
154

Necessity Specifications for Robustness
JULIAN MACKAY, Victoria University of Wellington, New Zealand
SUSAN EISENBACH, Imperial College London, United Kingdom
JAMES NOBLE, Creative Resaerch & Programming, New Zealand
SOPHIA DROSSOPOULOU,Meta, and Imperial College London, United Kingdom

Robust modules guarantee to do only what they are supposed to do – even in the presence of untrusted,
malicious clients, and considering not just the direct behaviour of individual methods, but also the emergent
behaviour from calls to more than one method. Necessity is a language for specifying robustness, based on
novel necessity operators capturing temporal implication, and a proof logic that derives explicit robustness
specifications from functional specifications. Soundness and an exemplar proof are mechanised in Coq.

CCS Concepts: • Software and its engineering→ General programming languages.

Additional Key Words and Phrases: Necessity. Necessary Conditions. Correctness. Verification.

ACM Reference Format:
Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou. 2022. Necessity Specifications for
Robustness. Proc. ACM Program. Lang. 6, OOPSLA2, Article 154 (October 2022), 29 pages. https://doi.org/10.
1145/3563317

1 INTRODUCTION: NECESSARY CONDITIONS AND ROBUSTNESS
Software needs to be both correct (programs dowhat they are supposed to) and robust (programs only
do what they are supposed to). We use the term robust as a generalisation of robust safety [Bugliesi
et al. 2011; Gordon and Jeffrey 2001; Swasey et al. 2017] whereby a module or process or ADT
is robustly safe if its execution preserves some safety guarantees even when run together with
unknown, unverified, potentially malicious client code. The particular safety guarantees vary across
the literature. We are interested in program-specific safety guarantees which describe necessary
conditions for some effect to take place. In this work we propose how to specify such necessary
conditions, and how to prove that modules adhere to such specifications.
We motivate the need for necessary conditions for effects through an example: Correctness is

traditionally specified through Hoare [1969] triples: a precondition, a code snippet, and a postcon-
dition. For example, part of the functional specification of a transfer method for a bank module
is that the source account’s balance decreases:

𝑺correct ≜ { pwd=src.pwd ∧ src.bal=b } src.transfer(dst,pwd) { src.bal=b-100∧ . . . }
Calling transfer on an account with the correct password will transfer the money.

Assuming termination, the precondition is a sufficient condition for the code snippet to behave
correctly: the precondition (e.g. providing the right password) guarantees that the code (e.g. call
the transfer function) will always achieve the postcondition (the money is transferred).

Authors’ addresses: Julian Mackay, Victoria University of Wellington, New Zealand, julian.mackay@ecs.vuw.ac.nz; Susan
Eisenbach, Imperial College London, United Kingdom, susan@imperial.ac.uk; James Noble, Creative Resaerch & Program-
ming, 5 Fernlea Ave, Darkest Karori, Wellington, 6012, New Zealand, kjx@acm.org; Sophia Drossopoulou, Meta, and Imperial
College London, United Kingdom, scd@imperial.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/10-ART154
https://doi.org/10.1145/3563317

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

HTTPS://ORCID.ORG/0000-0003-3098-3901
HTTPS://ORCID.ORG/0000-0001-9072-6689
HTTPS://ORCID.ORG/0000-0001-9036-5692
HTTPS://ORCID.ORG/0000-0002-1993-1142
https://doi.org/10.1145/3563317
https://doi.org/10.1145/3563317
https://orcid.org/0000-0003-3098-3901
https://orcid.org/0000-0001-9072-6689
https://orcid.org/0000-0001-9072-6689
https://orcid.org/0000-0001-9036-5692
https://orcid.org/0000-0002-1993-1142
https://doi.org/10.1145/3563317

154:2 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

𝑺correct describes the correct use of the particular function, but is not concerned with the
module’s robustness. For example, can I pass an account to foreign untrusted code, in the expectation
of receiving a payment, but without fear that a malicious client might use the account to steal my
money [Miller et al. 2000]? A first attempt to specify robustness could be:

𝑺robust_1 ≜ An account’s balance does not decrease unless transfer was called
with the correct password.

Specification 𝑺robust_1guarantees that it is not possible to take money out of the account
without calling transfer and without providing the password. Calling transfer with the
correct password is a necessary condition for (the effect of) reducing the account’s balance.
𝑺robust_1 is crucial, but not enough: it does not take account of the module’s emergent behaviour,

that is, does not cater for the potential interplay of several methods offered by the module. What if
the module provided further methods which leaked the password? While no single procedure call
is capable of breaking the intent of 𝑺robust_1, a sequence of calls might. What we really need is

𝑺robust_2 ≜ The balance of an account does not ever decrease in the future unless
some external object now has access to the account’s current password.

With 𝑺robust_2, I can confidently pass my account to any, potentially untrusted context, where my
password is not known; the payment I was expecting may or may not be made, but I know that
my money will not be stolen [Miller 2011]. Note that 𝑺robust_2 does not mention the names of
any functions in the module, and thus can be expressed without reference to any particular API —
indeed 𝑺robust_2 can constrain any API with an account, an account balance, and a password.
Earlier work addressing robustness includes object capabilities [Birkedal et al. 2021; Devriese

et al. 2016; Miller 2006], information control flow [Murray et al. 2013; Zdancewic and Myers 2001],
correspondence assertions [Fournet et al. 2007], sandboxing [Patrignani and Garg 2021; Sammler
et al. 2019], robust linear temporal logic [Anevlavis et al. 2022] – to name a few. Most of these
propose generic guarantees (e.g. no dependencies from high values to low values), or preservation
of module invariants, while we work with problem-specific guarantees concerned with necessary
conditions for specific effects (e.g. no decrease in balance without access to password). VerX
[Permenev et al. 2020] and Chainmail [Drossopoulou et al. 2020b] also work on problem-specific
guarantees. Both these approaches are able to express necessary conditions like 𝑺robust_1 using
temporal logic operators and implication, and Chainmail is able to express 𝑺robust_2, however
neither have a proof logic to prove adherence to such specifications.

1.1 Necessity
In this paper we introduce Necessity, the first approach that is able to both express and prove
(through an inference system) robustness specifications such as 𝑺robust_2. Developing a specifica-
tion language with a proof logic that is able to prove properties such as 𝑺robust_2 and must tread a
fine line: the language must be rich enough to express complex specifications; temporal operators
are needed along with object capability style operators that describe permission and provenance,
while also being simple enough that proof rules might be devised.

The first main contribution is three novel operators that merge temporal operators and implica-
tion and most importantly are both expressive enough to capture the examples we have found in
the literature and provable through an inference system. One such necessity operator is

from 𝐴𝑐𝑢𝑟𝑟 to 𝐴𝑓 𝑢𝑡 onlyIf 𝐴𝑛𝑒𝑐

This form says that a transition from a current state satisfying assertion 𝐴𝑐𝑢𝑟𝑟 to a future state
satisfying 𝐴𝑓 𝑢𝑡 is possible only if the necessary condition 𝐴𝑛𝑒𝑐 holds in the current state. Using this
operator, we can formulate 𝑺robust_2 as

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:3

1 𝑺robust_2 ≜ from a:Account ∧ a.balance==bal to a.balance < bal
2 onlyIf ∃ o.[⟨o external⟩ ∧ ⟨o access a.pwd⟩]

Namely, a transition from a current state where an account’s balance is bal, to a future state where
it has decreased, may only occur if in the current state some external, unknown client object
has access to that account’s password. More in §2.3.

Unlike Chainmail’s temporal operators, the necessity operators are not first class, and may not
appear in the assertions (e.g. 𝐴𝑐𝑢𝑟𝑟). This simplification enabled us to develop our proof logic. Thus,
we have reached a sweet spot between expressiveness and provability.

The second main contribution is a logic that enables us to prove that code obeys Necessity speci-
fications. Our insight was that Necessity specifications are logically equivalent to the intersection
of an infinite number of Hoare triples, i.e., from 𝐴1 to 𝐴2 onlyIf 𝐴3 is logically equivalent to
∀stmts.{𝐴1 ∧ ¬𝐴3}stmts{¬𝐴2}. Note that in the above, the assertions 𝐴1, 𝐴2 and 𝐴3 are fixed,
while the code (stmts) is universally quantified. This leaves the challenge that, usually, Hoare
logics do not support such infinite quantification over the code.

We addressed that challenge through three further insights: (1) Necessity specifications of emer-
gent behaviour can be built up from Necessity specifications of single-step executions, which (2)
can be built from encapsulation and finite intersections of Necessity specifications of function calls,
which (3) in turn can be obtained from traditional functional specifications.

1.2 Contributions and Paper Organization
The contributions of this work are:

(1) A language to express Necessity specifications (§3), including three novel Necessity operators
(§3.3) that combine implication and temporal operators.

(2) A logic for proving a module’s adherence to its Necessity specifications (§4), and a proof of
soundness of the logic, (§4.5), both mechanised in Coq [Mackay et al. 2022a].

(3) A proof in our logic that our bank module obeys 𝑺robust_2 (§5), mechanised in Coq. And a
proof that a richer bank module which uses ghostfields and confined classes obeys 𝑺robust_2
(detailed in the extended paper [Mackay et al. 2022b]), also mechanised in Coq.

(4) Examples taken from the literature (§3.4, and the appendices [Mackay et al. 2022b]) specified
in Necessity.

We place Necessity into the context of related work (§6) and consider our overall conclusions
(§7). The Coq proofs of (2) and (3) above appear in the supplementary material, along with proofs
of examples in the appendices [Mackay et al. 2022b]. definitions and further examples. In the next
section, (§2), we outline our approach using a bank as a motivating example.

A strength of our work is that it is parametric with respect to assertion satisfaction and functional
specifications – these questions are well covered in the literature, and offer several off-the-shelf
solutions. The current work is based on a simple, imperative, typed, object oriented language with
unforgeable addresses and private fields; nevertheless, we believe that our approach is applicable
to several programming paradigms, and that unforgeability and privacy can be replaced by lower
level mechanisms such as capability machines [Davis et al. 2019; Van Strydonck et al. 2022]. In line
with other work in the literature, we do not –yet– support “callbacks” out from internal objects
(whose code gas been checked) to external objects (unknown objects whose code is unchecked).

2 OUTLINE OF OUR APPROACH
In this Section we outline our approach: we revisit our running example, the Bank Account (§2.1),
introduce the three necessity operators (§2.2), give the Necessity specs (§2.3), outline how we model

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:4 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

the open world (§2.4), give the main ideas of our proof system (§2.5) and outline how we use it to
reason about adherence to Necessity specifications (§2.6).

2.1 Bank Account – three modules
Module Modgood consists of an empty Password class where each instance models a unique
password, and an Account class with a password, and a balance, an init method to initialize
the password, and a transfer method. Note that we assume that all fields are “class-private”,
i.e., methods may read and write fields of any instance of the same class, and that passwords are
unforgeable and not enumerable (as in Java, albeit without reflection).

1 module Modgood
2 class Account
3 field balance:int
4 field pwd: Password
5 method transfer(dest:Account, pwd':Password) -> void
6 if this.pwd==pwd'
7 this.balance-=100
8 dest.balance+=100
9 method init(pwd':Password) -> void
10 if this.pwd==null
11 this.pwd=pwd'
12 class Password

We can capture the intended semantics of transfer through a functional specification with pre-
and post- conditions and MODIFIES clauses as e.g., in Leavens et al.; Leino. The implementation
of transfer in module Modgood meets this specification.

1 FuncSpec ≜
2 method transfer(dest:Account, pwd':Password) -> void
3 ENSURES:this.pwd=pwd' ∧ this≠dest −→
4 this.balance𝑝𝑜𝑠𝑡 =this.balance𝑝𝑟𝑒-100 ∧
5 dest.balance𝑝𝑜𝑠𝑡 =dest.balance𝑝𝑟𝑒+100
6 ENSURES:this.pwd≠pwd' ∨ this=dest −→
7 this.balance𝑝𝑜𝑠𝑡 =this.balance𝑝𝑟𝑒 ∧ dest.balance𝑝𝑜𝑠𝑡 =dest.balance𝑝𝑟𝑒
8 MODIFIES:this.balance, dest.balance

Now consider the following alternative implementations: Modbad allows any client to reset an
account’s password at any time; Modbetter requires the existing password in order to change it.
1 module Modbad
2 class Account
3 field balance:int
4 field pwd: Password
5 method transfer(..) ...
6 ... as earlier ...
7 method init(...) ...
8 ... as earlier ...
9 method set(pwd': Password)
10 this.pwd=pwd'
11

12 class Password

1 module Modbetter
2 class Account
3 field balance:int
4 field pwd: Password
5 method transfer(..)
6 ... as earlier ...
7

8

9 method set(pwd',pwd'': Password)
10 if (this.pwd==pwd')
11 this.pwd=pwd''
12 class Password

Although the transfer method is the same in all three alternatives, and each one satisfies
FuncSpec, code such as

an_account.set(42); an_account.transfer(rogue_account,42)
is enough to drain an_account in Modbad without knowing the password.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:5

This example also demonstrates the importance of field privacy: Modgood and Modbetter would
not be any more robust than Modbad if the underlying programming language did not restrict
access to fields. Without such a restriction, any external object would have been able to directly
manipulate the fields balance and pwd.

2.2 The three necessity operators
We need a specification that rules out Modbad while permitting Modgood and Modbetter. For this,
we will be using one of the three necessity operators mentioned in §1.1. These operators are:

from 𝐴𝑐𝑢𝑟𝑟 to 𝐴𝑓 𝑢𝑡 onlyIf 𝐴𝑛𝑒𝑐

from 𝐴𝑐𝑢𝑟𝑟 next 𝐴𝑓 𝑢𝑡 onlyIf 𝐴𝑛𝑒𝑐

from 𝐴𝑐𝑢𝑟𝑟 to 𝐴𝑓 𝑢𝑡 onlyThrough 𝐴𝑖𝑛𝑡𝑟𝑚

The first operator was already introduced in §1.1: it says that a transition from a current state
satisfying assertion𝐴𝑐𝑢𝑟𝑟 to a future state satisfying𝐴𝑓 𝑢𝑡 is possible only if the necessary condition
𝐴𝑛𝑒𝑐 holds in the current state. The second operator says that a one-step transition from a current
state satisfying assertion 𝐴𝑐𝑢𝑟𝑟 to a future state satisfying 𝐴𝑓 𝑢𝑡 is possible only if 𝐴𝑛𝑒𝑐 holds in the
current state. The third operator says that a change from 𝐴𝑐𝑢𝑟𝑟 to 𝐴𝑓 𝑢𝑡 may happen only if 𝐴𝑖𝑛𝑡𝑟𝑚

holds in some intermediate state.
Our assertions 𝐴, also allow for the use of capability operators, such as 1) having access to an

object (⟨o access o’⟩) which means that o has a reference to o’, or 2) calling a method with
on receiver with certain arguments, (⟨o calls o’.m(args)⟩), or 3) an object being external,
where ⟨o external⟩ means that o belongs to a class that is not defined in the current module, and
thus its behaviour is unrestricted. These are the capability operators we adopted from Chainmail.

2.3 Bank Account – the right specification
We now return to our quest for a specification that rules out Modbad while permitting Modgood and
Modbetter. The catch is that the vulnerability present in Modbad is the result of emergent behaviour
from the interactions of the set and transfer methods — even though Modbetter also has
a set method, it does not exhibit the unwanted interaction. This is exactly where a necessary
condition can help: we want to avoid transferring money (or more generally, reducing an account’s
balance) without the existing account password. Phrasing the same condition the other way around
rules out the theft: that money can only be transferred when the account’s password is known.

In Necessity syntax, and recalling §1.1, and 2.2,

1 𝑺robust_1 ≜ from a:Account ∧ a.balance==bal next a.balance < bal
2 onlyIf ∃ o,a'. [⟨o external⟩ ∧ ⟨o calls a.transfer(a’,a.pwd) ⟩]
3 𝑺robust_2 ≜ from a:Account ∧ a.balance==bal to a.balance < bal
4 onlyIf ∃ o.[⟨o external⟩ ∧ ⟨o access a.pwd⟩]

𝑺robust_1 does not fit the bill: all three modules satisfy it. But 𝑺robust_2 does fit the bill: Modgood
and Modbetter satisfy 𝑺robust_2, while Modbad does not.
A critical point of 𝑺robust_2 is that it is expressed in terms of observable effects (the account’s

balance is reduced: a.balance < bal) and the shape of the heap (external access to the pass-
word: ⟨o external⟩ ∧ ⟨o access a.pwd⟩) rather than in terms of individual methods such
as set and transfer. This gives our specifications the vital advantage that they can be used to
constrain implementations of a bank account with a balance and a password, irrespective of the
API it offers, the services it exports, or the dependencies on other parts of the system.

This example also demonstrates that adherence to Necessity specifications is not monotonic:
adding a method to a module does not necessarily preserve adherence to a specification, and while
separate methods may adhere to a specification, their combination does not necessarily do so. For

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:6 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

example, Modgood satisfies 𝑺robust_2, while Modbad does not. This is why we say that Necessity
specifications capture a module’s emergent behaviour.

2.3.1 How useful is 𝑺robust_2? One might think that 𝑺robust_2 was not useful: normally, there
will exist somewhere in the heap at least one external object with access to the password – if no
such object existed, then nobody would be able to use the money of the account. And if such an
object did exist, then the premise of 𝑺robust_2 would not hold, and thus the guarantee given by
𝑺robust_2 might seem vacuous.
This is not so: in scopes from which such external objects with access to the password are not

(transitively) reachable, 𝑺robust_2 guarantees that the balance of the account will not decrease.
We illustrate this through the following code snippet:

1 module Mod1
2 ...
3 method cautious(untrusted:Object)
4 a = new Account
5 p = new Password
6 a.set(null,p)
7 ...
8 untrusted.make_payment(a)
9 ...

The method cautious has as argument an object untrusted, of unknown provenance. It
creates a new Account and initializes its password. In the scope of this method, external objects
with access to the password are reachable: thus, line 7, or line 9 may decrease the balance.

Assume that class Account is from a module which satisfies 𝑺robust_2. Assume also that the
code in line 7 does not leak the password to untrusted. Then no external object reachable from
the scope of execution of make_payment at line 8 has access to the password. Therefore, even
though we are calling an untrusted object, 𝑺robust_2 guarantees that untrusted will not be able
to take any money out of a.
A proof sketch of the safety provided by 𝑺robust_2 appears in the appendices [Mackay et al.

2022b]. Note that in this example, we have (at least) three modules: the internal module which
defines class Account adhering to 𝑺robust_2, the external module Mod1, and the external module
which contains the class definition for untrusted. Our methodology allows the external module,
Mod1 to reason about its own code, and thus pass a to code from the second external module,
without fear of losing money. In further work we want to make such arguments more generally
applicable, and extend Hoare logics to encompass such proof steps.

2.4 Internal and external modules, objects, and calls
Our work concentrates on guarantees made in an open setting; that is, a given module 𝑀 must
be programmed so that execution of𝑀 together with any external module𝑀 ′ will uphold these
guarantees. In the tradition of visible states semantics, we are only interested in upholding the
guarantees while𝑀 ′, the external module, is executing. A module can temporarily break its own
invariants, so long as the broken invariants are never visible externally.
We therefore distinguish between internal objects — instances of classes defined in 𝑀 — and

external objects defined in any other module. We also distinguish between internal calls (from
either an internal or an external object) made to internal objects and external calls made to external
objects. In the code snippet from §2.3.1, the call to set on line 6 is an internal call, while the call to
make_payment is an external call – this to untrusted (both external objects).
Because we only require guarantees while the external module is executing, we develop an

external states semantics, where any internal calls are executed in one, large, step. With external

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:7

steps semantics, the executing object (this) is always external. In line with other work in the
literature [Albert et al. 2020; Grossman et al. 2017; Permenev et al. 2020], we currently forbid calls
from internal to external objects – further details on call-backs in §6.
For the purposes of the current work we are only interested in one internal, and one external

module. But the interested reader might ask: what if there is more than one external module? The
answer is that from the internal module’s viewpoint, all external modules are considered as one;
for this we provide a module linking operator with the expected semantics – more details in Def.
3.1 and the appendices [Mackay et al. 2022b]. But from the external module’s viewpoint, there may
be more than one external module: for example, in §2.3.1, module Mod1 is external to the module
implementing class Account, and the module of untrusted is external to Mod1.

2.5 Reasoning about Necessity
We will now outline the key ingredients of our logic with which we prove that modules obey
Necessity specifications. We will use the auxiliary concept that an assertion 𝐴 is encapsulated by a
module𝑀 , if 𝐴 can only be invalidated through a call to a method from𝑀 – more in §4.1.

The Necessity logic is based on the insight that the specification
from 𝐴1 to 𝐴2 onlyIf 𝐴3

is logically equivalent to
∀stmts.{𝐴1 ∧ ¬𝐴3}stmts{¬𝐴2}

– that is, with an infinite conjunction of Hoare triples, where the three assertions are fixed, but the
code, stmts, is universally quantified. This leaves the challenge that usually, Hoare logics do not
support such infinite conjunctions over code. Three ideas helped us address that challenge:

From Hoare triples to per-call specs The Hoare triple {𝐴1 ∧ ¬𝐴3} x.m(ys) {¬𝐴2} is logi-
cally equivalent to the specification from (𝐴1 ∧ ⟨_ calls x.m(ys)⟩) next 𝐴2 onlyIf 𝐴3.

From per-call specs to per-step specs If an assertion 𝐴2 is encapsulated by a module – and
thus the only way from a state that satisfies 𝐴2 to a state that does not, is through a call
to a method in that module – then the finite conjunction that all methods of that module
from (𝐴1 ∧ 𝐴2 ∧ ⟨_ calls x.m(ys)⟩) next ¬𝐴2 onlyIf 𝐴3 is logically equivalent to
from 𝐴1 ∧𝐴2 next ¬𝐴2 onlyIf 𝐴3.

Proof logic for emergent behaviour combines several specifications to reason about the
emergent behaviour, e.g.,from𝐴1 to𝐴2 onlyThrough𝐴3 andfrom𝐴1 to𝐴3 onlyIf𝐴4
implies from 𝐴1 to 𝐴2 onlyIf 𝐴4.

Thus, our system consists of four parts (five including functional specifications): (Part 1) assertion
encapsulation, (Part 2) per-method specifications, (Part 3) per-step specifications, and (Part 4)
specifications of emergent behaviour. The structure of the system, and the dependency of each
part on preceding parts is given in Fig. 1. Functional specifications are used to prove per-method
specifications, which coupled with assertion encapsulation is used to prove per-step specifications,
which is used to prove specifications of emergent behaviour.

Necessity logic is parametric with respect to the way we ascertain if an assertion is encapsulated
and the way we obtain functional specifications. As a result we can use results from many different
approaches. Further, our proofs of Necessity do not inspect method bodies: we rely on simple
annotations to infer encapsulation, and on pre and post-conditions to infer per-method conditions.

2.6 Outline of the proof that Modbetter obeys 𝑺robust_2
For illustration, we outline a proof that Modbetter adheres to 𝑺robust_2. note that for illustration
purposes, in this paper we show how assertion encapsulation can be proven based on simple

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:8 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

Fig. 1. Parts of Necessity Logic and their Dependencies. Note that gray parts with a dashed border indicate
parts that are not part of Necessity , and on which Necessity is parametric.

annotations inspired by confinement types [Vitek and Bokowski 1999]; we could just as easily rely
on other language mechanisms, e.g., ownership types, or even develop custom logics.

Part 1: Assertion Encapsulation.

We begin by proving that Modbetter encapsulates:
(A) The balance
(B) The password
(C) External accessibility to an account’s password – that is, the property that no external

object has access to the password may only be invalidated by calls to Modbetter.

Part 2: Per-Method Specifications

We prove that the call of any method from Modbetter (set and transfer) satisfies:
(D) If the balance decreases, then transfer was called with the correct password
(E) If the password changes, then the method called was set with the correct password
(F) It will not provide external accessibility to the password.

Part 3: Per-step Specifications

We then raise our results of Parts 1 and 2 to reason about arbitrary single-step executions:
(F) By (A) and (D) only transfer and external access to the password may decrease the

balance.
(G) By (B) and (E) only set and external access to the password may change the password.
(H) By (C) and (F) no step may grant external accessibility to an account’s password.

Part 4: Specifications of Emergent Behaviour

We then raise our necessary conditions of Part 3 to reason about arbitrary executions:
(I) A decrease in balance over any number of steps implies that some single intermediate

step reduced the account’s balance.
(J) By (F) we know that step must be a call to transfer with the correct password.
(K) When transfer was called, either
(K1) The password used was the current password, and thus by (H) we know that the

current password must be externally known, satisfying 𝑺robust_2, or
(K2) The password had been changed, and thus by (G) some intermediate step must have

been a call to set with the current password. Thus, by (H) we know that the current
password must be externally known, satisfying 𝑺robust_2.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:9

3 THE MEANING OF NECESSITY
In this section we define the Necessity specification language. We first define an underlying pro-
gramming language, TooL (§3.1). We then define an assertion language, Assert, which can talk
about the contents of the state, as well as about provenance, permission and control (§3.2). Finally,
we define the syntax and semantics of our full language for writing Necessity specifications (§3.3).

3.1 TooL

TooL is a small, imperative, sequential, class based, typed, object-oriented language, whose fields
are private to the class where they are defined. TooL is straightforward and the complete definition
can be found in the appendices [Mackay et al. 2022b]. TooL is based on ℒ oo [Drossopoulou et al.
2020b], with some small variations, as well as the addition of a simple type system – more in 4.1.2.
A TooL state 𝜎 consists of a heap 𝜒 , and a stack𝜓 which is a sequence of frames. A frame 𝜙 consists
of local variable map, and a continuation, i.e. a sequence of statements to be executed. A statement
may assign to variables, create new objects and push them to the heap, perform field reads and
writes on objects, or call methods on those objects.

Modules are mappings from class names to class definitions. Execution is in the context of a
module 𝑀 and a state 𝜎 , defined via unsurprising small-step semantics of the form 𝑀,𝜎 { 𝜎 ′.
The top frame’s continuation contains the statement to be executed next.

As discussed in §2.5, open world specifications need to be able to provide guarantees which
hold during execution of an internal, known, trusted module 𝑀 when linked together with any
unknown, untrusted, module𝑀 ′. These guarantees need only hold when the external module is
executing; we are not concerned if they are temporarily broken by the internal module. Therefore,
we are only interested in states where the executing object (this) is an external object. To express
our focus on external states, we define the external states semantics, of the form 𝑀 ′;𝑀, 𝜎 { 𝜎 ′,
where𝑀 ′ is the external module, and𝑀 is the internal module, and where we collapse all internal
steps into one single step.

Definition 3.1 (External States Semantics). For modules 𝑀 , 𝑀 ′, and states 𝜎 , 𝜎 ′, we say that
𝑀 ′;𝑀, 𝜎 { 𝜎 ′ if and only if there exist 𝑛 ∈ N, and states 𝜎0,...𝜎𝑛 , such that

• 𝜎=𝜎1, and 𝜎 ′=𝜎𝑛 ,
• 𝑀 ′ ◦𝑀,𝜎𝑖 { 𝜎𝑖+1 for all 𝑖 ∈ [0..𝑛),
• classOf(𝜎,this), classOf(𝜎 ′,this) ∈ 𝑀 ′,
• classOf(𝜎𝑖 ,this) ∈ 𝑀 for all 𝑖 ∈ (1..𝑛).

The function classOf(𝜎, _) is overloaded: applied to a variable, classOf(𝜎, 𝑥) looks up the variable
𝑥 in the top frame of 𝜎 , and returns the class of the corresponding object in the heap of 𝜎 ; applied
to an address, classOf(𝜎, 𝛼) returns the class of the object referred by address 𝛼 in the heap of 𝜎 .
The module linking operator ◦, applied to two modules,𝑀 ′ ◦𝑀 , combines the two modules into
one module in the obvious way, provided their domains are disjoint. The details can be found in
the appendices[Mackay et al. 2022b].
Fig. 2 inspired by Drossopoulou et al. [2020b] provides a simple graphical description of our

external states semantics: (A) is the “normal” execution after linking two modules into one: 𝑀 ′ ◦
𝑀, ... { ... whereas (B) is the external states execution when𝑀 ′ is external,𝑀 ′;𝑀, ... { Note
that whether a module is external or internal depends on perspective – nothing in a module itself
renders it internal or external. For example, in𝑀1;𝑀2, ... { ... the external module is𝑀1, while in
𝑀2;𝑀1, ... { ... the external module is𝑀2.

We use the notation 𝑀 ′;𝑀, 𝜎 {∗ 𝜎 ′ to denote zero or more steps starting at state 𝜎 and ending
at state 𝜎 ′, in the context of internal module 𝑀 and external module 𝑀 ′. We are not concerned

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:10 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

(A)
𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 𝜎7 𝜎8 𝜎9

(B)
𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 𝜎7 𝜎8 𝜎9

Fig. 2. External States Semantics (Def. 3.1), (A)𝑀′ ◦𝑀,𝜎1 { . . . { 𝜎9 and (B)𝑀′;𝑀, 𝜎2 { . . . { 𝜎9,
where classOf(𝜎1,this),classOf(𝜎3,this),classOf(𝜎4,this),classOf(𝜎7,this),classOf(𝜎8,this) ∈ 𝑀 ,
and where classOf(𝜎2,this), classOf(𝜎5,this)classOf(𝜎6,this), classOf(𝜎9,this) ∈ 𝑀′.

with internal states or states that can never arise. A state 𝜎 is arising, written Arising(𝑀 ′, 𝑀, 𝜎), if
it may arise by external states execution starting at some initial configuration:

Definition 3.2 (Arising States). For modules𝑀 and𝑀 ′, a state 𝜎 is called an arising state, formally
Arising(𝑀 ′, 𝑀, 𝜎), if and only if there exists some 𝜎0 such that Initial(𝜎0) and𝑀 ′;𝑀, 𝜎0 {

∗ 𝜎 .

An Initial state’s heap contains a single object of class Object, and its stack consists of a
single frame, whose local variable map is a mapping from this to the single object, and whose
continuation is any statement. (See Definition 3.2 and the appendices [Mackay et al. 2022b]).

Applicability. While our work is based on a simple, imperative, typed, object oriented language
with unforgeable addresses and private fields, we believe that it is applicable to several programming
paradigms, and that unforgeability and privacy can be replaced by lower level mechanisms such as
capability machines [Davis et al. 2019; Van Strydonck et al. 2022].

3.2 Assert
Assert is a basic assertion language extended with object-capability assertions.

3.2.1 Syntax of Assert. The syntax of Assert is given in Definition 3.3. An assertion may be
an expression, a query of the defining class of an object, the usual connectives and quantifiers,
along with three non-standard assertion forms: (1) Permission and (2) Provenance, inspired by the
capabilities literature, and (3) Control which allows tighter characterisation of the cause of effects –
useful for the specification of large APIs.

• Permission (⟨𝑥 access 𝑦⟩): 𝑥 has access to 𝑦.
• Provenance (⟨𝑥 internal⟩ and ⟨𝑦 external⟩): 𝑥 is an internal (i.e. trusted) object, and 𝑦
is an external (i.e. untrusted) object.

• Control (⟨𝑥 calls 𝑦.𝑚(𝑧)⟩): 𝑥 calls method𝑚 on object 𝑦 with arguments 𝑧.

Definition 3.3. Assertions (𝐴) in Assert are defined as follows:

𝐴 ::= 𝑒 | 𝑒 : 𝐶 | ¬𝐴 | 𝐴 ∧ 𝐴 | 𝐴 ∨ 𝐴 | ∀𝑥 .[𝐴] | ∃ 𝑥 .[𝐴]
| ⟨𝑥 access 𝑦⟩ | ⟨𝑥 internal⟩ | ⟨𝑥 external⟩ | ⟨𝑥 calls 𝑦.𝑚(𝑧)⟩

3.2.2 Semantics of Assert. The semantics of Assert is given in Definition 3.4. We use the evaluation
relation,𝑀,𝜎, 𝑒 ↩→ 𝑣 , which says that the expression 𝑒 evaluates to value 𝑣 in the context of state
𝜎 and module𝑀 . Note that expressions in TooL may be recursively defined, and thus evaluation
need not terminate. Nevertheless, the logic of 𝐴 remains classical because recursion is restricted to
expressions, and not generally to assertions. We have taken this approach from Drossopoulou et al.
[2020b], which also contains a mechanized Coq proof that assertions are classical [Drossopoulou
et al. 2020a]. The semantics of ↩→ is unsurprising (see the appendices [Mackay et al. 2022b]).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:11

Shorthands: ⌊𝑥⌋𝜙 = 𝑣 means that 𝑥 maps to value 𝑣 in the local variable map of frame 𝜙 , ⌊𝑥⌋𝜎 = 𝑣

means that 𝑥 maps to 𝑣 in the top most frame of 𝜎 ’s stack, and ⌊𝑥 .𝑓 ⌋𝜎 = 𝑣 has the obvious meaning.
The terms 𝜎.stack, 𝜎.contn, 𝜎.heap mean the stack, the continuation at the top frame of 𝜎 ,
and the heap of 𝜎 . The term 𝛼 ∈𝜎.heap means that 𝛼 is in the domain of the heap of 𝜎 , and 𝑥 fresh
in 𝜎 means that 𝑥 isn’t in the variable map of the top frame of 𝜎 , while the substitution 𝜎 [𝑥 ↦→ 𝛼]
is applied to the top frame of 𝜎 . 𝐶 ∈ 𝑀 means that class 𝐶 is in the domain of module𝑀 .

Definition 3.4 (Satisfaction of Assertions by a module and a state). We define satisfaction of an
assertion 𝐴 by a state 𝜎 with module𝑀 as:

(1) 𝑀,𝜎 ⊨ 𝑒 iff 𝑀,𝜎, 𝑒 ↩→ true
(2) 𝑀,𝜎 ⊨ 𝑒 : 𝐶 iff 𝑀,𝜎, 𝑒 ↩→ 𝛼 and classOf(𝜎, 𝛼) = 𝐶

(3) 𝑀,𝜎 ⊨ ¬𝐴 iff 𝑀,𝜎 ⊭ 𝐴
(4) 𝑀,𝜎 ⊨ 𝐴1 ∧ 𝐴2 iff 𝑀,𝜎 ⊨ 𝐴1 and𝑀,𝜎 ⊨ 𝐴2
(5) 𝑀,𝜎 ⊨ 𝐴1 ∨ 𝐴2 iff 𝑀,𝜎 ⊨ 𝐴1 or𝑀,𝜎 ⊨ 𝐴2
(6) 𝑀,𝜎 ⊨ ∀𝑥 .[𝐴] iff 𝑀,𝜎 [𝑥 ↦→ 𝛼] ⊨ 𝐴, for some 𝑥 fresh in 𝜎 , and for all 𝛼 ∈𝜎.heap.
(7) 𝑀,𝜎 ⊨ ∃ 𝑥 .[𝐴] iff 𝑀,𝜎 [𝑥 ↦→ 𝛼] ⊨ 𝐴, for some 𝑥 fresh in 𝜎 , and for some 𝛼 ∈𝜎.heap.
(8) 𝑀,𝜎 ⊨ ⟨𝑥 access 𝑦⟩ iff
(a) ⌊𝑥 .𝑓 ⌋𝜎 = ⌊𝑦⌋𝜎 for some 𝑓 ,

or
(b) ⌊𝑥⌋𝜎 = ⌊this⌋𝜙 , ⌊𝑦⌋𝜎 = ⌊𝑧⌋𝜙 , and 𝑧 ∈ 𝜙.contn for some variable 𝑧, and some frame

𝜙 in 𝜎.stack.
(9) 𝑀,𝜎 ⊨ ⟨𝑥 internal⟩ iff classOf(𝜎, 𝑥) ∈ 𝑀

(10) 𝑀,𝜎 ⊨ ⟨𝑥 external⟩ iff classOf(𝜎, 𝑥) ∉ 𝑀

(11) 𝑀,𝜎 ⊨ ⟨𝑥 calls 𝑦.𝑚(𝑧1, . . . , 𝑧𝑛)⟩ iff
(a) 𝜎.contn = (𝑤 := 𝑦′ .𝑚(𝑧′1, . . . , 𝑧′𝑛); 𝑠), for some variable𝑤 , and some statement 𝑠 ,
(b) 𝑀,𝜎 ⊨ 𝑥 = this and 𝑀,𝜎 ⊨ 𝑦 = 𝑦′,
(c) 𝑀,𝜎 ⊨ 𝑧𝑖 = 𝑧′𝑖 for all 1≤ 𝑖 ≤ 𝑛

Quantification (defined in 6 and 7) is done over all objects on the heap. We do not include
quantification over primitive types such as integers as TooL is too simple. The Coq mechanisation
does include primitive types.

The assertion ⟨𝑥 access 𝑦⟩ (defined in 8) requires that 𝑥 has access to𝑦 either through a field of
𝑥 (case 8a), or through some call in the stack, where 𝑥 is the receiver and 𝑦 is one of the arguments
(case 8b). Note that access is not deep, and only refers to objects that an object has direct access to
via a field or within the context of a current scope. The restricted form of access used in Necessity
specifically captures a crucial property of robust programs in the open world: access to an object
does not imply access to that object’s internal data. For example, an object may have access to an
account a, but a safe implementation of the account would never allow that object to leverage that
access to gain direct access to a.pwd.

The assertion ⟨𝑥 calls 𝑦.𝑚(𝑧1, . . . , 𝑧𝑛)⟩ (defined in 11) describes the current innermost active
call. It requires that the current receiver (this) is 𝑥 , and that it calls the method 𝑚 on 𝑦 with
arguments 𝑧1, ... 𝑧𝑛 – It does not mean that somewhere in the call stack there exists a call from 𝑥 to
𝑦.𝑚(...). Note that in most cases, satisfaction of an assertion not only depends on the state 𝜎 , but
also depends on the module in the case of expressions (1), class membership (2), and internal or
external provenance (9 and 10).
We now define what it means for a module to satisfy an assertion: 𝑀 satisfies 𝐴 if any state

arising from external steps execution of that module with any other external module satisfies 𝐴.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:12 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

Definition 3.5 (Satisfaction of Assertions by a module). For a module𝑀 and assertion 𝐴, we say
that 𝑀 ⊨ 𝐴 if and only if for all modules𝑀 ′, and all 𝜎 , if Arising(𝑀 ′, 𝑀, 𝜎), then𝑀,𝜎 ⊨ 𝐴.

In the current work we assume the existence of a proof system that judges 𝑀 ⊢ 𝐴, to prove
satisfaction of assertions. We will not define such a judgement, but will rely on its existence later
on for Theorem 4.4. We define soundness of such a judgement in the usual way:

Definition 3.6 (Soundness of Assert Provability). A judgement of the form𝑀 ⊢ 𝐴 is sound, if for
all modules𝑀 and assertions 𝐴, if𝑀 ⊢ 𝐴 then𝑀 ⊨ 𝐴.

3.2.3 Inside. We define a final shorthand predicate inside(o) which states that only internal
objects have access to o. The object o may be either internal or external.

Definition 3.7 (Inside). inside(𝑜) ≜ ∀𝑥 .[⟨𝑥 access 𝑜⟩ ⇒ ⟨𝑥 internal⟩]

inside is a very useful concept. For example, the balance of an account whose password is
inside will not decrease in the next step. Often, API implementations contain objects whose
capabilities, while crucial for the implementation, if exposed, would break the intended guarantees
of the API. Such objects need to remain inside- see such an example in Section 5.

3.3 Necessity operators
3.3.1 Syntax of Necessity Specifications. The Necessity specification language extends Assert with
our three novel Necessity operators:

from 𝐴1 next 𝐴2 onlyIf 𝐴 : If an arising state satisfies 𝐴1, and a single execution step
reaches a state satisfying 𝐴2, then the original state must have also satisfied 𝐴.

from 𝐴1 to 𝐴2 onlyIf 𝐴 : If an arising state satisfies 𝐴1 and a number of execution steps
reach a state satisfying 𝐴2, then the original state must have also satisfied 𝐴.

from 𝐴1 to 𝐴2 onlyThrough 𝐴 : If an arising state satisfies 𝐴1, and a number of execution
steps reach a state satisfying𝐴2, then execution must have passed through some intermediate
state satisfying 𝐴.

The syntax of Necessity specifications is given below

Definition 3.8. Syntax of Necessity Specifications

𝑆 ::= 𝐴 | from 𝐴1 to 𝐴2 onlyIf 𝐴3 | from 𝐴1 to 𝐴2 onlyThrough 𝐴3 | from 𝐴1 next 𝐴2 onlyIf 𝐴3

As an example, we consider the following three specifications:
1 𝑺nxt_dcr_if_acc ≜ from a:Account ∧ a.balance==bal next a.balance < bal
2 onlyIf ∃ o.[⟨o external⟩ ∧ ⟨o access a.pwd⟩]
3 𝑺to_dcr_if_acc ≜ from a:Account ∧ a.balance==bal to a.balance < bal
4 onlyIf ∃ o.[⟨o external⟩ ∧ ⟨o access a.pwd⟩]
5 𝑺to_dcr_thr_acc ≜ from a:Account ∧ a.balance==bal next a.balance < bal
6 onlyThrough ∃ o.[⟨o external⟩ ∧ ⟨o access a.pwd⟩]

𝑺nxt_dcr_if_acc requires that an account’s balance may decrease in one step (go from a state where
the balance is bal to a state where it is less than bal) only if the password is accessible to an
external object (in the original state an external object had access to the password). 𝑺to_dcr_if_acc
requires that an account’s balance may decrease in any number of steps only if the password is
accessible to an external object. 𝑺to_dcr_thr_acc requires that an account’s balance may decrease
in any number of steps only if in some intermediate state the password was accessible to an external
object – the intermediate state where the password is accessible to the external object might be the
starting state, the final state, or any state in between.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:13

3.3.2 Semantics of Necessity Specifications. We now define what it means for a module𝑀 to satisfy
specification 𝑆 , written as𝑀 ⊨ 𝑆 . The Definition 3.9 below is straightforward, apart from the use
of the 𝜎 ′ ⊳ 𝜎 (best read as “𝜎 ′ seen from 𝜎”) to deal with the fact that execution might change the
bindings in local variables. We explain this in detail in §3.3.3, but for now, the reader may ignore
the applications of that operator and read 𝜎 ′ ⊳ 𝜎 as 𝜎 ′, and also read 𝜎𝑘 ⊳ 𝜎1 as 𝜎𝑘 . We illustrate the
meaning of the three operators in Fig. 3.

from 𝐴1 to 𝐴2 onlyIf 𝐴:
𝜎1

⊨ 𝐴1

. . . 𝜎𝑛

⊨ 𝐴2

=⇒ 𝜎1

⊨ 𝐴1∧A

. . . 𝜎𝑛

⊨ 𝐴2

from 𝐴1 next 𝐴2 onlyIf 𝐴:

𝜎1

⊨ 𝐴1

𝜎𝑛

⊨ 𝐴2

=⇒ 𝜎1

⊨ 𝐴1∧A

𝜎𝑛

⊨ 𝐴2

from 𝐴1 to 𝐴2 onlyThrough 𝐴:
𝜎1

⊨ 𝐴1

. . . 𝜎𝑛

⊨ 𝐴2

=⇒ 𝜎1

⊨ 𝐴1

. . . 𝜎𝑘

⊨ A

. . . 𝜎𝑛

⊨ 𝐴2

Fig. 3. Illustrating the three Necessity operators

Definition 3.9 (Semantics of Necessity Specifications). We define 𝑀 ⊨ 𝑆 by cases over the four
possible syntactic forms. For any assertions 𝐴1, 𝐴2, and 𝐴:

• 𝑀 ⊨ 𝐴 iff for all𝑀 ′, 𝜎 , if Arising(𝑀 ′, 𝑀, 𝜎), then𝑀,𝜎 ⊨ 𝐴. (see Def. 3.5)

• 𝑀 ⊨ from 𝐴1 to 𝐴2 onlyIf 𝐴 iff for all𝑀 ′, 𝜎 , 𝜎 ′, such that Arising(𝑀 ′, 𝑀, 𝜎):

-𝑀,𝜎 ⊨ 𝐴1 ⇒ 𝑀,𝜎 ⊨ 𝐴-𝑀,𝜎 ′ ⊳ 𝜎 ⊨ 𝐴2
-𝑀 ′;𝑀, 𝜎 {∗ 𝜎 ′

• 𝑀 ⊨ from 𝐴1 next 𝐴2 onlyIf 𝐴 iff for all𝑀 ′, 𝜎 , 𝜎 ′, such that Arising(𝑀 ′, 𝑀, 𝜎):

-𝑀,𝜎 ⊨ 𝐴1 ⇒ 𝑀,𝜎 ⊨ 𝐴-𝑀,𝜎 ′ ⊳ 𝜎 ⊨ 𝐴2
-𝑀 ′;𝑀, 𝜎 { 𝜎 ′

• 𝑀 ⊨ from𝐴1 to𝐴2 onlyThrough𝐴 iff for all𝑀 ′,𝜎1,𝜎2,𝜎𝑛 , such thatArising(𝑀 ′, 𝑀, 𝜎1):

-𝑀,𝜎1 ⊨ 𝐴1 ⇒ ∃𝑘. 1 ≤ 𝑘 ≤ 𝑛 ∧ 𝑀,𝜎𝑘 ⊳ 𝜎1 ⊨ 𝐴-𝑀,𝜎𝑛 ⊳ 𝜎1 ⊨ 𝐴2
- ∀𝑖 ∈ [1..𝑛). 𝑀 ′;𝑀, 𝜎𝑖 { 𝜎𝑖+1

Revisiting the examples from the previous subsection, we obtain that all three modules satisfy
𝑺nxt_dcr_if_acc. But Modbad does not satisfy 𝑺to_dcr_if_acc: as already discussed in §2.1, with a
of class Account implemented as in Modbad, starting in a state where no external object has access
to a’s password, and executing a.set(42); a.transfer(rogue_account,42) leads to
a state where the balance has decreased. All three modules satisfy 𝑺to_dcr_thr_acc: namely, in all
cases, the balance can only decrease if there was a call to a.transfer(_,p) where p = a.pwd,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:14 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

𝜎 : 𝜎 ′ : 𝜎 ′ ⊳ 𝜎 :

Fig. 4. Illustrating adaptation

and since that call can only be made from an external object, p is externally known at the time of
that call.

Modgood ⊨ 𝑺nxt_dcr_if_acc Modbad ⊨ 𝑺nxt_dcr_if_acc Modbetter ⊨ 𝑺nxt_dcr_if_acc
Modgood ⊨ 𝑺to_dcr_if_acc Modbad ⊭ 𝑺to_dcr_if_acc Modbetter ⊨ 𝑺to_dcr_if_acc
Modgood ⊨ 𝑺to_dcr_thr_acc Modbad ⊨ 𝑺to_dcr_thr_acc Modbetter ⊨ 𝑺to_dcr_thr_acc

3.3.3 Adaptation. We now discuss the adaptation operator. To see the need, consider specification
1 𝑺to_dcr_thr_call ≜ from a:Account ∧ a.balance==350 next a.balance == 250
2 onlyIf ∃ o.[⟨o external⟩ ∧ ⟨o calls a.transfer(_, _, _) ⟩]

Without adaptation, the semantics of 𝑺to_dcr_thr_call would be: If .., 𝜎 |= a.balance==350,
and .., 𝜎 {∗ 𝜎 ′ and 𝜎 ′ |= a.balance==250, then between 𝜎 and 𝜎 ′ there must be call to
a.transfer. But if 𝜎 happened to have another account a1 with balance 350, and if we
reach 𝜎 ′ from 𝜎 by executing a1.transfer(.., ..); a=a1, then we would reach a 𝜎 ′ with-
out a.transfer having been called: indeed, without the account a from 𝜎 having changed at all.
In fact, with such a semantics, a module would satisfy 𝑺to_dcr_thr_call only if it did not support
decrease of the balance by 100, or if states where an account’s balance is 350 were unreachable!

This is the remit of the adaptation operator: when we consider the future state, we must “see it
from” the perspective of the current state; the binding for variables such as a must be from the
current state, even though we may have assigned to them in the mean time. Thus, 𝜎 ′ ⊳ 𝜎 keeps the
heap from 𝜎 ′, and renames the variables in the top stack frame of 𝜎 ′ so that all variables defined in
𝜎 have the same bindings as in 𝜎 ; the continuation must be adapted similarly (see Fig. 4).

Under adaptation, the semantics of 𝑺to_dcr_thr_call is: if .., 𝜎 |= a.balance==350, and
.., 𝜎 {∗ 𝜎 ′ and ...,𝝈 ′ ⊳ 𝝈 |= a.balance==250, then some intermediate state’s continuation
must contain a call to a.transfer; where, all variables bound in the initial state, 𝜎 , have the
same bindings in 𝜎 ′ ⊳ 𝜎 .

Fig. 4 illustrates the semantics of 𝜎 ′ ⊳𝜎 . In 𝜎 the variable a points to an Account with password
pwd1, and balance 350; the variable a1 points to an Account with password pwd2, and balance
350; and the continuation is a1.transfer(.., ..); a=a1; a.transfer(.., ..);. We reach 𝜎 ′

by executing the first two statements from the continuation. Thus, 𝜎 ′ ⊳ 𝜎 ̸ |= a.balance==250.
Moreover, in 𝜎 ′ ⊳ 𝜎 we introduce the fresh variables y and y1, and replace a and a1 by y and
y1 in the continuation. This gives that 𝜎 ′ ⊳ 𝜎 |= ⟨_ calls a1.transfer(...)⟩ and 𝜎 ′ ⊳ 𝜎 ̸ |=
⟨_ calls a.transfer(...)⟩.
Definition 3.10 describes the ⊳ operator in all detail (it is equivalent to, but not identical to the

definition given in [Drossopoulou et al. 2020b]). We introduce fresh variables 𝑦 – as many as in the
𝜎 ′ top frame variable map – 𝑑𝑜𝑚(𝛽 ′) = 𝑥 , and |𝑦 | = |𝑥 |. We extend 𝜎’s variable map (𝛽), so that it
also maps 𝑦 in the way that 𝜎 ′’s variable map (𝛽 ′) maps its local variables – 𝛽 ′′ = 𝛽 [𝑦 ↦→ 𝛽 ′ (𝑥)].
We rename 𝑥 in 𝜎 ′ continuation to 𝑦 – ^′′ = [𝑦/𝑥]^′.

Definition 3.10. For any states 𝜎 , 𝜎 ′, heaps 𝜒 , 𝜒 ′, variable maps 𝛽 , 𝛽 ′, and continuations ^, ^′,
such that 𝜎=(𝜒, (𝛽, ^) : 𝜓), and 𝜎=(𝜒 ′, (𝛽 ′, ^′) : 𝜓 ′), we define

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:15

• 𝜎 ′ ⊳ 𝜎 ≜ (𝜒 ′, (𝛽 ′′, ^′′) : 𝜓 ′)
where there exist variables 𝑦 such that 𝛽 ′′ = 𝛽 [𝑦 ↦→ 𝛽 ′ (𝑥)], and ^′′ = [𝑦/𝑥]^′, and 𝑑𝑜𝑚(𝛽 ′) = 𝑥 ,
and |𝑦 | = |𝑥 |, and 𝑦 are fresh in 𝛽 and 𝛽 ′.

Strictly speaking, ⊳ does not define one unique state: Because variables 𝑦 are arbitrarily chosen,
⊳ describes an infinite set of states. These states satisfy the same assertions and therefore are
equivalent with each other. This is why it is sound to use ⊳ as an operator, rather than as a set.

3.4 Expressiveness
We discuss expressiveness of Necessity operators, by comparing them with one another, with
temporal operators, and with other examples from the literature.

Relationship between Necessity Operators. The three Necessity operators are related by generality.
Only If (from 𝐴1 to 𝐴2 onlyIf 𝐴) implies Single-Step Only If (from 𝐴1 next 𝐴2 onlyIf 𝐴),
since if𝐴 is a necessary precondition for multiple steps, then it must be a necessary precondition for
a single step. Only If also implies an Only Through, where the intermediate state is the starting state
of the execution. There is no further relationship between Single-Step Only If and Only Through.

Relationship with Temporal Logic. Two of the three Necessity operators can be expressed in
traditional temporal logic: from 𝐴1 to 𝐴2 onlyIf 𝐴 can be expressed as 𝐴1 ∧ ^𝐴2 −→ 𝐴, and
from 𝐴1 next 𝐴2 onlyIf 𝐴 can be expressed as 𝐴1 ∧ ⃝𝐴2 −→ 𝐴 (where ^ denotes any
future state, and ⃝ denotes the next state). Critically, from 𝐴1 to 𝐴2 onlyThrough 𝐴 cannot
be encoded in temporal logics without “nominals” (explicit state references), because the state
where 𝐴 holds must be between the state where 𝐴1 holds, and the state where 𝐴2 holds; and this
must be so on every execution path from 𝐴1 to 𝐴2 [Braüner 2022; Brotherston et al. 2020]. TLA+,
for example, cannot describe “only through” conditions [Lamport 2002], but we have found “only
through” conditions critical to our proofs.

The DOM. This is the motivating example in [Devriese et al. 2016], dealing with a tree of DOM
nodes: Access to a DOM node gives access to all its parent and children nodes, with the
ability to modify the node’s property – where parent, children and property are fields
in class Node. Since the top nodes of the tree usually contain privileged information, while the
lower nodes contain less crucial third-party information, we must be able to limit access given to
third parties to only the lower part of the DOM tree. We do this through a Proxy class, which has
a field node pointing to a Node, and a field height, which restricts the range of Nodes which
may be modified through the use of the particular Proxy. Namely, when you hold a Proxy you
can modify the property of all the descendants of the height-th ancestors of the node of that
particular Proxy. We say that pr has modification-capabilities on nd, where pr is a Proxy and
nd is a Node, if the pr.height-th parent of the node at pr.node is an ancestor of nd.
The specification DOMSpec states that the property of a node can only change if some

external object presently has access to a node of the DOM tree, or to some Proxywith modification-
capabilties to the node that was modified.

1 DOMSpec ≜ from nd : Node ∧ nd.property = p to nd.property != p
2 onlyIf ∃ o.[⟨o external⟩ ∧
3 (∃ nd':Node.[⟨o access nd’⟩] ∨
4 ∃ pr:Proxy,k:N.[⟨o access pr⟩ ∧
5 nd.parentk=pr.node.parentpr.height])]

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:16 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

More examples. In order to investigate Necessity’s expressiveness, we used it for examples pro-
vided in the literature. In the appendices [Mackay et al. 2022b] we compare with examples proposed
by Drossopoulou et al. [2020b], and Permenev et al. [2020].

4 PROVING NECESSITY
In this Section we provide a proof system for constructing proofs of the Necessity specifications
defined in §3.3. As discussed in §2.5, such proofs consist of four parts:

(Part 1) Proving Assertion Encapsulation (§4.1)
(Part 2) Proving Per-Method Necessity specifications for a single internal method from the

functional specification of that method (§4.2)
(Part 3) Proving Per-Step Necessity specifications by combining per-method Necessity specifi-

cations (§4.3)
(Part 4) Raising necessary conditions to construct proofs of properties of emergent behaviour

(§4.4)
Part 1 is, to a certain extent, orthogonal to the main aims of our work; in this paper we propose

a simple approach based on the type system, while also acknowledging that better solutions are
possible. For Parts 2-4, we came up with the key ideas outlined in §2.5, which we develop in more
detail in §4.2-§4.4.

4.1 Assertion Encapsulation
Necessity proofs often leverage the fact that some assertions cannot be invalidated unless some
internal (and thus known) computation took place. We refer to this property as Assertion Encap-
sulation. In this work, we define the property 𝑀 ⊨ 𝐴′ ⇒ Enc(𝐴), which states that under the
conditions described by assertion 𝐴′, the assertion 𝐴 is encapsulated by module 𝑀 . We do not
mandate how this property should be derived – instead, we rely on a judgment𝑀 ⊢ 𝐴′ ⇒ Enc(𝐴)
provided by some external system. Thus, Necessity is parametric over the derivation of the encap-
sulation judgment; in fact, several ways to do that are possible [Clarke and Drossopoulou 2002;
Leino and Müller 2004; Noble et al. 2003]. In the appendices [Mackay et al. 2022b] we present a
rudimentary system that is sufficient to support our example proof.

4.1.1 Assertion Encapsulation Semantics. As we said earlier, an assertion 𝐴 is encapsulated by a
module 𝑀 under condition 𝐴′, if in all possible states which arise from execution of module 𝑀
with any other external module𝑀 ′, and which satisfy 𝐴′, the validity of 𝐴 can only be changed
via computations internal to that module – i.e., via a call to a method from𝑀 . In TooL, that means
by calls to objects defined in𝑀 but accessible from the outside.

Definition 4.1 (Assertion Encapsulation). An assertion𝐴 is encapsulated bymodule𝑀 and assertion
𝐴′, written as 𝑀 ⊨ 𝐴′ ⇒ Enc(𝐴), if and only if for all external modules𝑀 ′, and all states 𝜎 , 𝜎 ′

such that Arising(𝑀 ′, 𝑀, 𝜎):
-𝑀 ′;𝑀, 𝜎 { 𝜎 ′ ⇒ ∃𝑥, 𝑚, 𝑧.(𝑀,𝜎 ⊨ ⟨_ calls 𝑥 .𝑚(𝑧)⟩ ∧ ⟨𝑥 internal⟩)-𝑀,𝜎 ⊨ 𝐴 ∧𝐴′

-𝑀,𝜎 ′ ⊳ 𝜎 ⊨ ¬𝐴

Note that this definition uses adaptation, 𝜎 ′ ⊳ 𝜎 . The application of the adaptation operator is
necessary because we interpret the assertion 𝐴 in the current state, 𝜎 , while we interpret the
assertion ¬𝐴 in the future state, 𝜎 ′ ⊳ 𝜎 .
Revisiting the examples from § 2, both Modbad and Modbetter encapsulate the equality of the

balance of an account to some value bal: This equality can only be invalidated through calling
methods on internal objects.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:17

Modbad ⊨ a : Account ⇒ Enc(a.balance = bal)
Modbetter ⊨ a : Account ⇒ Enc(a.balance = bal)

Moreover, the property that an object is only accessible frommodule-internal objects is encapsulated,
that is, for all o, and all modules𝑀 :

𝑀 ⊨ o : Object ⇒ Enc(inside(o))
This is so because any object which is only internally accessible can become externally accessible
only via an internal call.

In general, code that does not contain calls to a given module is guaranteed not to invalidate any
assertions encapsulated by that module. Assertion encapsulation has been used in proof systems to
address the frame problem [Banerjee and Naumann 2005b; Leino and Müller 2004].

4.1.2 Deriving Assertion Encapsulation. Our logic does not deal with, nor rely on, the specifics of
how encapsulation is derived. Instead, it relies on an encapsulation judgment and expects it to be
sound:

Definition 4.2 (Encapsulation Soundness). A judgement of the form𝑀 ⊢ 𝐴′ ⇒ Enc(𝐴) is sound,
if for all modules𝑀 , and assertions 𝐴 and 𝐴′, if

𝑀 ⊢ 𝐴′ ⇒ Enc(𝐴) implies 𝑀 ⊨ 𝐴′ ⇒ Enc(𝐴).
Types for Assertion Encapsulation. Even though the derivation of assertion encapsulation is not the

focus of this paper, for illustrative purposes, we will outline now a very simple type system which
supports such derivations: We assume that field declarations, method arguments and method results
are annotated with class names, and that classes may be annotated as confined. A confined
object is not accessed by external objects; that is, it is always inside.
The type system then checks that field assignments, method calls, and method returns adhere

to these expectations, and in particular, that objects of confined type are never returned from
method bodies – this is a simplified version of the type system described in [Vitek and Bokowski
1999]. Because the type system is so simple, we do not include its formalization in the paper. Note
however, that the type system has one further implication: modules are typed in isolation, thereby
implicitly prohibiting method calls from internal objects to external objects.

Based on this type system, we define a predicate Enc𝑒 (𝑒), in the appendices [Mackay et al. 2022b],
which asserts that any objects read during the evaluation of 𝑒 are internal. Thus, any assertion that
only involves Enc𝑒 (_) expressions is encapsulated – more can be found in the appendices [Mackay
et al. 2022b].

4.2 Per-Method Necessity Specifications
In this section we detail how we use functional specifications to prove per-method Necessity
specifications of the form

from 𝐴1 ∧ 𝑥 : 𝐶 ∧ ⟨_ calls 𝑥 .𝑚(𝑧)⟩ next 𝐴2 onlyIf 𝐴

where 𝐶 is a class, and𝑚 a method in 𝐶 .
The first key idea in §2.5 is that if a precondition and a certain statement is sufficient to achieve

a particular result, then the negation of that precondition is necessary to achieve the negation
of the result after executing that statement. Specifically, {𝑃} 𝑠 {𝑄} implies that ¬𝑃 is a necessary
precondition for ¬𝑄 to hold following the execution of s.
For the use in functional specifications, we define Classical assertions, a subset of Assert, com-

prising only those assertions that are commonly present in other specification languages. They
are restricted to expressions, class assertions, the usual connectives, negation, implication, and the
usual quantifiers.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:18 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

𝑀 ⊢ {𝑥 : 𝐶 ∧ 𝑃1 ∧ ¬𝑃 } res = 𝑥.𝑚 (𝑧) {¬𝑃2}
𝑀 ⊢ from 𝑃1 ∧ 𝑥 : 𝐶 ∧ ⟨_ calls 𝑥.𝑚 (𝑧) ⟩ next 𝑃2 onlyIf 𝑃

(If1-Classical)

𝑀 ⊢ {𝑥 : 𝐶 ∧ ¬𝑃 } res = 𝑥.𝑚 (𝑧) {res ≠ 𝑦}
𝑀 ⊢ from inside(𝑦) ∧ 𝑥 : 𝐶 ∧ ⟨_ calls 𝑥.𝑚 (𝑧) ⟩ next ¬inside(𝑦) onlyIf 𝑃

(If1-Inside)

Fig. 5. Per-Method Necessity specifications

Definition 4.3. Classical assertions, 𝑃 , 𝑄 , are defined as follows
𝑃,𝑄 ::= 𝑒 | 𝑒 : 𝐶 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | 𝑃 −→ 𝑃 | ¬𝑃 | ∀𝑥 .[𝑃] | ∃𝑥 .[𝑃]

We assume that there exists some proof system that derives functional specifications of the form
𝑀 ⊢ {𝑃} s {𝑄}. This implies that we can also have guarantees of

𝑀 ⊢ {𝑃} res = 𝑥 .𝑚(𝑧) {𝑄}

That is, the execution of 𝑥 .𝑚(𝑧) with the precondition 𝑃 results in a program state that satisfies
postcondition𝑄 , where the returned value is represented by res in𝑄 . We further assume that such
a proof system is sound, i.e. that if𝑀 ⊢ {𝑃} res = x.m(𝑧) {𝑄}, then for every program state
𝜎 that satisfies 𝑃 , the execution of the method call x.m(𝑧) results in a program state satisfying 𝑄 .
As we have previously discussed (see §2.5), we build Necessity specifications on top of functional
specifications using the fact that validity of {𝑃} res = 𝑥 .𝑚(𝑧) {𝑄} implies that ¬𝑃 is a necessary
pre-condition to ¬𝑄 being true after execution of res = 𝑥 .𝑚(𝑧).
Proof rules for per-method specifications are given in Figure 5. Note that the receiver 𝑥 in the

rules in 5 is implicitly an internal object. This is because we only have access to internal code, and
thus are only able to prove the validity of the associated Hoare triple.

If1-Classical states that if the execution of 𝑥 .𝑚(𝑧), with precondition 𝑃 ∧ ¬𝑃1, leads to a state
satisfying postcondition ¬𝑃2, then 𝑃1 is a necessary precondition to the resulting state satisfying 𝑃2.
If1-Inside states that if the precondition ¬𝑃 guarantees that the result of the call 𝑥 .𝑚(𝑧) is not

𝑦, then 𝑃 is a necessary pre-condition to invalidate inside(𝑦) by calling 𝑥 .𝑚(𝑧). This is sound,
because the premise of If1-Inside implies that 𝑃 is a necessary precondition for the call 𝑥 .𝑚(𝑧)
to return an object 𝑦; this, in turn, implies that 𝑃 is a necessary precondition for the call 𝑥 .𝑚(𝑧)
to result in an external object gaining access to 𝑦. The latter implication is valid because the rule
is applicable only to external states semantics, which means that the call 𝑥 .𝑚(𝑧) is a call from an
external object to some internal object 𝑥 . Namely, there are only four ways an object 𝑜 might gain
access to another object 𝑜 ′: (1) 𝑜 ′ is created by 𝑜 as the result of a new expression, (2) 𝑜 ′ is written
to some field of 𝑜 , (3) 𝑜 ′ is passed to 𝑜 as an argument to a method call on 𝑜 , or (4) 𝑜 ′ is returned
to 𝑜 as the result of a method call from an object 𝑜 ′′ that has access to 𝑜 ′. The rule If1-Inside is
only concerned with effects on program state resulting from a method call to some internal object,
and thus (1) and (2) need not be considered as neither object creation or field writes may result in
an external object gaining access to an object that is only internally accessible. Since we are only
concerned with describing how internal objects grant access to external objects, our restriction on
external method calls within internal code prohibits (3) from occuring. Finally, (4) is described by
If1-Inside. In further work we plan to weaken the restriction on external method calls, and will
strengthen this rule. Note that If1-Inside is essentially a specialized version of If1-Classical for
the inside(_) predicate. Since inside(_) is not a classical assertion, we cannot use functional
specifications to reason about necessary conditions for invalidating inside(_).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:19

[
for all 𝐶 ∈ 𝑑𝑜𝑚 (𝑀) and 𝑚 ∈ 𝑀 (𝐶) .mths,

[𝑀 ⊢ from 𝐴1 ∧ 𝑥 : 𝐶 ∧ ⟨_ calls 𝑥.𝑚 (𝑧) ⟩ next 𝐴2 onlyIf 𝐴3]

]
𝑀 ⊢ 𝐴1 −→ ¬𝐴2 𝑀 ⊢ 𝐴1 ⇒ Enc(𝐴2)

𝑀 ⊢ from 𝐴1 next 𝐴2 onlyIf 𝐴3
(If1-Internal)

𝑀 ⊢ 𝐴1 −→ 𝐴′
1 𝑀 ⊢ 𝐴2 −→ 𝐴′

2 𝑀 ⊢ 𝐴′
3 −→ 𝐴3 𝑀 ⊢ from 𝐴′

1 next 𝐴′
2 onlyIf 𝐴′

3

𝑀 ⊢ from 𝐴1 next 𝐴2 onlyIf 𝐴3
(If1-−→)

𝑀 ⊢ from 𝐴1 next 𝐴2 onlyIf 𝐴 ∨ 𝐴′ 𝑀 ⊢ from 𝐴′ to 𝐴2 onlyThrough false

𝑀 ⊢ from 𝐴1 next 𝐴2 onlyIf 𝐴
(If1-∨E)

∀𝑦, 𝑀 ⊢ from ([𝑦/𝑥]𝐴1) next 𝐴2 onlyIf 𝐴

𝑀 ⊢ from ∃𝑥.[𝐴1] next 𝐴2 onlyIf 𝐴
(If1-∃1)

Fig. 6. Selected rules for Single-Step Only If

4.3 Per-Step Necessity Specifications
The second key idea in §2.5 allows us to leverage several per-method Necessity specifications to
obtain one per-step Necessity specification: Namely, if an assertion is encapsulated, and all methods
within the internal module require the same condition to the invalidation of that assertion, then this
condition is a necessary, program-wide, single-step condition to the invalidation of that assertion.
In this section we present a selection of the rules whose conclusion is of the form Single Step

Only If in Fig. 6. The complete rule set can be found in the extended paper [Mackay et al. 2022b].
If1-Internal lifts a set of per-methodNecessity specifications to a per-stepNecessity specification.

Any Necessity specification which is satisfied for all method calls sent to any object in a module, is
satisfied for any step, even an external step, provided that the effect involved, i.e. going from 𝐴1
states to 𝐴2 states, is encapsulated.

The remaining rules aremore standard, and are reminiscent of theHoare logic rule of consequence.
We present a few of the more interesting rules here:

The rule for implication (If1-−→) may strengthen properties of either the starting or ending
state, or weaken the necessary precondition. The disjunction elimination rule (IF1-∨E) mirrors
typical disjunction elimination rules, with a variation stating that if it is not possible to reach the
end state from one branch of the disjunction, then we can eliminate that branch.
Two rules support existential elimination on the left hand side. If1-∃1 states that if any single

step of execution starting from a state satisfying [𝑦/𝑥]𝐴1 for all possible 𝑦, reaching some state
satisfying 𝐴2 has 𝐴 as a necessary precondition, it follows that any single step execution starting
in a state where such a 𝑦 exists, and ending in a state satisfying 𝐴2, must have 𝐴 as a necessary
precondition. The other rules can be found in the extended paper [Mackay et al. 2022b].

4.4 Emergent Necessity Specifications
The third key idea in §2.5 allows us to leverage several per-step Necessity specifications to obtain
multiple-step Necessity specifications, and thus enables the description of the module’s emergent
behaviour. We combine per-step Necessity specifications into multiple-step Necessity specifica-
tions, as well as several multiple step Necessity specifications into further multiple step Necessity
specifications.

Figure 7 presents some of the rules with conclusion Only Through, while Figure 8 provides some
of the rules with conclusion Only If. The complete rules can be found in the appendices [Mackay
et al. 2022b]

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:20 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

𝑀 ⊢ from 𝐴 next ¬𝐴 onlyIf 𝐴′

𝑀 ⊢ from 𝐴 to ¬𝐴 onlyThrough 𝐴′ (Changes)
𝑀 ⊢ from 𝐴1 to 𝐴2 onlyIf 𝐴

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴
(If)

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴3
𝑀 ⊢ from 𝐴1 to 𝐴3 onlyThrough 𝐴

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴
(Trans1)

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴3
𝑀 ⊢ from 𝐴3 to 𝐴2 onlyThrough 𝐴

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴
(Trans2)

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴2 (End)

Fig. 7. Selected rules for Only Through

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴3 𝑀 ⊢ from 𝐴1 to 𝐴3 onlyIf 𝐴

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyIf 𝐴
(If-Trans)

𝑀 ⊢ from 𝑥 : 𝐶 to ¬ 𝑥 : 𝐶 onlyIf false (If-Class) 𝑀 ⊢ from 𝐴1 to 𝐴2 onlyIf 𝐴1 (If-Start)

Fig. 8. Selected rules for Only If

Changes, in Figure 7, states that if 𝐴′ is a necessary condition for the satisfaction of 𝐴 to change
in one step, then it is also a necessary condition for the satisfaction of 𝐴 to change in any number of
steps. This is sound, because if the satisfaction of some assertion changes over time, then there must
be some specific intermediate state where that change occurred. Changes is an important enabler
for proofs of emergent properties: Since Necessity specifications are concerned with necessary
conditions for change, their proofs typically hinge around such necessary conditions for certain
properties to change. For example, under what conditions may our account’s balance decrease?

It might seem natural that Changes had the more general form:

𝑀 ⊢ from 𝐴1 next 𝐴2 onlyIf 𝐴3

𝑀 ⊢ from 𝐴1 to 𝐴2 onlyThrough 𝐴3
(ChangesUnsound)

(ChangesUnsound) is not sound because the conclusion of the rule describes transitions from
a state satisfying 𝐴1 to one satisfying 𝐴2 which may occur occur over several steps, while the
premise describes a transition that takes place over one single step. Such a concern does not apply
to (Changes), because a change in satisfaction for a specific assertion (i.e. 𝐴 to ¬𝐴) can only take
place in a single step.
Trans1 and Trans2 are rules about transitivity. They state that necessary conditions to reach

intermediate states or proceed from intermediate states are themselves necessary intermediate
states. Any Only If specification entails the corresponding Only Through specification (If). Finally,
End states that the ending condition is a necessary intermediate condition.
Only If also includes a rule for transitivity (If-Trans), but since the necessary condition must

be true in the beginning state, there is only a single rule. If-Class expresses that an object’s class
never changes. Finally, any starting condition is itself a necessary precondition (If-Start).

4.5 Soundness of the Necessity Logic
Theorem 4.4 (Soundness). Assuming a sound Assert proof system, 𝑀 ⊢ 𝐴, and a sound en-

capsulation inference system, 𝑀 ⊢ 𝐴 ⇒ Enc(𝐴′), and that on top of these systems we built the
Necessity logic according to the rules in Figures 5, 6, 7, and 8, then, for all modules𝑀 , and all Necessity
specifications 𝑆 :

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:21

𝑀 ⊢ 𝑆 implies 𝑀 ⊨ 𝑆

Proof. by induction on the derivation of𝑀 ⊢ 𝑆 . □

Theorem. 4.4 demonstrates that the Necessity logic is sound with respect to the semantics of
Necessity specifications. The Necessity logic parametric wrt to the algorithms for proving validity
of assertions 𝑀 ⊢ 𝐴, and assertion encapsulation (𝑀 ⊢ 𝐴 ⇒ Enc(𝐴′)), and is sound provided
that these two proof systems are sound.
The mechanized proof of Theorem 4.4 in Coq can be found in the associated artifact [Mackay

et al. 2022a]. The Coq formalism deviates slightly from the system as presented here, mostly in
the formalization of the Assert language. The Coq version of Assert restricts variable usage to
expressions, and allows only addresses to be used as part of non-expression syntax. For example, in
the Coq formalism we can write assertions like 𝑥 .𝑓 == this and 𝑥 == 𝛼𝑦 and ⟨𝛼𝑥 access 𝛼𝑦⟩,
but we cannot write assertions like ⟨𝑥 access 𝑦⟩, where 𝑥 and 𝑦 are variables, and 𝛼𝑥 and 𝛼𝑦 are
addresses. The reason for this restriction in the Coq formalism is to avoid spending significant
effort encoding variable renaming and substitution, a well-known difficulty for languages such
as Coq. This restriction does not affect the expressiveness of our Coq formalism: we are able to
express assertions such as ⟨𝑥 access 𝑦⟩, by using addresses and introducing equality expressions
to connect variables to address, i.e. ⟨𝛼𝑥 access 𝛼𝑦⟩ ∧ 𝛼𝑥 == 𝑥 ∧ 𝛼𝑦 == 𝑦. The Coq formalism
makes use of the CpdtTactics [Chlipala 2019] library of tactics to discharge some proofs.

5 PROVING THAT MODbetter SATISIFES 𝑺robust_2

We now revisit our example from §1 and §2, and outline a proof that Modbetter satisfies 𝑺robust_2.
A summary of this proof has already been discussed in §2.5. A more complex variant of this
example can be found in the appendices [Mackay et al. 2022b]. It demonstrates dealing with
modules consisting of several classes some of which are confined, and which use ghost fields
defined through functions; it also demonstrates proofs of assertion encapsulation of assertions
which involve reading the values of several fields. Mechanised versions of the proofs in both this
Section, and in the appendices [Mackay et al. 2022b] can be found in the associated Coq artifact
[Mackay et al. 2022a] in simple_bank_account.v and bank_account.v respectively.

Recall that an Account includes at least a field (or ghost field) called balance, and a method
called transfer.
We first rephrase 𝑺robust_2 to use the inside(_) predicate.

1 𝑺robust_2 ≜ from a:Account ∧ a.balance=bal
2 to a.balance < bal onlyIf ¬inside(a.pwd)

We next revisit the functional specification from §2.1 and derive the following PRE- and POST-
conditions. The first two pairs of PRE-, POST-conditions correspond to the first two ENSURES
clauses from §2.1, while the next two pairs correspond to the MODIFIES-clause. The current
expression in terms of PRE- and POST-conditions is weaker than the one in §2.1, and is not
modular, but is sufficient for proving adherence to 𝑺robust_2.
1 FuncSpec’ ≜
2 method transfer(dest:Account, pwd':Password) -> void
3 (PRE: this.balance=bal1 ∧ dest.balance=bal2 ∧ this.pwd=pwd' ∧ this≠dest
4 POST: this.balance=bal1-100 ∧ dest.balance=bal2+100)
5 (PRE: this.balance=bal1 ∧ dest.balance=bal2 ∧ (this.pwd≠pwd' ∨ this=dest)
6 POST: this.balance=bal1 ∧ dest.balance=bal2)
7 (PRE: a:Account ∧ a.balance=bal ∧ a≠this ∧ a≠dest
8 POST: a.balance=bal)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:22 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

9 (PRE: a:Account ∧ a.pwd=pwd1
10 POST: a.pwd=pwd1)

5.1 Part 1: Assertion Encapsulation
The first part of the proof demonstrates that the balance, pwd, and external accessibility to the
password are encapsulated properties. That is, for the balance to change (i.e. for a.balance
= bal to be invalidated), or for the encapsulation of a.pwd to be broken (ie for a transition from
inside(a,pwd) to ¬inside(a.pwd)), internal computation is required.
We use a simple encapsulation system, detailed in the appendices [Mackay et al. 2022b], and

provide the proof steps below. aEnc and balanceEnc state that a and a.balance satisfy the
Enc𝑒 predicate. That is, if any objects’ contents are to be looked up during execution of these
expressions, then these objects are internal. Enc𝑒 (a) holds because no object’s contents is looked
up, while Enc𝑒 (a.balance) holds because balance is a field of a, and a is internal.

BalEncaps:

aEnc:
Modbetter ⊢ a:Account ∧ a.balance=bal ⇒ Enc𝑒 (a) by Enc𝑒 -Obj

balanceEnc:
Modbetter ⊢ a:Account ∧ a.balance=bal ⇒ Enc𝑒 (a.balance) by aEnc and Enc-Field

balEnc:
Modbetter ⊢ a:Account ∧ a.balance=bal ⇒ Enc𝑒 (bal) by Enc𝑒 -Int

Modbetter ⊢ a:Account ∧ a.balance=bal ⇒ Enc(a.balance=bal) by balanceEnc, balEnc,
Enc-Eq, and Enc-=

Moreover, balEnc states that bal satisfies the Enc𝑒 predicate – it is an integer, and no object
look-up is involved in its calculation. balanceEnc and balEnc combine to prove that the
assertion a.balance = bal is encapsulated – only internal object lookups are involved in the
validity of that assertion, and therefore only internal computation may cause it to be invalidated.

Using similar reasoning, we prove that a.pwd is encapsulated (PwdEncaps), and that inside(
a.pwd) is encapsulated (PwdInsideEncaps).

PwdEncaps:
Modbetter ⊢ a:Account ⇒ Enc(a.pwd=p) by Enc𝑒 -Obj, Enc-Field, and

Enc-Eq

PwdInsideEncaps:
Modbetter ⊢ a:Account ⇒ Enc(inside(a.balance)) by Enc-Inside

5.2 Part 2: Per-Method Necessity Specifications
Part 2 proves necessary preconditions for each method in the module interface. We employ the rules
from §4.2 which describe how to derive necessary preconditions from functional specifications.
SetBalChange uses a functional specification and a rule of consequence to prove that the set

method in Account never modifies the balance. We then use If1-Classical and our Necessity
logic to prove that if it ever did change (a logical absurdity), then transfer must have been
called.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:23

SetBalChange:

{ a, a′:Account ∧ a′.balance=bal }
a.set(_, _)
{ a′.balance = bal }

by functional specification

{ a, a′:Account ∧ a′.balance = bal ∧ ¬ false }
a.set(_, _)
{ ¬ a′.balance < bal }

by rule of consequence

from a, a′:Account ∧ a′.balance=bal ∧ ⟨_ calls a.set(_, _) ⟩
next a′.balance < bal onlyIf false by If1-Classical

from a, a′:Account ∧ a′.balance=bal ∧ ⟨_ calls a.set(_, _) ⟩
next a′.balance < bal onlyIf ⟨_ calls a′ .transfer(_, a′.pwd) ⟩ by Absurd and If1-−→

Similarly, in SetPwdLeak we employ functional specifications to prove that a method does not
leak access to some data (in this case the pwd). Using If1-Inside, we reason that since the return
value of set is void, and set is prohibited from making external method calls, no call to set
can result in an object (external or otherwise) gaining access to the pwd.

SetPwdLeak:
{ a:Account ∧ a′:Account ∧ a.pwd == p }
res=a′.set(_, _)
{ res != pwd }

by functional specification

{ a:Account ∧ a′:Account ∧ a.pwd == p ∧ ¬ false }
res=a′.set(_, _)
{ res != p }

by rule of consequence

from inside(pwd) ∧ a, a′:Account ∧ a.pwd=p ∧ ⟨_ calls a′ .set(_, _) ⟩
next ¬inside(_) onlyIf false by If1-Inside

In the same manner as SetBalChange and SetPwdLeak, we also prove SetPwdChange,
TransferBalChange, TransferPwdLeak, and TransferPwdChange. We provide their
statements, but omit their proofs.

SetPwdChange:

from a, a′:Account ∧ a′.pwd=p ∧ ⟨_ calls a.set(_, _) ⟩
next ¬ a.pwd = p onlyIf ⟨_ calls a′ .set(a′.pwd, _) ⟩ by If1-Classical

TransferBalChange:

from a, a′:Account ∧ a′.balance=bal ∧ ⟨_ calls a.transfer(_, _) ⟩
next a′.balance < bal onlyIf ⟨_ calls a′ .transfer(_, a′.pwd) ⟩ by If1-Classical

TransferPwdLeak:
from inside(pwd) ∧ a, a′:Account ∧ a.pwd=p ∧ ⟨_ calls a′ .transfer(_, _) ⟩

next ¬inside(_) onlyIf false by If1-Inside

TransferPwdChange:

from a, a′:Account ∧ a′.pwd=p ∧ ⟨_ calls a.transfer(_, _) ⟩
next ¬ a.pwd = p onlyIf ⟨_ calls a′ .set(a′.pwd, _) ⟩ by If1-Classical

5.3 Part 3: Per-Step Necessity Specifications
Part 3 builds upon the proofs of Parts 1 and 2 to construct proofs of necessary preconditions, not
for single method execution, but for any single execution step. That is, a proof that for any single
step in program execution, changes in program state require specific preconditions.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:24 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

BalanceChange:

from a:Account ∧ a.balance=bal
next a.balance < bal onlyIf ⟨_ calls a.transfer(_, a.pwd) ⟩

by BalEncaps,
SetBalChange, Trans-
ferBalChange, and If1-
Internal

PasswordChange:

from a:Account ∧ a.pwd=p
next ¬ (a.pwd = p) onlyIf ⟨_ calls a.set(a.pwd, _) ⟩

by PwdEncaps,
SetPwdChange, Trans-
ferPwdChange, and If1-
Internal

PasswordLeak:
from a:Account ∧ a.pwd=p ∧ inside(p)

next ¬ inside(p) onlyIf false

by PwdInsideEncaps,
SetPwdLeak, TransferP-
wdLeak, and If1-Internal

5.4 Part 4: Emergent Necessity Specifications
Part 4 raises necessary preconditions for single execution steps proven in Part 3 to the level of an
arbitrary number of execution steps in order to prove specifications of emergent behaviour. The
proof of 𝑺robust_2 takes the following form:

(1) If the balance of an account decreases, then by BalanceChange there must have been a
call to transfer in Account with the correct password.

(2) If there was a call where the Account’s password was used, then there must have been an
intermediate program state when some external object had access to the password.

(3) Either that password was the same password as in the starting program state, or it was
different:
(Case A) If it is the same as the initial password, then since by PasswordLeak it is impos-

sible to leak the password, it follows that some external object must have had access to the
password initially.

(Case B) If the password is different from the initial password, then there must have been
an intermediate program state when it changed. By PasswordChange we know that
this must have occurred by a call to set with the correct password. Thus, there must be
a some intermediate program state where the initial password is known. From here we
proceed by the same reasoning as (Case A).

6 RELATEDWORK
Program specification and verification has a long and proud history [Hatcliff et al. 2012; Hoare 1969;
Leavens et al. 2007; Leino 2010; Leino and Schulte 2007; Pearce and Groves 2015; Summers and
Drossopoulou 2010]. These verification techniques assume a closed system, where modules can be
trusted to coöperate — Design by Contract [Meyer 1992] explicitly rejects “defensive programming”
with an “absolute rule” that calling a method in violation of its precondition is always a bug.

Open systems, by definition, must interact with untrusted code: they cannot rely on callers’
obeying method preconditions. [Miller 2006; Miller et al. 2013] define the necessary approach
as defensive consistency: “An object is defensively consistent when it can defend its own invariants
and provide correct service to its well behaved clients, despite arbitrary or malicious misbehaviour
by its other clients.” [Murray 2010] made the first attempt to formalise defensive consistency and
correctness in a programming language context. Murray’s model was rooted in counterfactual
causation [Lewis 1973]: an object is defensively consistent when the addition of untrustworthy
clients cannot cause well-behaved clients to be given incorrect service. Murray formalised defensive
consistency abstractly, without a specification language for describing effects.

The security community has developed a similar notion of “robust safety” that originated in type
systems for process calculi, ensuring protocols behave correctly in the presence of “an arbitrary

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:25

𝑺robust_2 :

from a:Account ∧ a.balance=bal
to a.balance < bal onlyThrough ⟨_ calls a.transfer(_, a.pwd) ⟩

by Changes and
BalanceChange

from a:Account ∧ a.balance=bal
to b.balance(a) < bal onlyThrough ¬inside(a.pwd)

by −→, Caller-Ext, and
Calls-Args

from a:Account ∧ a.balance=bal ∧ a.pwd=p
to a.balance < bal
onlyThrough ¬inside(a.pwd) ∧ (a.pwd=p ∨ a.pwd != p)

by −→ and ExcludedMiddle

from a:Account ∧ a.balance=bal ∧ a.pwd=p
to a.balance < bal
onlyThrough (¬inside(a.pwd) ∧ a.pwd=p) ∨

(¬inside(a.pwd) ∧ a.pwd != p)

by −→

from a:Account ∧ a.balance=bal ∧ a.pwd=p
to a.balance < bal onlyThrough ¬inside(p) ∨ a.pwd != p

by −→

Case A (¬inside(p)):
from a:Account ∧ a.balance=bal ∧ a.pwd=p

to ¬inside(p) onlyIf inside(p) ∨ ¬inside(p)
by If-−→ and Excluded
Middle

from a:Account ∧ b:Bank ∧ b.balance(a)=bal ∧ a.password=pwd
to ¬inside(p) onlyIf ¬inside(p)

by ∨E and
PasswordLeak

Case B (a.pwd != p):
from a:Account ∧ b:Bank ∧ b.balance(a)=bal ∧ a.password=pwd

to a.pwd != p onlyThrough ⟨_ calls a.set(p, _) ⟩
byChanges and Password-
Change

from a:Account ∧ a.balance=bal ∧ a.pwd=p
to a.pwd != p onlyThrough ¬inside(p)

by ∨E and
PasswordLeak

from a:Account ∧ a.balance=bal ∧ a.pwd=p
to a.pwd != p onlyIf ¬inside(p) by Case A and Trans

from a:Account ∧ a.balance=bal ∧ a.pwd=p
to b.balance(a) < bal onlyIf ¬inside(p)

by Case A, Case B, If-∨I2 ,
and If-−→

hostile opponent” [Bugliesi et al. 2011; Gordon and Jeffrey 2001]. More recent work has applied
robust safety in the context of programing languages. For example, [Swasey et al. 2017] present a
logic for object capability patterns, drawing on verification techniques for security and information
flow. They prove a robust safety property that ensures interface objects ("low values") are safe
to share with untrusted code, in the sense that untrusted code cannot use them to break any
internal invariants of the encapsulated object. Similarly, [Schaefer et al. 2018] have added support
for information-flow security using refinement to ensure correctness (in this case confidentiality)
by construction. Concerns like 𝑺robust_2 are not, we argue, within the scope of these works.

[Devriese et al. 2016] have deployed powerful theoretical techniques to address similar problems
to Necessity. They show how step-indexing, Kripke worlds, and representing objects as state
machines with public and private transitions can be used to reason about object capabilities.
They have demonstrated solutions to a range of exemplar problems, including the DOM wrapper
(replicated in §3.4) and a mashup application.

Necessity differs from Swasey, Schaefer’s, and Devriese’s work in a number of ways: They
are primarily concerned with mechanisms that ensure encapsulation (aka confinement) while
we abstract away from any mechanism. They use powerful mathematical techniques which the
users need to understand in order to write their specifications, while Necessity users only need to
understand small extensions to first order logic. Finally, none of these systems offer the kinds of
necessity assertions addressing control flow, provenance, and permission that are at the core of
Necessity’s approach.

By enforcing encapsulation, all these approaches are reminiscent of techniques such as ownership
types [Clarke et al. 1998; Noble et al. 1998], which also can protect internal implementation objects

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

154:26 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

behind encapsulation boundaries. [Banerjee and Naumann 2005a,b] demonstrated that by ensuring
confinement, ownership systems can enforce representation independence. Necessity relies on an
implicit form of ownership types [Vitek and Bokowski 1999], where inside objects are encapsulated
behind a boundary consisting of all the internal objects that are accessible outside their defining
module [Noble et al. 2003]. Compare Necessity’s definition of inside — all references to 𝑜 are from
objects 𝑥 that are within 𝑀 (here internal to 𝑀): ∀𝑥 .[⟨𝑥 access 𝑜⟩ ⇒ ⟨𝑥 internal⟩] with
the containment invariant from Clarke et al. [2001] — all references to 𝑜 are from objects 𝑥 whose
representation is within (≺:) 𝑜’s owner: (∀𝑥 .[⟨𝑥 access 𝑜⟩ ⇒ rep(𝑥) ≺: owner(𝑜)]).
In early work, [Drossopoulou and Noble 2014] sketched a specification language to specify six

correctness policies from [Miller 2006]. They also sketched how a trust-sensitive example (escrow)
could be verified in an open world [Drossopoulou et al. 2015]. More recently, [Drossopoulou
et al. 2020b] presents the Chainmail language for “holistic specifications” in open world systems.
Like Necessity, Chainmail is able to express specifications of permission, provenance, and control;
Chainmail also includes spatial assertions and a richer set of temporal operators, but no proof
system. Necessity’s restrictions mean we can provide the proof system that Chainmail lacks.
The recent VerX tool is able to verify a range of specifications for Solidity contracts automati-

cally [Permenev et al. 2020]. VerX includes temporal operators, predicates that model the current
invocation on a contract (similar to Necessity’s “calls”), access to variables, but has no analogues to
Necessity’s permission or provenance assertions. Unlike Necessity, VerX includes a practical tool
that has been used to verify a hundred properties across case studies of twelve Solidity contracts.
Also unlike Necessity, VerX’s own correctness has not been formalised or mechanistically proved.

Like Necessity, VerX [Permenev et al. 2020] and Chainmail [Drossopoulou et al. 2020b] also work
on problem-specific guarantees. Both approaches can express necessary conditions like 𝑺robust_1
using temporal logic operators and implication. For example, 𝑺robust_1 could be written:

a:Account ∧ a.balance==bal ∧ ⟨nexta.balance<bal ⟩
−→ ∃o,a’.⟨ocallsa.transfer(a’,a.password)⟩

However, to express 𝑺robust_2, one also needs capability operators which talk about provenance
and permission. VerX does not support capability operators, and thus cannot express 𝑺robust_2,
while Chainmail does support capability operators, and can express 𝑺robust_2.

Moreover, temporal operators in VerX and Chainmail are first class, i.e. may appear in any
assertions and form new assertions. This makes VerX and Chainmail very expressive, and allows
specifications which talk about any number of points in time. However, this expressivity comes at
the cost of making it very difficult to develop a logic to prove adherence to such specifications.

O’Hearn and Raad et al. developed Incorrectness logics to reason about the presence of bugs, based
on a Reverse Hoare Logic [de Vries and Koutavas 2011]. Classical Hoare triples {𝑃}𝐶 {𝑄} express
that starting at states satisfying 𝑃 and executing 𝐶 is sufficient to reach only states that satisfy 𝑄
(soundness), while incorrectness triples [𝑃𝑖]𝐶𝑖 [𝑄𝑖] express that starting at states satisfying 𝑃𝑖 and
executing 𝐶𝑖 is sufficient to reach all states that satisfy 𝑄𝑖 and possibly some more (completeness).
From our perspective, classical Hoare logics and Incorrectness logics are both about sufficiency,
whereas here we are concerned with Necessity.

In practical open systems, especially web browsers, defensive consistency / robust safety is
typically supported by sandboxing: dynamically separating trusted and untrusted code, rather
than relying on static verification and proof. Google’s Caja [Miller et al. 2008], for example, uses
proxies and wrappers to sandbox web pages. Sandboxing has been validated formally: [Maffeis
et al. 2010] develop a model of JavaScript and show it prevents trusted dependencies on untrusted
code. [Dimoulas et al. 2014] use dynamic monitoring from function contracts to control objects
flowing around programs; [Moore et al. 2016] extends this to use fluid environments to bind callers

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

Necessity Specifications for Robustness 154:27

to contracts. [Sammler et al. 2019] develop _𝑠𝑎𝑛𝑑𝑏𝑜𝑥 , a low-level language with built in sandboxing,
separating trusted and untrusted memory. _𝑠𝑎𝑛𝑑𝑏𝑜𝑥 features a type system, and Sammler et al.
show that sandboxing achieves robust safety. Sammler et al. address a somewhat different problem
domain than Necessity does, low-level systems programming where there is a possibility of forging
references to locations in memory. Such a domain would subvert Necessity, in particular a reference
to 𝑥 could always be guessed thus the assertion inside(𝑥) would no longer be encapsulated.

Callbacks. Necessity does not –yet– support calls of external methods from within internal
modules. While this is a limitation, it is common in the related literature. For example, VerX
[Permenev et al. 2020] work on effectively call-back free contracts, while [Grossman et al. 2017]
and [Albert et al. 2020] drastically restrict the effect of a callback on a contract. In further work
we are planning to incorporate callbacks by splitting internal methods at the point where a call
to an external method appears. This would be an adaptation of Bräm et al.’s approach, who split
methods into the call-free subparts, and use the transitive closure of the effects of all functions from
a module to overapproximate the effect of an external call. One useful simplification was proposed
by Permenev et al. [2020]: in “effectively callback free” methods, meaning that we could include
callbacks while also only requiring at most one functional specification per-method.

7 CONCLUSION
This paper presents Necessity, a specification language for a program’s emergent behaviour. Ne-
cessity specifications constrain when effects can happen in some future state (“onlyIf ”), in the
immediately following state (“next”), or on an execution path (“onlyThrough”).
We have developed a proof system to prove that modules meet their specifications. Our proof

system exploits the pre and postconditions of functional specifications to infer per method Necessity
specifications, generalises those to cover any single execution step, and then combines them to
capture a program’s emergent behaviour.

We have proved our system sound, and used it to prove a bank account example correct: the Coq
mechanisation is detailed in the appendices [Mackay et al. 2022b] and available as an artifact.
In future work we want to consider more than one external module – c.f. §2.4, and expand a

Hoare logic so as to make use of Necessity specifications, and reason about calls into unknown code
- c.f. §2.3.1. We want to work on supporting callbacks. We want to develop a logic for encapsulation
rather than rely on a type system. Finally we want to develop logics about reasoning about risk
and trust [Drossopoulou et al. 2015].

ACKNOWLEDGMENTS
We are especially grateful for the careful attention and judicious suggestions of the anonymous
reviewers, which have significantly improved the paper. We are deeply grateful for feedback from
and discussions with Chris Hawblitzel, Dominiqie Devriese, Derek Dreyer, Mark Harman, Lindsay
Groves, Michael Jackson, Bart Jacobs from KU Leuven, Gary Leavens, Mark Miller, Peter Mueller,
TobyMurray, Matthew Ross Rachar, Alexander J. Summers, Shriram Krishnamurthi, andmembers of
the WG2.3. This work is supported in part by the Royal Society of New Zealand (Te Apārangi) Mars-
den Fund (Te Pūtea Rangahau a Marsden) under grant VUW1815 (www.royalsociety.org.nz/what-
we-do/funds-and-opportunities/marsden/awarded-grants/marsden-fund-highlights/2018-marsden-
fund-highlights/an-immune-system-for-software), and by gifts from the Ethereum Foundation,
Meta, and Agoric.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

www.royalsociety.org.nz/what-we-do/funds-and-opportunities/marsden/awarded-grants/marsden-fund-highlights/2018-marsden-fund-highlights/an-immune-system-for-software
www.royalsociety.org.nz/what-we-do/funds-and-opportunities/marsden/awarded-grants/marsden-fund-highlights/2018-marsden-fund-highlights/an-immune-system-for-software
www.royalsociety.org.nz/what-we-do/funds-and-opportunities/marsden/awarded-grants/marsden-fund-highlights/2018-marsden-fund-highlights/an-immune-system-for-software

154:28 Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou

REFERENCES
Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv. 2020. Taming

Callbacks for Smart Contract Modularity. OOPSLA (2020). https://doi.org/10.1145/3428277
Tzanis Anevlavis, Matthew Philippe, Daniel Neider, and Paulo Tabuada. 2022. Being Correct Is Not Enough: Efficient

Verification Using Robust Linear Temporal Logic. ACM Trans. Comp. Log. 23, 2 (2022), 8:1–8:39.
Anindya Banerjee and David A. Naumann. 2005a. Ownership Confinement Ensures Representation Independence for

Object-oriented Programs. J. ACM 52 (2005), 894–960. https://doi.org/10.1145/1101821.1101824
Anindya Banerjee and David A. Naumann. 2005b. State Based Ownership, Reentrance, and Encapsulation. In ECOOP

(LNCS).
Lars Birkedal, Thomas Dinsdale-Young., Armeal Gueneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzeverlekos. 2021.

Theorems for Free from Separation Logic Specifications. In ICFP.
C. Bräm, M. Eilers, P. Müller, R. Sierra, and A. J. Summers. 2021. Rich Specifications for Ethereum Smart Contract Verification.

In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). https://doi.org/10.1145/3485523
Torben Braüner. 2022. Hybrid Logic. In The Stanford Encyclopedia of Philosophy (Spring 2022 ed.), Edward N. Zalta (Ed.).
James Brotherston, Diana Costa, Aquinas Hobor, and John Wickerson. 2020. Reasoning over Permissions Regions in

Concurrent Separation Logic. In Computer Aided Verification.
Michele Bugliesi, Stefano Calzavara, Università Ca, Foscari Venezia, Fabienne Eigner, and Matteo Maffei. 2011. M.: Resource-

Aware Authorization Policies for Statically Typed Cryptographic Protocols. In CSF’11. 83–98.
Adam Chlipala. 2019. Certified Programming with Dependent Types. http://adam.chlipala.net/cpdt/
David Clarke and Sophia Drossopoulou. 2002. Ownership, encapsulation and the disjointness of type and effect. In OOPSLA.
David G. Clarke, John M. Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In OOPSLA. ACM.
David G. Clarke, John M. Potter, and James Noble. 2001. Simple Ownership Types for Object Containment. In ECOOP.
Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann, Simon W. Moore, John Baldwin, David

Chisnall, James Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos,
J. Edward Maste, Alfredo Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe, Peter Sewell, Stacey
Son, and Jonathan Woodruff. 2019. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in
the POSIX C Run-time Environment. In ASPLOS. ACM, 379–393.

Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In Software Engineering and Formal Methods, Gilles
Barthe, Alberto Pardo, and Gerardo Schneider (Eds.). 155–171.

Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Capabilities with Logical Relations
and Effect Parametricity. In IEEE EuroS&P. 147–162. https://doi.org/10.1109/EuroSP.2016.22

Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. 2014. Declarative Policies for Capability Control. In
Computer Security Foundations Symposium (CSF).

Sophia Drossopoulou and James Noble. 2014. Towards Capability Policy Specification and Verification. ecs.victoria-
.ac.nz/Main/TechnicalReportSeries.

Sophia Drossopoulou, James Noble, Julian Mackay, and Susan Eisenbach. 2020a. Holisitic Specifications for Robust Programs
- Coq Model. https://doi.org/10.5281/zenodo.3677621

Sophia Drossopoulou, James Noble, Julian Mackay, and Susan Eisenbach. 2020b. Holistic Specifications for Robust Programs.
In FASE. 420–440. https://doi.org/10.1007/978-3-030-45234-6_21

Sophia Drossopoulou, James Noble, and Mark Miller. 2015. Swapsies on the Internet: First Steps towards Reasoning about
Risk and Trust in an Open World. In (PLAS).

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. 2007. A Type Discipline for Authorization in Distributed Systems.
In CSF.

A.D. Gordon and A. Jeffrey. 2001. Authenticity by typing for security protocols. In Proceedings. 14th IEEE Computer Security
Foundations Workshop, 2001. 145–159. https://doi.org/10.1109/CSFW.2001.930143

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar.
2017. Online Detection of Effectively Callback Free Objects with Applications to Smart Contracts. POPL (2017).
https://doi.org/10.1145/3158136

John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew J. Parkinson. 2012. Behavioral interface
specification languages. ACM Comput.Surv. 44, 3 (2012), 16.

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Comm. ACM 12 (1969), 576–580.
Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Pearson.
G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller, J. Kiniry, and P. Chalin. 2007. JML Reference

Manual. (February 2007). Iowa State Univ. www.jmlspecs.org.
K. R. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR16. Springer.
K. Rustan M. Leino. 2013. Developing verified programs with dafny. In ICSE. 1488–1490. https://doi.org/10.1109/ICSE.2013.

6606754

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

https://doi.org/10.1145/3428277
https://doi.org/10.1145/1101821.1101824
https://doi.org/10.1145/3485523
http://adam.chlipala.net/cpdt/
https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.5281/zenodo.3677621
https://doi.org/10.1007/978-3-030-45234-6_21
https://doi.org/10.1109/CSFW.2001.930143
https://doi.org/10.1145/3158136
https://doi.org/10.1109/ICSE.2013.6606754
https://doi.org/10.1109/ICSE.2013.6606754

Necessity Specifications for Robustness 154:29

K. Rustan M. Leino and Peter Müller. 2004. Object Invariants in Dynamic Contexts. In ECOOP.
K. Rustan M. Leino and Wolfram Schulte. 2007. Using History Invariants to Verify Observers. In ESOP.
David Lewis. 1973. Causation. Journal of Philosophy 70, 17 (1973).
Julian Mackay, Sophia Drossopoulou, James Noble, and Eisenbach. 2022a. Necessity Specifications for Robustness. Zenodo.

https://doi.org/10.5281/zenodo.7084291
Julian Mackay, Sophia Drossopoulou, James Noble, and Susan Eisenbach. 2022b. Necessity Specifications for Robustness

and Appendices. (Sep 2022). https://doi.org/10.5281/zenodo.7087932
S. Maffeis, J.C. Mitchell, and A. Taly. 2010. Object Capabilities and Isolation of Untrusted Web Applications. In Proc of IEEE

Security and Privacy.
Bertrand Meyer. 1992. Applying "Design by Contract". Computer 25, 10 (1992), 40–51.
Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. Ph. D.

Dissertation. Baltimore, Maryland.
Mark Samuel Miller. 2011. Secure Distributed Programming with Object-capabilities in JavaScript. (Oct. 2011). Talk at Vrije

Universiteit Brussel, mobicrant-talks.eventbrite.com.
Mark S. Miller, Tom Van Cutsem, and Bill Tulloh. 2013. Distributed Electronic Rights in JavaScript. In ESOP.
Mark Samuel Miller, Chip Morningstar, and Bill Frantz. 2000. Capability-based Financial Instruments: From Object to

Capabilities. In Financial Cryptography. Springer.
Mark Samuel Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2008. Safe active content in sanitized JavaScript.

code.google.com/p/google-caja/.
Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong. 2016. Extensible access control

with authorization contracts. In OOPSLA, Eelco Visser and Yannis Smaragdakis (Eds.).
Toby Murray. 2010. Analysing the Security Properties of Object-Capability Patterns. Ph. D. Dissertation. University of Oxford.
Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Gerwin Klein. 2013. Nonininterference for Operating

Systems kernels. In International Conference on Certified Programs and Proofs.
James Noble, Robert Biddle, Ewan Tempero, Alex Potanin, and Dave Clarke. 2003. Towards a Model of Encapsulation. In

IWACO.
James Noble, John Potter, and Jan Vitek. 1998. Flexible Alias Protection. In ECOOP.
Peter W. O’Hearn. 2019. Incorrectness Logic. POPL (2019). https://doi.org/10.1145/3371078
Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation, an Efficient Form of Secure Compilation. ACM Trans.

Program. Lang. Syst. 43, 1, Article 1 (Feb. 2021). https://doi.org/10.1145/3436809
D.J. Pearce and L.J. Groves. 2015. Designing a Verifying Compiler: Lessons Learned from Developing Whiley. Sci. Comput.

Prog. (2015).
Anton Permenev, Dimitar Dimitrov, Petar Tsankov, DanaDrachsler-Cohen, andMartin Vechev. 2020. VerX: Safety Verification

of Smart Contracts. In IEEE Symp. on Security and Privacy.
Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules Villard. 2020. Local Reasoning

About the Presence of Bugs: Incorrectness Separation Logic. In CAV. https://doi.org/10.1007/978-3-030-53291-8_14
Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2019. The High-Level Benefits of Low-Level Sandboxing.

4, POPL (2019). https://doi.org/10.1145/3371100
Ina Schaefer, Tobias Runge, Alexander Knüppel, Loek Cleophas, Derrick G. Kourie, and Bruce W. Watson. 2018. Towards

Confidentiality-by-Construction. 502–515. https://doi.org/10.1007/978-3-030-03418-4_30
Alexander J. Summers and Sophia Drossopoulou. 2010. Considerate Reasoning and the Composite Pattern. In VMCAI.
David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object Capability Patterns.

In OOPSLA.
Thomas Van Strydonck, Aına Linn Georges, Armaël Guéneau, Alix Trieu, Amin Timany, Frank Piessens, Lars Birkedal,

and Dominique Devriese. 2022. Proving full-system security properties under multiple attacker models on capability
machines. CSF (2022).

Jan Vitek and Boris Bokowski. 1999. Confined Types. In OOPLSA.
Steve Zdancewic and Andrew C. Myers. 2001. Secure Information Flow and CPS. In ESOP (ESOP ’01). 46–61.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 154. Publication date: October 2022.

https://doi.org/10.5281/zenodo.7084291
https://doi.org/10.5281/zenodo.7087932
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3436809
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3371100
https://doi.org/10.1007/978-3-030-03418-4_30

	Abstract
	1 Introduction: Necessary Conditions and Robustness
	1.1 Necessity
	1.2 Contributions and Paper Organization

	2 Outline of our approach
	2.1 Bank Account – three modules
	2.2 The three necessity operators
	2.3 Bank Account – the right specification
	2.4 Internal and external modules, objects, and calls
	2.5 Reasoning about Necessity
	2.6 Outline of the proof that Modbetter obeys normalnormalSrobust_2

	3 The Meaning of Necessity
	3.1 TooL
	3.2 Assert
	3.3 Necessity operators
	3.4 Expressiveness

	4 Proving Necessity
	4.1 Assertion Encapsulation
	4.2 Per-Method Necessity Specifications
	4.3 Per-Step Necessity Specifications
	4.4 Emergent Necessity Specifications
	4.5 Soundness of the Necessity Logic

	5 Proving that Modbetter satisifes normalnormalSrobust_2
	5.1 Part 1: Assertion Encapsulation
	5.2 Part 2: Per-Method Necessity Specifications
	5.3 Part 3: Per-Step Necessity Specifications
	5.4 Part 4: Emergent Necessity Specifications

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

