causes including code, data and/or
configuration changes. While all could, in theory be detected by
lower levels of test abstraction, it is useful to have a WES style
final ‘full ecosystem’ test (as opposed to ‘full system’ test). With
WW we can detect such a significant metric change before such a
change affects real users, because it tests the whole ecosystem with
a simulation of the community that uses the platform. A single user
test, even at full system level, would be insufficiently expressive to
capture community interaction faults.

We also retain lower levels of testing abstraction. The WW sim-
ulation is the most computationally expensive form of testing we
have, as well as the highest level of abstraction. Also, although ‘plat-
form realism’ is the goal of all WES systems, there are necessary
compromises to achieve scalability, as discussed in Section 5.
TheWESTest Oracle: Thesemetrics play the role of test oracle [5],
thereby ensuring that the platform level testing problem can be
entirely automated. Of course, since WW is a scaled down version
of the real community, there is a need to tune such metrics and
alerts, but this is, itself, an interesting machine learning problem.
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5 OPEN PROBLEMS AND SOME RELATED
WORK THAT MAY HELP TACKLE THEM

In this section we review related work and highlight open prob-
lems and challenges for the WES research agenda. Neither our
characterisation of related work, nor our list of open problems is
comprehensive. We are excited to work with the academic and sci-
entific research community to tackle these open problems together
using such related work and/or other promising approaches.

Naturally, we can expect research to draw on the extensive body
of work on simulation, and in particular, multi agent simulation [41],
which is now relatively mature, with the advent of so-called ‘sophis-
bots’ that are hard to distinguish from real users [8].

There are also frameworks for simulation of software systems
and communities, but these tend to focus on traditional simulation
rather than on-platform simulation, the sine qua non of a WES
system. For example, RecSym [29] uses an abstraction of a generic
Recommender System (RS) infrastructure to simulate the behaviour
of different choices of Reinforcement Learning (RL) for recommend-
ing content to users. The most important difference, is that WW
uses RL (and other techniques) to train bots to behave like users
so that the behaviours of users on the real Facebook infrastructure
can be better simulated, whereas RecSym simulates the behaviour
of an abstraction on Infra with respect to a given RL.

5.1 Open Problems and Challenges
Since WES systems, more generally, rely on training bots to simu-
late real users on real software platforms, there is a pressing need
for further research on a number of related topics. This section
lists 15 areas of related work that can contribute to tackling open
WES research agenda challenges. The large number and diversity
of topics and challenges underscores the rich opportunities for
research.
Another Application for MARL: Recent developments in Multi
Agent Reinforcement Learning (MARL) [30] may offer techniques
that can be adapted and applied to WES systems. One important
challenge is to find ways to train bots to behave like specific classes
of bad actors.
Multi Objective Search: Typically, Software Engineering prob-
lems, such as reliability and integrity, will have a multi objective
character. For example, it would be insufficient to constrain a mech-
anism to frustrate bad actors, if one does not counter-balance this
objective against the (potentially competing) objective of not imped-
ing normal users in their routine use of the platform. Fortunately,
multi objective optimisation algorithms, such as NSGA II [13], are
readily available and have been widely–studied in the Software
Engineering community for over two decades [23]. More research
is needed on the application of multi objective search to WES prob-
lems.
AI Assisted Game Play: The WES agenda naturally draws on
previous work on artificial intelligence for software game play. Re-
cent advances on competitive game playing behaviour [51] may be
adapted to also imbue WES bots with more realistic social inter-
actions. In a WES system we do not necessarily need competitive
‘play’, but realistic social interaction; the rewards and fitness func-
tions may differ, but key insights may, nevertheless, carry over
between these two related application paradigms.

In some WES applications it may also be important to avoid
the bots acquiring super-human abilities, such as interacting faster
than any human ever could. This is also a problem recently tackled
in machine learning for computer game playing optimisation [51].
Automated Mechanism Design: Mechanism Design is a form of
automated game design, a topic that has been studied for over a
decade [50], and that remains an active area of research [33]. The
challenge is to define techniques for deployment, testing and for
efficiently and effectively searching the mechanism space. Tackling
these problems may draw on previous work on Genetic Improve-
ment [45], Program Synthesis [18], Constraint Solving [31], and
Model Checking [11].
Co-evolutionary Mechanism Learning: Automatically improv-
ing the platform mechanism to frustrate some well-known attack
from a class of bad actors may yield short term relief from such
bad actors. However, in order to continue to remain ‘ahead of the
game’ and to thereby frustrate all possible, as yet unknown attacks,
we need a form of co-evolutionary optimisation; the mechanism is
optimised to frustrate bad actions, while the bots simultaneously
learn counter strategies that allow them to achieve these bad actions
despite the improved mechanism.

Co-evolutionary optimisation is well-suited to this form of ‘arms
race’. Co-evolutionary optimisation has not yet received widespread
attention from the SBSE community, although there is some initial
literature on the topic [1, 4, 46]. Co-evolutionaryMechanismDesign
therefore establishes an new avenue of research that promises to
widen the appeal and application of co-evolutionary approaches to
software engineering problems.
EndUser Realism and Isolation: In some applications, WES bots
will need to be trained to faithfully model the behaviours of the
platform’s real users; ‘end user realism’. Tackling this may rely on
recent advances in machine learning, but will also be constrained
by the need for user privacy. There is also interesting research to
be done on the degree of end user realism required, and metrics for
measuring such realism, a problem only hitherto lightly explored
in testing research [2, 9, 14, 37].

Because bots are isolated from real users, we face the research
challenge of defining, capturing, measuring, and replicating realistic
behaviour. Faithfully replicating every aspect of end user behaviour
is seldom necessary. Indeed, in some cases, end user realism is not
required at all. For example, for social testing the FACEBOOK Mes-
senger system, we found that it was sufficient to have a community
of bots regularly sending messages to one another in order to detect
some social bugs that manifest through drops in production metrics,
such as number of messages sent.

For integrity-facing applications, such as preventing bad actors’
harmful interaction with normal users, we need reasonably faithful
bad actor bot behaviours, and bots that faithfully replicate normal
users’ responses to such bad actors. This is a challenging, but highly
impactful research area.
Search Based Software Engineering: Many of the applications
of WES approaches lie within the remit of software engineering,
and it can be expected that software engineering, and in particu-
lar, Search Based Software Engineering (SBSE) [23] may also find
application to open problems and challenges for WES systems. In
common with SBSE, WES systems share the important salient char-
acteristic that the simulation is executed on the real system itself.
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It is therefore ‘direct’. This directness is one advantage of SBSE
over other engineering applications of computational search [20].
We can expect similar advantages for WES systems. By contrast,
traditional simulation tends to be highly indirect: The simulation is
not built from the real system’s components, but as an abstraction
of a theoretical model of the real system and its environment.
Diff Batching: TheWES approach has the advantage that it allows
engineers to investigate properties of proposed changes to the
platform. However, for larger organisations, the volume of changes
poses challenges itself. For example, at FACEBOOK, over 100,000
modifications to the repository land in master every week [3]. Faced
with this volume of changes, many companies, not just FACEBOOK
[43], use Diff batching, with which collections of code changes
are clustered together. More work is needed on smarter clustering
techniques that group code modifications (aka Diffs) in ways that
promote subsequent bisection [43].
Speed up: Simulated clock time is a property under experimental
control. It can be artificially sped up, thereby yielding results in
orders of magnitude less real time than a production A/B test [48].
However, since a WES system uses real infrastructure, we cannot
always speed up behaviour without introducing non-determinism:
If bots interact faster (with the system and each other) this may
introduce race conditions and other behaviours that would tend to
be thought of as flakiness in the testing paradigm [25, 35].
Social Testing: Section 2.4 introduces a new form of software
testing, which we call ‘Social Testing’. Testing is generally regarded
as an activity that takes place at different levels of abstraction, with
unit testing typically being regarded as lowest level, while system
level testing is regarded as highest level. Social testing adds a new
level of abstraction above system level testing. There are so many
interesting problems in social testing that a complete treatment
would require a full paper in its own right. In this brief paper we
hope we have sufficiently motivated the introduction of this new
higher level of abstraction, and that others will be encouraged to
take up research on social testing.
Predictive Systems: WES systems would benefit from automated
prediction (based on the simulation) of the future properties of the
real world. This will help translate insights from the simulation to
actionable implications for the real world phenomena. Therefore,
research on predictive modelling [10, 19] is also highly relevant to
the WES research agenda.
Causality: To be actionable, changes proposed will also need to cor-
relate with improvements in the real world, drawing potentially on
advances in causal reasoning [44], another topic of recent interest
in the software engineering community [39].
Simulating Developer Communities: Although this paper has
focused on WES for social media users, a possible avenue for other
WES systems lies in simulation of developer communities. This is a
potential new avenue for the Mining Software Repositories (MSR)
research community [26]. The challenge is to mine information that
can be usefully employed to train bots to behave like developers,
thereby exploring emergent developer community properties using
WES approaches. This may have applications to and benefit from
MSR. It is also related to topics such as App Store analysis [40],
for which the community combines developers and users, and to
software ecosystems [36], which combine diverse developer sub-
communities.

Synthetic Graph Generation: ForWW, we are concerned with
the simulation of social media. Read-only bots can operate on the
real social network, which is protected by isolation. However, many
applications require writer bots. Naturally, we do not want WW
writer bots interacting with real users in unexpected ways, so part
of our isolation strategy involves large scale generation of large
synthetic (but representative) graphs. This is an interesting research
problem in its own right. On a synthetic graph it will also be possible
to deploy fully isolated bots that can exhibit arbitrary actions and
observations, without the need for extra mechanism constraints to
enforce isolation.
Game Theory: A WES execution is a form of game, in which both
the players and the rules of the game can be optimised (possibly in
a co-evolutionary ‘arms race’). Formal game theoretic investigation
of simulations offers the possibility of underpinning the empiri-
cal observations with mathematical analysis. Naturally, empirical
game-theoretic analysis [52] is also highly relevant. There has been
recent interest in game theoretic formulations in the Software En-
gineering community [17]. WES systems may provide a further
stimulus for this Game Theoretic Software Engineering research
agenda.

6 CONCLUSION
In this paper we set out a new research agenda: Web-Enabled Sim-
ulation of user communities. This WES agenda draws on rich re-
search strands, including machine learning and optimisation, multi
agent technologies, reliability, integrity, privacy and security as
well as traditional simulation, and topics in user community and
emergent behaviour analysis.

The promise of WES is realistic, actionable, on-platform simula-
tion of complex community interactions that can be used to better
understand and automatically improve deployments of multi-user
systems. In this short paper, we merely outline the WES research
agenda and some of its open problems and research challenges.
Much more remains to be done. We hope that this paper will en-
courage further uptake and research on this exciting WES research
agenda.
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