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(a) (b)
Figure 1. Make-A-Scene: Samples of generated images from text inputs (a), and a text and scene input (b). Our method is able to both
generate the scene (a, bottom left) and image, or generate the image from text and a simple sketch input (b, center).

Abstract

Recent text-to-image generation methods provide a sim-
ple yet exciting conversion capability between text and im-
age domains. While these methods have incrementally im-
proved the generated image fidelity and text relevancy, sev-
eral pivotal gaps remain unanswered, limiting applicabil-
ity and quality. We propose a novel text-to-image method
that addresses these gaps by (i) enabling a simple control
mechanism complementary to text in the form of a scene,
(ii) introducing elements that substantially improve the tok-
enization process by employing domain-specific knowledge
over key image regions (faces and salient objects), and (iii)
adapting classifier-free guidance for the transformer use
case. Our model achieves state-of-the-art FID and human
evaluation results, unlocking the ability to generate high fi-
delity images in a resolution of 512 × 512 pixels, signifi-
cantly improving visual quality. Through scene controlla-
bility, we introduce several new capabilities: (i) Scene edit-
ing, (ii) text editing with anchor scenes, (iii) overcoming
out-of-distribution text prompts, and (iv) story illustration
generation, as demonstrated in the story we wrote.

1. Introduction
“A poet would be overcome by sleep and hunger
before being able to describe with words what a

painter is able to depict in an instant.”

Similar to this quote by Leonardo da Vinci [27], equiv-
alents of the expression “A picture is worth a thou-
sand words” have been iterated in different languages and
eras [14, 1, 25], alluding to the heightened expressiveness
of images over text, from the human perspective. There is
no surprise then, that the task of text-to-image generation
has been gaining increased attention with the recent suc-
cess of text-to-image modeling via large-scale models and
datasets. This new capability of effortlessly bridging be-
tween the text and image domains enables new forms of
creativity to be accessible to the general public.

While current methods provide a simple yet exciting
conversion between the text and image domains, they still
lack several pivotal aspects:

(i) Controllability. The sole input accepted by the ma-
jority of models is text, confining any output to be con-
trolled by a text description only. While certain perspectives
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can be controlled with text, such as style or color, others
such as structure, form, or arrangement can only be loosely
described at best [46]. This lack of control conveys a no-
tion of randomness and weak user-influence on the image
content and context [34]. Controlling elements additional
to text have been suggested by [69], yet their use is con-
fined to restricted datasets such as fashion items or faces.
An earlier work by [23] suggests coarse control in the form
of bounding boxes resulting in low resolution images.

(ii) Human perception. While images are generated to
match human perception and attention, the generation pro-
cess does not include any relevant prior knowledge, result-
ing in little correlation between generation and human at-
tention. A clear example of this gap can be observed in
person and face generation, where a dissonance is present
between the importance of face pixels from the human per-
spective and the loss applied over the whole image [28, 66].
This gap is relevant to animals and salient objects as well.

(iii) Quality and resolution. Although quality has grad-
ually improved between consecutive methods, the previous
state-of-the-art methods are still limited to an output im-
age resolution of 256× 256 pixels [45, 41]. Alternative ap-
proaches propose a super-resolution network which results
in less favorable visual and quantitative results [12]. Quality
and resolution are strongly linked, as scaling up to a reso-
lution of 512 × 512 requires a substantially higher quality
with fewer artifacts than 256× 256.

In this work, we introduce a novel method that success-
fully tackles these pivotal gaps, while attaining state-of-
the-art results in the task of text-to-image generation. Our
method provides a new type of control complementary to
text, enabling new-generation capabilities while improving
structural consistency and quality. Furthermore, we propose
explicit losses correlated with human preferences, signifi-
cantly improving image quality, breaking the common res-
olution barrier, and thus producing results in a resolution of
512× 512 pixels.

Our method is comprised of an autoregressive trans-
former, where in addition to the conventional use of text
and image tokens, we introduce implicit conditioning over
optionally controlled scene tokens, derived from segmenta-
tion maps. During inference, the segmentation tokens are
either generated independently by the transformer or ex-
tracted from an input image, providing freedom to impel
additional constraints over the generated image. Contrary
to the common use of segmentation for explicit condition-
ing as employed in many GAN-based methods [24, 62, 42],
our segmentation tokens provide implicit conditioning in
the sense that the generated image and image tokens are not
constrained to use the segmentation information, as there is
no loss tying them together. In practice, this contributes to
the variety of samples generated by the model, producing
diverse results constrained to the input segmentations.

We demonstrate the new capabilities this method pro-
vides in addition to controllability, such as (i) complex
scene generation (Fig. 1), (ii) out-of-distribution generation
(Fig. 3), (iii) scene editing (Fig. 4), and (iv) text editing with
anchored scenes (Fig. 5). We additionally provide an exam-
ple of harnessing controllability to assist with the creative
process of storytelling in this video.

While most approaches rely on losses agnostic to human
perception, this approach differs in that respect. We use two
modified Vector-Quantized Variational Autoencoders (VQ-
VAE) to encode and decode the image and scene tokens
with explicit losses targeted at specific image regions cor-
related with human perception and attention, such as faces
and salient objects. The losses contribute to the genera-
tion process by emphasizing the specific regions of inter-
est and integrating domain-specific perceptual knowledge
in the form of network feature-matching.

While some methods rely on image re-ranking for post-
generation image filtering (utilizing CLIP [44] for instance),
we extend the use of classifier-free guidance suggested for
diffusion models [53, 20] by [22, 41] to transformers, elimi-
nating the need for post-generation filtering, thus producing
faster and higher quality generation results, better adhering
to input text prompts.

An extensive set of experiments is provided to establish
the visual and numerical validity of our contributions.

2. Related Work

2.1. Image generation

Recent advancements in deep generative models
have enabled algorithms to generate high-quality and
natural-looking images. Generative Adversarial Net-
works (GANs) [17] facilitate the generation of high fidelity
images [29, 3, 30, 56] in multiple domains by simultane-
ously training a generator network G and a discriminator
network D, where G is trained to fool D, while D is trained
to judge if a given image is real or fake. Concurrently to
GANs, Variational Autoencoders (VAEs) [32, 57] have in-
troduced a likelihood-based approach to image generation.
Other likelihood-based models include autoregressive mod-
els [58, 43, 13, 8] and diffusion models [11, 21, 20]. While
the former model image pixels as a sequence with autore-
gressive dependency between each pixel, the latter synthe-
sizes images via a gradual denoising process. Specifically,
sampling starts with a noisy image which is iteratively de-
noised until all denoising steps are performed. Applying
both methods directly to the image pixel-space can be chal-
lenging. Consequently, recent approaches either compress
the image to a discrete representation [13, 59] via Vector
Quantized (VQ) VAEs [59], or down-sample the image res-
olution [11, 21]. Our method is based on autoregressive
modeling of discrete image representation.
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“a green train
is coming down

the tracks”

“a group of skiers
are preparing to ski
down a mountain”

“a small kitchen
with a

low ceiling”

“a group of
elephants walking
in muddy water”

“a living area
with a television

and a table”

Figure 2. Qualitative comparison with previous work. The text and generated images for [67, 45, 41] were taken from [41]. For
CogView [12] we use the released 512× 512 model weights, applying self-reranking of 60 for post-generation selection.

2.2. Image tokenization

Image generation models based on discrete representa-
tion [59, 45, 47, 12, 13] follow a two-stage training scheme.
First, an image tokenizer is trained to extract a discrete im-

age representation. In the second stage, a generative model
generates the image in the discrete latent space. Inspired by
Vector Quantization (VQ) techniques, VQ-VAE [59] learns
to extract a discrete latent representation by performing on-
line clustering. VQ-VAE-2 [47] presented a hierarchical ar-
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chitecture composed of VQ-VAE models operating at mul-
tiple scales, enabling faster generation compared with pixel
space generation. The DALL-E [45] text-to-image model
used dVAE, which uses gumbel-softmax [26, 39], relaxing
the VQ-VAE’s online clustering. Recently, VQGAN [13]
added adversarial and perceptual losses [68] on top of the
VQ-VAE reconstruction task, producing reconstructed im-
ages with higher quality. In our work, we modify the VQ-
GAN framework by adding perceptual losses to specific im-
age regions, such as faces and salient objects, which further
improve the fidelity of the generated images.

2.3. Image-to-image generation

Generating images from segmentation maps or scenes
can be viewed as a conditional image synthesis task [71,
38, 24, 61, 62, 42]. Specifically, this form of image syn-
thesis permits more controllability over the desired output.
CycleGAN [71] trained a mapping function from one do-
main to the other. UNIT [38] projected two different do-
mains into a shared latent space and used a per-domain
decoder to re-synthesize images in the desired domain.
Both methods do not require supervision between domains.
pix2pix [24] utilized conditional GANs together with a su-
pervised reconstruction loss. pix2pixHD [62] improved the
latter by increasing output image resolution thanks to im-
proved network architecture. SPADE [42] introduced a
spatially-adaptive normalization layer which elevated infor-
mation lost in normalization layers. [15] introduced face-
refinement to SPADE through a pre-trained face-embedding
network inspired by face-generation methods [16]. Unlike
the aforementioned, our work conditions jointly on text and
segmentation, enabling bi-domain controllability.

2.4. Text-to-image generation

Text-to-image generation [64, 72, 54, 65, 67, 45, 12,
41, 70] focuses on generating images from standalone
text descriptions. Preliminary text-to-image methods con-
ditioned RNN-based DRAW [18] on text [40]. Text-
conditioned GANs provided additional improvement [48].
AttnGAN [64] introduced an attention component, allow-
ing the generator network to attend to relevant words in the
text. DM-GAN [72] introduced a dynamic memory compo-
nent, while DF-GAN [54] employed a fusion block, fusing
text information into image features. Contrastive learning
further improved the results of DM-GAN [65], while XMC-
GAN [67] used contrastive learning to maximize the mutual
information between image and text.

DALL-E [45] and CogView [12] trained an autoregres-
sive transformer [60] on text and image tokens, demon-
strating convincing zero-shot capabilities on the MS-COCO
dataset. GLIDE [41] used diffusion models conditioned on
images. Inspired by the high-quality unconditional images
generation model, GLIDE employed guided inference with

and without a classifier network to generate high-fidelity
images. LAFITE [70] employed a pre-trained CLIP [44]
model to project text and images to the same latent space,
training text-to-image models without text data. Similarly
to DALL-E and CogView, we train an autoregressive trans-
former model on text and image tokens. Our main contri-
butions are introducing additional controlling elements in
the form of a scene, improve the tokenization process, and
adapt classifier-free guidance to transformers.

3. Method
Our model generates an image given a text input and

an optional scene layout (segmentation map). As demon-
strated in our experiments, by conditioning over the scene
layout, our method provides a new form of implicit con-
trollability, improves structural consistency and quality, and
adheres to human preference (as assessed by our human
evaluation study). In addition to our scene-based approach,
we extended our aspiration of improving the general and
perceived quality with a better representation of the token
space. We introduce several modifications to the tokeniza-
tion process, emphasizing awareness of aspects with in-
creased importance in the human perspective, such as faces
and salient objects. To refrain from post-generation filtering
and further improve the generation quality and text align-
ment, we employ classifier-free guidance.

We follow next with a detailed overview of the proposed
method, comprised of (i) scene representation and tokeniza-
tion, (ii) attending human preference in the token space with
explicit losses, (iii) the scene-based transformer, and (iv)
transformer classifier-free guidance. Aspects commonly
used prior to this method are not extensively detailed be-
low, whereas specific settings for all elements can be found
in the appendix.

3.1. Scene representation and tokenization

The scene is composed of a union of three complemen-
tary semantic segmentation groups - panoptic, human, and
face. By combining the three extracted semantic segmen-
tation groups, the network learns to both generate the se-
mantic layout and condition on it while generating the final
image. The semantic layout provides additional global con-
text in an implicit form that correlates with human prefer-
ence, as the choice of categories within the scene groups,
and the choice of the groups themselves are a prior to hu-
man preference and awareness. We consider this form of
conditioning to be implicit, as the network may disregard
any scene information, and generate the image conditioned
solely on text. Our experiments indicate that both the text
and scene firmly control the image.

In order to create the scene token space, we employ
VQ-SEG: a modified VQ-VAE for semantic segmentation,
building on the VQ-VAE suggested for semantic segmen-
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Figure 3. Overcoming out-of-distribution text prompts with scene control. By introducing simple scene sketches (bottom right) as additional
inputs, our method is able to overcome unusual objects and scenarios presented as failure cases in previous methods.

(a) (b) (c) (d) (e)
Figure 4. Generating images through edited scenes. For an input text (a) and the segmentations extracted from an input image (b), we can
re-generate the image (c) or edit the segmentations (d) by replacing classes (top) or adding classes (bottom), generating images with new
context or content (e).

tation in [13]. In our implementation the inputs and out-
puts of VQ-SEG are m channels, representing the num-
ber of classes for all semantic segmentation groups m =
mp +mh +mf + 1, where mp, mh, mf are the number of
categories for the panoptic segmentation [63], human seg-
mentation [35], and face segmentation extracted with [5] re-
spectively. The additional channel is a map of the edges sep-
arating the different classes and instances. The edge chan-

nel provides both separations for adjacent instances of the
same class, and emphasis on scarce classes with high im-
portance, as edges (perimeter) are less biased towards larger
categories than pixels (area).

3.2. Adhering to human emphasis in the token space

We observe an inherent upper-bound on image qual-
ity when generating images with the transformer, stem-
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(a) (b) (c) (d)
Figure 5. Generating new image interpretations through text editing and anchor scenes. For an input text (a) and image (b), we first extract
the semantic segmentation (c), we can then re-generate new images (d) given the input segmentation and edited text. Purple denotes text
added or replacing the original text.

ming from the tokenization reconstruction method. In other
words, quality limitations of the VQ image reconstruction
method inherently transfer to quality limitations on images
generated by the transformer. To that end, we introduce sev-
eral modifications to both the segmentation and image re-
construction methods. These modifications are losses in the
form of emphasis (specific region awareness) and percep-
tual knowledge (feature-matching over task-specific pre-
trained networks).

3.3. Face-aware vector quantization

While using a scene as an additional form of condition-
ing provides an implicit prior for human preference, we in-
stitute explicit emphasis in the form of additional losses,
explicitly targeted at specific image regions.

We employ a feature-matching loss over the activa-
tions of a pre-trained face-embedding network, introducing
“awareness” of face regions and additional perceptual infor-
mation, motivating high-quality face reconstruction.

Before training the face-aware VQ (denoted as
VQ-IMG), faces are located using the semantic segmenta-
tion information extracted for VQ-SEG. The face locations
are then used during the face-aware VQ training stage, run-
ning up to kf faces per image from the ground-truth and
reconstructed images through the face-embedding network.
The face loss can then be formulated as following:

LFace =
∑
k

∑
l

αl
f∥FE

l(ĉkf )− FEl(ckf )∥, (1)

where the index l is used to denote the size of the spatial
activation at specific layers of the face embedding network

FE [6], while the summation runs over the last layers of
each block of size 112× 112, 56× 56, 28× 28, 7× 7, 1× 1
(1 × 1 being the size of the top most block), ĉkf and ckf are
respectively the reconstructed and ground-truth face crops
k out of kf faces in an image, αl

f is a per-layer normaliz-
ing hyperparameter, and LFace is the face loss added to the
VQGAN losses defined by [13].

3.4. Face emphasis in the scene space

While training the VQ-SEG network, we observe a fre-
quent reduction of the semantic segmentations representing
the face parts (such as the eyes, nose, lips, eyebrows) in
the reconstructed scene. This effect is not surprising due
to the relatively small number of pixels that each face part
accounts for in the scene space. A straightforward solution
would be to employ a loss more suitable for class imbal-
ance, such as focal loss [36]. However, we do not aspire
to increase the importance of classes that are both scarce,
and of less importance, such as fruit or a tooth-brush. In-
stead, we (1) employ a weighted binary cross-entropy face
loss over the segmentation face parts classes, emphasizing
higher importance for face parts, and (2) include the face
parts edges as part of the semantic segmentation edge map
mentioned above. The weighted binary cross-entropy loss
can then be formulated as following:

LWBCE = αcat BCE(s, ŝ), (2)

where s and ŝ are the input and reconstructed segmenta-
tion maps respectively, αcat is a per-category weight func-
tion, BCE is a binary cross-entropy loss, and LWBCE is the

6



weighted binary cross-entropy loss added to the conditional
VQ-VAE losses defined by [13].

3.5. Object-aware vector quantization

We generalized and extend the face-aware VQ method
to increase awareness and perceptual knowledge of ob-
jects defined as “things” in the panoptic segmentation cate-
gories. Rather than a specialized face-embedding network,
we employ a pre-trained VGG [52] network trained on Im-
ageNet [33], and introduce a feature-matching loss repre-
senting the perceptual differences between the object crops
of the reconstructed and ground-truth images. By running
the feature-matching over image crops, we are able to in-
crease the output image resolution from 256× 256 by sim-
ply adding to VQ-IMG an additional down-sample and up-
sample layer to the encoder and decoder respectively. Sim-
ilarly to Eq. 1, the loss can be formulated as:

LObj =
∑
k

∑
l

αl
o∥VGGl(ĉko)−VGGl(cko)∥, (3)

where ĉko and cko are the reconstructed and input object crops
respectively, VGGl are the activations of the l − th layer
from the pre-trained VGG network, αl

o is a per-layer nor-
malizing hyperparameter, and LObj is the object-aware loss
added to the VQ-IMG losses defined in Eq. 1.

3.6. Scene-based transformer

The method relies on an autoregressive transformer with
three independent consecutive token spaces: text, scene,
and image, as depicted in Fig 6. The token sequence is
comprised of nx text tokens encoded by a BPE [50] en-
coder, followed by ny scene tokens encoded by VQ-SEG,
and nz image tokens encoded or decoded by VQ-IMG.

Prior to training the scene-based transformer, each en-
coded token sequence corresponding to a [text, scene, im-
age] triplet is extracted using the corresponding encoder,
producing a sequence that consists of:

tx, ty, tz = BPE(ix),VQ-SEG(iy),VQ-IMG(iz),

t = [tx, ty, tz],

where ix, iy, iz are the input text, scene and image respec-
tively, ix ∈ Ndx , dx is the length of the input text sequence,
iy ∈ Rhy×wy×m, iz ∈ Rhz×wz×3, hy, wy, hz, wz are the
height and width dimensions of the scene and image in-
puts respectively, BPE is the Byte Pair Encoding encoder,
tx, ty, tz are the text, scene and image input tokens respec-
tively, and t is the complete token sequence.

3.7. Transformer classifier-free guidance

Inspired by the high-fidelity of unconditional image gen-
eration models, we employ classifier-free guidance [9, 22,

Figure 6. The scene-based method high-level architecture. Given
an input text and optional scene layout, a corresponding image is
generated. The transformer generates the relevant tokens, encoded
and decoded by the corresponding networks.

44]. Classifier-free guidance is the process of guiding an
unconditional sample in the direction of a conditional sam-
ple. To support unconditional sampling we fine-tune the
transformer while randomly replacing the text prompt with
padding tokens with a probability of pCF . During infer-
ence, we generate two parallel token streams: a conditional
token stream conditioned on text, and an unconditional to-
ken stream conditioned on an empty text stream initialized
with padding tokens. For transformers, we apply classifier-
free guidance on logit scores:

logitscond = T (ty, tz|tx),
logitsuncond = T (ty, tz|∅),

logitscf = logitsuncond + αc · (logitscond − logitsuncond),

where ∅ is the empty text stream, logitscond are logit scores
outputted by the conditioned token stream, logitsuncond are
logit scores outputted by the unconditioned token stream,
αc is the guidance scale, logitscf is the guided logit scores
used to sample the next scene or image token, T is an au-
toregressive transformer based the GPT-3 [4] architecture.
Note that since we use an autoregressive transformer, we
use logitscf to sample once and feed the same token (im-
age or scene) to the conditional and unconditional stream.

4. Experiments

Our model achieves state-of-the-art results in human-
based and numerical metric comparisons. Samples support-
ing the qualitative advantage are provided in Fig. 2. Ad-
ditionally, we demonstrate new creative capabilities possi-
ble with this method’s new form of controllability. Finally,
to better assess the effect of each contribution, an ablation
study is provided.
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Experiments were performed with a 4 billion parameter
transformer, generating a sequence of 256 text tokens, 256
scene tokens, and 1024 image tokens, that are then decoded
into an image with a resolution of 256 × 256 or 512 × 512
pixels (depending on the model of choice).

4.1. Datasets

The scene-based transformer is trained on a union of
CC12m [7], CC [51], and subsets of YFCC100m [55] and
Redcaps [10], amounting to 35m text-image pairs. MS-
COCO [37] is used unless otherwise specified. VQ-SEG
and VQ-IMG are trained on CC12m, CC, and MS-COCO.

4.2. Metrics

The goal of text-to-image generation is to generate high-
quality and text-aligned images from a human perspective.
Different metrics have been suggested to mimic the human
perspective, where some are considered more reliable than
others. We consider human evaluation the highest authority
when evaluating image quality and text-alignment, and rely
on FID [19] to increase evaluation confidence and handle
cases where human evaluation is not applicable. We do not
use IS [49] as it has been noted to be insufficient for model
evaluation [2].

4.3. Comparison with previous work

The task of text-to-image generation does not contain
absolute ground-truths, as a specific text description could
apply to multiple images and vice versa. This constrains
evaluation metrics to evaluate distributions of images, rather
than specific images, thus we employ FID [19] as our sec-
ondary metric.

4.4. Baselines

We compare our results with several state-of-the-art
methods using the FID metric and human evaluators (AMT)
when possible. DALL-E [45] provides strong zero-
shot capabilities, similarly employing an autoregressive
transformer with VQ-VAE tokenization. We train a re-
implementation of DALL-E with 4B parameters to enable
human evaluation and fairly compare both methods em-
ploying an identical VQ method (VQGAN). GLIDE [41]
demonstrates vastly improved results over DALL-E, adopt-
ing a diffusion-based [53] approach with classifier-free
guidance [22]. We additionally provide an FID compari-
son with CogView [12], LAFITE [70], XMC-GAN [67],
DM-GAN(+CL) [65], DF-GAN [54], DM-GAN [72], DF-
GAN [54] and, AttnGAN [64].

4.5. Human evaluation results

Human evaluation with previous methods is provided in
Tab. 4.6. In each instance, human evaluators are required

to choose between two images generated by the two mod-
els being compared. The two models are compared in three
aspects: (i) image quality, (ii) photorealism (which image
appears more real), and (iii) text alignment (which image
best matches the text). Each question is surveyed using
500 image pairs, where 5 different evaluators answer each
question, amounting to 2500 instances per question for a
given comparison. We compare our 256 × 256 model with
our re-implementation of DALL-E [45] and CogView’s [12]
256×256 model. CogView’s 512×512 model is compared
with our corresponding model. Results are presented as a
percentage of majority votes in favor of our method when
comparing between a certain model and ours. Compared
with the three methods, ours achieves significantly higher
favorability in all aspects.

4.6. FID comparison

FID is calculated over a subset of 30k images generated
from the MS-COCO validation set text prompts with no re-
ranking, and provided in Tab. 4.6. The evaluated models
are divided into two groups: trained with and without (de-
noted as filtered) the MS-COCO training set. In both sce-
narios our model achieves the lowest FID. In addition, we
provide a loose practical lower-bound (denoted as ground-
truth), calculated between the training and validation sub-
sets of MS-COCO. As FID results are approaching small
numbers, it is interesting to get an idea of a possible practi-
cal lower-bound.

4.7. Generating out of distribution

Methods that rely on text inputs only are more confined
to generate within the training distribution, as demonstrated
by [41]. Unusual objects and scenarios can be challenging
to generate, as certain objects are strongly correlated with
specific structures, such as cats with four legs, or cars with
round wheels. The same is true for scenarios. “A mouse
hunting a lion” is most likely not a scenario easily found
within the dataset. By conditioning on scenes in the form of
simple sketches, we are able to attend to these uncommon
objects and scenarios, as demonstrated in Fig. 3, despite the
fact that some objects do not exist as categories in our scene
(mouse, lion). We solve the category gap by using cate-
gories that may be close in certain aspects (elephant instead
of mouse, cat instead of lion). In practice, for non-existent
categories, several categories could be used instead.

4.8. Scene controllability

Samples are provided in Fig. 1, 3, 4, 5 and in the ap-
pendix with both our 256× 256 and 512× 512 models. In
addition to generating high fidelity images from text only,
we demonstrate the applicability of scene-wise image con-
trol and maintaining consistency between generations.
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Model FID↓ FID↓ Image Photo- Text
(filt.) quality realism alignment

AttnGAN [64] 35.49 - - - -
DM-GAN [72] 32.64 - - - -
DF-GAN [54] 21.42 - - - -
DM-GAN+CL [65] 20.79 - - - -
XMC-GAN [67] 9.33 - - - -
DALL-E [45] - 34.60 81.8% 81.0% 65.9%
CogView256 [12] - 32.20 92.2% 94.2% 92.2%
CogView512 [12] - 36.53 91.1% 88.2% 87.8%
LAFITE [70] 8.12 26.94 - - -
GLIDE [41] - 12.24 - - -
Ours256 7.55 11.84
Ground-truth 2.47 - - - -

Table 1. Comparison with previous work (FID and human prefer-
ence). FID is calculated over a subset of 30k images generated
from the MS-COCO validation set text prompts. When possible,
we include models trained with and without (filtered) the MS-
COCO training set. In both scenarios our model achieves state
of the art results, correlating with visual samples and human eval-
uation. We add a loose practical lower-bound (denoted as ground-
truth), calculated between the training and validation subsets of
MS-COCO. Human evaluation is shown as a percentage of major-
ity votes in favor of our method when comparing between a certain
model and ours.

4.9. Scene editing and anchoring

Rather than editing certain regions of images as demon-
strated by [45], we introduce new capabilities of generat-
ing images from existing or edited scenes. In Fig. 4, two
scenarios are considered. In both scenarios the semantic
segmentation is extracted from an input image, and used to
re-generate an image conditioned on the input text. In the
top row, the scene is edited, replacing the ‘sky’ and ‘tree’
categories with ‘sea’, and the ‘grass’ category with ‘sand’,
resulting in a generated image adhering to the new scene.
A simple sketch of a giant dog is added to the scene in the
bottom row, resulting in a generated image corresponding
to the new scene without any change in text.

Fig. 5 demonstrates the ability to generate new interpre-
tations of existing images and scenes. After extracting the
semantic segmentation from a given image, we re-generate
the image conditioned on the input scene and edited text.

4.10. Storytelling through controllability

To demonstrate the applicability of harnessing scene
control for story illustrations, we wrote a children story, and
illustrated it using our method. The main advantages of us-
ing simple sketches as additional inputs in this case, are (i)
that authors can translate their ideas into paintings or realis-
tic images, while being less susceptible to the “randomness”

Model FID↓ Image Photo- Text
quality realism alignment

Base 18.01 - - -
+Scene tokens 19.16 57.3% 65.3% 58.3%
+Face-aware 14.45 63.6% 59.8% 57.4%
+CF 7.55 76.8% 66.8% 66.8%
+Obj-aware512 8.70 62.0% 53.5% 52.2%
+CF with scene input 4.69 - - -

Table 2. Ablation study (FID and human preference). FID is calcu-
lated over a subset of 30k images generated from the MS-COCO
validation set text prompts. Human evaluation is shown as a per-
centage of majority votes in favor of the added element compared
to the previous model.

of text-to-image generation, and (ii) improved consistency
between generation. We provide a short video of the story
and process.

4.11. Ablation study

An ablation study of human preference and FID is pro-
vided in Tab. 4.11 to assess the effectiveness of our differ-
ent contributions. Settings in both studies are similar to the
comparison made with previous work (Sec. 4.3). Each row
corresponds to a model trained with the additional element,
compared with the model without that specific addition for
human preference. We note that while the lowest FID is
attained by the 256 × 256 model, human preference favors
the 512 × 512 model with object-aware training, particu-
larly in quality. Furthermore, we re-examine the FID of the
best model, where the scene is given as an additional in-
put, to gain a better notion of the gap from the lower-bound
(Tab. 4.6).

5. Conclusion

The text-to-image domain has witnessed a plethora of
novel methods aimed at improving the general quality and
adherence to text of generated images. While some meth-
ods propose image editing techniques, progress is not often
directed towards enabling new forms of human creativity
and experiences. We attempt to progress text-to-image gen-
eration towards a more interactive experience, where people
can perceive more control over the generated outputs, thus
enable real-world applications such as storytelling. In ad-
dition to improving the general image quality, we focus on
improving key image aspects we deem significant in human
perception, such as faces and salient objects, resulting in
higher favorability of our method in human evaluations and
objective metrics.
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[28] Tilke Judd, Frédo Durand, and Antonio Torralba. A bench-
mark of computational models of saliency to predict human
fixations, 2012. 2

[29] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 2

[30] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020. 2

10



[31] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 13

[32] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012. 7

[34] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip
Torr. Controllable text-to-image generation. Advances in
Neural Information Processing Systems, 32, 2019. 2

[35] Peike Li, Yunqiu Xu, Yunchao Wei, and Yi Yang. Self-
correction for human parsing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020. 5

[36] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 6

[37] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 8

[38] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised
image-to-image translation networks. Advances in neural in-
formation processing systems, 30, 2017. 4

[39] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. arXiv preprint arXiv:1611.00712, 2016.
4

[40] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and Rus-
lan Salakhutdinov. Generating images from captions with
attention. arXiv preprint arXiv:1511.02793, 2015. 4

[41] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 2, 3, 4, 5, 8, 9

[42] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2337–2346,
2019. 2, 4

[43] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International Conference on Machine
Learning, pages 4055–4064. PMLR, 2018. 2

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 2, 4, 7

[45] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.

Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821–8831. PMLR, 2021.
2, 3, 4, 8, 9

[46] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation (ICML spotlight), 2021.
2

[47] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Advances
in neural information processing systems, 32, 2019. 3

[48] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative ad-
versarial text to image synthesis. In International conference
on machine learning, pages 1060–1069. PMLR, 2016. 4

[49] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. Advances in neural information processing
systems, 29, 2016. 8

[50] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural
machine translation of rare words with subword units. arXiv
preprint arXiv:1508.07909, 2015. 7

[51] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556–2565, 2018. 8

[52] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 7

[53] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
2, 8

[54] Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiao-Yuan
Jing, Fei Wu, and Bingkun Bao. Df-gan: Deep fusion gener-
ative adversarial networks for text-to-image synthesis. arXiv
preprint arXiv:2008.05865, 2020. 4, 8, 9

[55] Bart Thomee, David A Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. Yfcc100m: The new data in multimedia research.
Communications of the ACM, 59(2):64–73, 2016. 8

[56] Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and
Weilong Yang. Regularizing generative adversarial networks
under limited data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7921–7931, 2021. 2

[57] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical vari-
ational autoencoder. Advances in Neural Information Pro-
cessing Systems, 33:19667–19679, 2020. 2

[58] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image genera-
tion with pixelcnn decoders. Advances in neural information
processing systems, 29, 2016. 2

[59] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 2, 3

11



[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 4

[61] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. arXiv preprint arXiv:1808.06601, 2018. 4

[62] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018. 2, 4

[63] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5

[64] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1316–
1324, 2018. 4, 8, 9

[65] Hui Ye, Xiulong Yang, Martin Takac, Rajshekhar Sunderra-
man, and Shihao Ji. Improving text-to-image synthesis us-
ing contrastive learning. arXiv preprint arXiv:2107.02423,
2021. 4, 8, 9

[66] Kiwon Yun, Yifan Peng, Dimitris Samaras, Gregory J Zelin-
sky, and Tamara L Berg. Studying relationships between
human gaze, description, and computer vision. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 739–746, 2013. 2

[67] Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and
Yinfei Yang. Cross-modal contrastive learning for text-to-
image generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
833–842, 2021. 3, 4, 8, 9

[68] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 4, 13

[69] Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men, Zhikang Li,
Ming Ding, Jie Tang, Jingren Zhou, and Hongxia Yang. M6-
ufc: Unifying multi-modal controls for conditional image
synthesis. arXiv preprint arXiv:2105.14211, 2021. 2

[70] Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li,
Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, and
Tong Sun. Lafite: Towards language-free training for text-to-
image generation. arXiv preprint arXiv:2111.13792, 2021.
4, 8, 9

[71] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 4

[72] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-gan:
Dynamic memory generative adversarial networks for text-
to-image synthesis. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
5802–5810, 2019. 4, 8, 9

12

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


A. Additional implementation details
A.1. VQ-SEG

VQ-SEG is trained for 600k iterations, with a batch size
of 48, dictionary size of 1024. The number of segmentation
categories per-group are mp = 133 for the panoptic seg-
mentation, mh = 20 for the human parsing, and mf = 5
for the face parsing. The per-category weight function fol-
lows the notation:

αcat =

{
20, if cat ∈ [154, ..., 158]

1, otherwise,
(4)

where cat ∈ [154, ..., 158] are the face-parts categories eye-
brows, eyes, nose, outer-mouth, and inner-mouth.

A.2. VQ-IMG

VQ-IMG256 and VQ-IMG512 are trained for 800k and
940k iterations respectively, with a batch size of 192 and
128, a channel multiplier of [1, 1, 2, 4] and [1, 1, 2, 4, 4],
while both are trained with a dictionary size of 8192.

The per-layer normalizing hyperparameter for the face-
aware loss is αl

f = [αf1, αf2 × 0.01, αf2 × 0.1, αf2 ×
0.2, αf2×0.02] corresponding to the last layer of each block
of size 1×1, 7×7, 28×28, 56×56, 128×128, where αf1 =
0.1 and αf2 = 0.25. We experimented with two settings,
the first where αf1 = αf2 = 1.0, and the second, which
was used to train the final models, where αf1 = 0.1, αf2 =
0.25. The remaining face-loss values were taken from the
work of [16]. The per-layer normalizing hyperparameter for
the object-aware loss, αl

o were taken from the work of [13],
based on LPIPS [68].

A.3. Scene-based transformer

The 512× 512 and 256× 256 models both share all im-
plementation details, excluding the VQ-IMG used for to-
ken encoding and decoding, and the object-aware loss that
was applied to the 512 × 512 model only. Both transform-
ers share the architecture of 48 layers, 48 attention heads,
and an embedding dimension of 2560. The models were
trained for a total of 170k iterations, with a batch size of
1024, Adam [31] optimizer, with a starting learning-rate
of 4.5 × 10−4 for the first 40k iterations, transitioning to
1.5× 10−4 for the remainder, β1 = 0.9,β2 = 0.96, weight-
decay of 4.5 × 10−4, and a loss ratio of 7/1 between the
image and text tokens. For classifier-free guidance, we fine-
tune the transformer, while replacing the text tokens with
padding tokens in the last 30k iterations, with a probability
of pCF = 0.2. At inference-time we set the guidance scale
to αc = 5, though we found that αc = 3 works as well.

At each inference step, the next token is sampled by (i)
selecting half the logits with the highest probabilities, (ii)
applying a softmax operation over the selected logits, and

(iii) sampling a single logit from a multinomial probability
distribution.

B. Additional samples
Additional samples generated from challenging text in-

puts are provided in Figs. 7-8, while samples generated
from text and scene inputs are provided in Figs. 9-12. The
different text colors emphasize the large number of differ-
ent objects/scenarios being attended. As there are no ‘octo-
pus’ or ‘dinosaur’ categories, we use instead the ‘cat’ and
‘giraffe’ categories respectively. We did not attempt to use
other classes in this case. However, we found that generally
there are no “one-to-one” mappings between absent and ex-
isting categories, hence several categories may work for an
absent category.
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Figure 7. Additional samples generated from challenging text inputs.
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Figure 8. Additional samples generated from challenging text inputs.
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(a) (b)
Figure 9. Additional samples generated (b) from text and segmentation inputs (a).

(a) (b)
Figure 10. Additional samples generated (b) from text and segmentation inputs (a).
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(a) (b)
Figure 11. Additional samples generated (b) from text and segmentation inputs (a).

(a) (b)
Figure 12. Additional samples generated (b) from text and segmentation inputs (a).
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