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Abstract

Optimizing expensive-to-evaluate black-box functions of discrete (and potentially
continuous) design parameters is a ubiquitous problem in scientific and engineering
applications. Bayesian optimization (BO) is a popular, sample-efficient method
that leverages a probabilistic surrogate model and an acquisition function (AF) to
select promising designs to evaluate. However, maximizing the AF over mixed
or high-cardinality discrete search spaces is challenging standard gradient-based
methods cannot be used directly or evaluating the AF at every point in the search
space would be computationally prohibitive. To address this issue, we propose
using probabilistic reparameterization (PR). Instead of directly optimizing the
AF over the search space containing discrete parameters, we instead maximize
the expectation of the AF over a probability distribution defined by continuous
parameters. We prove that under suitable reparameterizations, the BO policy that
maximizes the probabilistic objective is the same as that which maximizes the AF,
and therefore, PR enjoys the same regret bounds as the original BO policy using
the underlying AF. Moreover, our approach provably converges to a stationary
point of the probabilistic objective under gradient ascent using scalable, unbiased
estimators of both the probabilistic objective and its gradient. Therefore, as the
number of starting points and gradient steps increase, our approach will recover
of a maximizer of the AF (an often-neglected requisite for commonly used BO
regret bounds). We validate our approach empirically and demonstrate state-of-the-
art optimization performance on a wide range of real-world applications. PR is
complementary to (and benefits) recent work and naturally generalizes to settings
with multiple objectives and black-box constraints.

1 Introduction
Many scientific and engineering problems involve tuning discrete and/or continuous parameters
to optimize an objective function. Often, the objective function is “black-box”, meaning it has no
known closed-form expression. For example, optimizing the design of an electrospun oil sorbent—a
material that can be used to absorb oil in the case of a marine oil spill to mitigate ecological harm—to
maximize properties such as the oil absorption capacity and mechanical strength [59] can involve
tuning both discrete ordinal experimental conditions and continuous parameters controlling the
composition of the material. For another example, optimizing the structural design of a welded beam
can involve tuning the type of metal (categorical), the welding type (binary), and the dimensions
of the different components of the beam (discrete ordinals)–resulting in a search space with over
370 million possible designs [54]. We consider the scenario where querying the objective function is
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expensive and sample-efficiency is crucial. In the case of designing the oil sorbent, evaluating the
objective function requires manufacturing the material and measuring its properties in a laboratory,
requiring significant time and resources.

Bayesian optimization (BO) is a popular technique for sample-efficient black-box optimization, due
to its proven performance guarantees in many settings [5, 52] and its strong empirical performance
[23, 55]. BO leverages a probabilistic surrogate model of the unknown objective(s) and an acquisition
function (AF) that provides utility values for evaluating a new design to balance exploration and
exploitation. Typically, the maximizer of the AF is selected as the next design to evaluate. However,
maximizing the AF over mixed search spaces (i.e., those consisting of discrete and continuous
parameters) or large discrete search spaces is challenging1 and continuous (or gradient-based)
optimization routines cannot be directly applied. Theoretical performance guarantees of BO policies
require that the maximizer of the AF is found and selected as the next design to evaluate on the
black-box objective function [52]. When the maximizer is not found, regret properties are not
guaranteed, and the performance of the BO policy may degrade.

To tackle these challenges, we propose a technique for improving AF optimization using a probabilis-
tic reparameterization (PR) of the discrete parameters. Our main contributions are:

1. We propose a technique, probabilistic reparameterization (PR), for maximizing AFs over
discrete and mixed spaces by instead optimizing a probabilistic objective (PO): the expecta-
tion of the AF over a probability distribution of discrete random variables corresponding to
the discrete parameters.

2. We prove that there is an equivalence between the maximizers of the acquisition function
and the the maximizers of the PO and hence, the policy that chooses designs that are best
with respect to the PO enjoys the same performance guarantees as the standard BO policy.

3. We derive scalable, unbiased Monte Carlo estimators of the PO and its gradient with respect
to the parameters of the introduced probability distribution. We show that stochastic gradient
ascent using our gradient estimator is guaranteed to converge to a stationary point on the PO
surface and will recover a global maximum of the underlying AF as the number of starting
points and gradient steps increase. This is important because many BO regret bounds require
maximizing the AF [52]. Although the AF is often non-convex and maximization is hard,
empirically, with a modest number of starting points, PR leads to better AF optimization
than alternative methods.

4. We show that PR yields state-of-the-art optimization performance on a wide variety of
real-world design problems with discrete and mixed search spaces. Importantly, PR is com-
plementary to many existing approaches such as popular multi-objective, constrained, and
trust region-based approaches; in particular, PR is agnostic to the underlying probabilistic
model over discrete parameters—which is not the case for many alternative methods.

2 Preliminaries
Bayesian Optimization We consider the problem of optimizing a black-box function f : X ×Z →
R over a compact search space X × Z , where X = X (1) × · · · × X (d) is the domain of the d ≥ 0
continuous parameters (x(i) ∈ X (i) for i = 1, ..., d) and Z = Z(1) × · · · × Z(dz) is the domain of
the dz ≥ 1 discrete parameters (z(i) ∈ Z(i) for i = 1, ..., dz).2

BO leverages (i) a probabilistic surrogate model—typically a Gaussian process (GP) [46]—fit to
a data set Dn = {xi, zi, yi}ni=1 of designs and corresponding (potentially noisy) observations
yi = f(xi, zi) + εi, εi ∼ N (0, σ2), and (ii) an acquisition function α(x, z) that uses the surrogate
model’s posterior distribution to quantify the value of evaluating a new design. Common AFs include
expected improvement (EI) [32] and upper confidence bound (UCB) [52]—the latter of which enjoys
no-regret guarantees in certain settings [52]. The next design to evaluate is chosen by maximizing

1If the discrete search space has low enough cardinality that the AF can be evaluated at every discrete
element, then acquisition optimization can be solved trivially.

2Throughout this paper, we use a mixed search space X × Z in our derivations, theorems, and proofs,
without loss of generality with respect to the case of a purely discrete search space. If d = 0, then the objective
function f : Z → R is defined over the discrete space Z and the continuous parameters in this exposition can
simply be ignored.
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the AF α(x, z) over X × Z . Although the black-box objective f is expensive-to-evaluate, the AF is
relatively cheap-to-query, and therefore, it can be optimized numerically. Gradient-based optimization
routines are often used to maximize the AF over continuous domains [25].

Discrete Parameters In its basic form, BO assumes that the inputs are continuous. However,
discrete parameters such as binary, discrete ordinal, and non-ordered categorical parameters are
ubiquitous in many applications. In the presence of such parameters, optimizing the AF is more
difficult, as standard gradient-based approaches cannot be directly applied. Recent works have
proposed various approaches including multi-armed bandits [40, 48] and local search [41] for discrete
domains and interleaved discrete/continuous optimization procedures for mixed domains [15, 57]. A
simple and widely-used approach across many popular BO packages [1, 53] is to one-hot encode the
categorical parameters, apply a continuous relaxation when solving the optimization, and discretize
(round) the resulting continuous candidates. Examples of continuous relaxations and discretization
functions are listed in Table 1.

Table 1: Different parameter types, their continuous relaxations, and discretization functions.

TYPE DOMAIN CONT. RELAXATION discretize(·) FUNCTION

BINARY z ∈ {0, 1} z′ ∈ [0, 1] round(z′)
ORDINAL z ∈ {0, ..., C − 1} z′ ∈ [−0.5, C − 0.5) round(z′)

CATEGORICAL z ∈ {0, ..., C − 1} z′ ∈ [0, 1]C arg maxc z
′(c)

Although using a continuous relaxation allows for efficient optimization using standard optimization
routines in an alternate continuous domain Z ′ ⊂ Rm, the AF value for an infeasible continuous
value (i.e., z′ /∈ Z) does not account for the discretization that must occur before the black-box
function is evaluated. Moreover, the acquisition value for an infeasible continuous value can be
larger than the AF value after discretization. For an illustration of this, see Fig. 1 (middle/right).
In the worst case, BO will repeatedly select the same infeasible continuous design due to its high
AF value, but discretization will result in a design that has already been evaluated and has zero AF
value. To mitigate this degenerate behavior and avoid the over-estimation issue, Garrido-Merchán
and Hernández-Lobato [26] propose discretizing z′ before evaluating the AF, but the AF is then
non-differentiable with respect to the z′. While this improves performance on small search spaces,
the response surface has large flat regions after discretizing z′, which makes it difficult to optimize the
AF. The authors of [26] propose to approximate the gradients using finite differences, but, empirically,
we find that this approach to be leads to sub-optimal AF optimization relative to PR.

3 Probabilistic Reparameterization

Algorithm 1 BO with PR

1: Input: black-box objective f : X ×Z → R
2: Initialize D0 ← ∅, GP0 ← GP(0, k)
3: for n = 1 to Niterations do
4: (xn,θn)← arg max(x,θ)∈X×Θ EZ∼p(Z|θ)[α(x,Z)]

5: Sample zn ∼ p(Z|θn)
6: Evaluate f(xn, zn)
7: Dn ← Dn−1 ∪ {(xn, zn,f(xn, zn))}
8: Update posterior GPn given Dn
9: end for

We propose an alternative approach
based on probabilistic reparameter-
ization, a relaxation of the original
optimization problem involving dis-
crete parameters. Rather than di-
rectly optimizing the AF via a con-
tinuous relaxation z′ of the design
z, we instead reparameterize the
optimization problem by introduc-
ing a discrete probability distribu-
tion p(Z|θ) over a random variable
Z with support exclusively over Z .
This distribution is parameterized
by a vector of continuous parameters θ. We use z to denote the vector (z(1), ..., z(dz)), where each
element is a different (possibly vector-valued) discrete parameter. Given this reparameterization, we
define the probabilistic objective (PO):

EZ∼p(Z|θ)[α(x,Z)]. (1)

Algorithm 1 outlines BO with probabilistic reparameterization.

PR allows us to optimize θ and x over a continuous space to maximize the PO instead of optimizing x
and z to maximize α directly over the mixed search space X ×Z . As we will show later, maximizing
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Figure 1: (Left) A comparison of AF optimization using different methods over a mixed search
space shows that PR outperforms alternative methods for AF optimization and has much lower
variance across replications. The violin plots show the distribution of final AF values and the mean.
“Cont. Relax.” denotes optimizing a continuous relaxation of the categoricals with exact gradients.
“Exact Round” refers to optimizing a continuous relaxation with approximate gradients (via finite
difference), but discretizes the relaxation before evaluating the surrogate [26]. "Interleaved" alternates
between one step of local search on the discrete parameters and one step of gradient ascent on
the continuous parameters (used in CASMOPOLITAN [57]). For each method, the best candidate
across 20 restarts is selected (after discretization) and the acquisition value of the resulting feasible
candidate is recorded. The AF is expected improvement [32]. (Middle/Right) AF values with a
continuous relaxation (middle) and the PO (right) for the Branin function over a mixed domain
with one continuous parameter (x0) and one binary parameter (z0) (see Appendix C for details on
Branin). (Middle) Under a continuous relaxation, the maximizer of the AF is an infeasible point
in the domain (grey circle), which results in a suboptimal AF value when rounded (black star); the
resulting candidate only has 86% of the AF value of the true maximizer. The maximum AF value
across the feasible search space is shown in white and the red regions indicate that the continuous
relaxation overestimates the AF value since it is greater than the maximum AF value of any feasible
design. (Right) The PO is maximized at the AF unique maximizer within the valid search domain.
These contours show that PR avoids the overestimation issue that the naive continuous relaxation
suffers from.

the PO allows us to recover a maximizer of α over the space X × Z . Choosing p(Z|θ) to be a
discrete distribution over Z means the realizations of Z are feasible values in Z . Hence, the AF is
only evaluated for feasible discrete designs. Since p(Z|θ) is a discrete probability distribution, we
can express EZ∼p(Z|θ)[α(x,Z)] as a linear combination where each discrete design is weighted by
its probability mass:

EZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

p(z|θ)α(x, z). (2)

Example distributions for binary, ordinal, and categorical parameters are provided in Table 2.

Table 2: Examples of probabilistic reparameterizations for different parameter types. We denote the
(C − 1)-simplex as ∆C−1.

PARAMETER TYPE RANDOM VARIABLE CONTINUOUS PARAMETER

BINARY Z ∼ BERNOULLI(θ) θ ∈ [0, 1]
ORDINAL Z = bθc+B,B ∼ BERNOULLI(θ − bθc) θ ∈ [0, C − 1]

CATEGORICAL Z ∼ CATEGORICAL(θ), θ = (θ(1), ..., θ(C)) θ ∈ ∆C−1

Although ordinal parameters could use the same categorical distributions as the non-ordered categori-
cal parameters, we opt for the provided proposal distribution since it uses a scalar θ (rather than a
C-element vector) and it naturally encodes the ordering of the values. Using an independent random
variable Z(i) ∼ p(Z(i)|θ(i)) for each parameter z(i) for i = 1, ..., dz means that the probabilistic
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objective can be expressed as

EZ∼p(Z|θ)[α(x,Z)] =
∑

z(1)∈Z(1)

· · ·
∑

z(dz)∈Z(dz)

α
(
x, z(1), ..., z(dz)

) dz∏
i=1

p(z(i)|θ(i)). (3)

3.1 Analytic Gradients
One important benefit of PR is that the PO in (1) is differentiable with respect to θ (and x, if the
gradient of α with respect to x exists), whereas α(x, z) is not differentiable with respect to z. The
gradients of the PO with respect to θ and x can be obtained by differentiating Equation 2:

∇θEZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

α(x, z)∇θp(z|θ) (4)

∇xEZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

p(z|θ)∇xα(x, z) (5)

This enables optimizing the PO (line 4 of Algorithm 1) efficiently and effectively using gradient-based
methods.

3.2 Theoretical Properties
In this section, we derive theoretical properties of PR. Proofs are provided in Appendix B. Our first
result is that there is an equivalence between the maximizers of the PO and the maximizers of the AF
over X × Z .

Theorem 1 (Consistent Maximizers). Suppose that α is continuous in x for every z ∈ Z . Let H∗
be the maximizers of α(x, z): H∗ = {(x, z) ∈ arg max(x,z)∈X×Z α(x, z)}. Let J ∗ ⊆ X ×Θ be
the maximizers of EZ∼p(Z|θ)[α(x,Z)]: J ∗ = {(x,θ) ∈ arg max(x,θ)∈X×Θ EZ∼p(Z|θ)[α(x,Z)]},
where Θ is the domain of θ. Let Ĥ∗ ⊆ X × Z be defined as: Ĥ∗ = {(x, z̃) : (x,θ) ∈ J ∗, z̃ ∼
p(Z|θ)}. Then, Ĥ∗ = H∗.

Algorithm 1 outlines BO with probabilistic reparameterization. Importantly, Theorem 1 states that
sampling from the distribution parameterized by a maximizer of the PO yields a maximizer of α, and
therefore, Algorithm 1 enjoys the performance guarantees of α(·).

Corollary 1 (Regret Bounds). Let α(x, z) be an acquisition function over a search spaceX×Z such
that when α is applied as part of a BO strategy that strategy has bounded regret . If the conditions
for the regret bounds of that BO strategy using α are satisfied, then Algorithm 1 using α enjoys the
same regret bound.

Examples of BO policies with bounded regret include those based on AFs such as upper confidence
bound (UCB) [52] or Thompson sampling (TS) [49] for single objective optimization, and UCB or
TS with Chebyshev [43] or hypervolume [66] scalarizations in the multi-objective setting.

Although the BO policy selects a maximizer of α is equivalent to the BO policy in Algorithm 1,
maximizing the AF over mixed or high-dimensional discrete search spaces is challenging because
commonly used gradient-based methods cannot directly be applied. The key advantage of our
approach is that maximizers of the AF can be identified efficiently and effectively by optimizing the
PO using gradient information instead of directly optimizing the AF. We find that optimizing PR
yields better results than directly optimizing α or other common relaxations as shown in Figure 1(Left),
where we compare AF optimization methods on the mixed Rosenbrock test problem (see Appendix C
for details).

4 Practical Monte Carlo Estimators
4.1 Unbiased estimators of the Probabilistic Reparameterization and its Gradient
As the number of discrete configurations (|Z|) increases, the PO and its gradient may become
computationally expensive to evaluate analytically because both require a summation of |Z| terms.
Therefore, we propose to estimate the PO and its gradient using Monte Carlo (MC) sampling. The
MC estimator of the PO is given by
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EZ∼p(Z|θ)[α(x,Z)] ≈ 1

N

N∑
i=1

α(x, z̃i), (6)

where z̃1, ..., z̃N are samples from p(Z|θ). This estimator is unbiased and can be computed for a
large number of samples by evaluating the AF independently (or in chunks) for each input (x, z̃n).

MC can also be used to estimate the gradient of the PO with respect to θ. We opt for using a score
function gradient estimator [35] (also known as REINFORCE [62] and the likelihood ratio estimator
[27]) because it is simple, scalable, and can be computed using the acquisition values {α(x, z̃i)}Ni=1
that are used in the MC estimator of the PO. Many alternative lower variance estimators (e.g. Yin
et al. [64], Yin et al. [65]) would require many additional AF evaluations (see Mohamed et al. [39]
for a review of MC gradient estimation). The score function is the gradient of the log probability with
respect to the parameters of the distribution: ∇θ log p(Z|θ) = ∇θp(Z|θ)

p(Z|θ) . Using this score function,
we can express the analytic gradient as

∇θEZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

α(x, z)p(z|θ)∇θ log p(z|θ) = EZ∼p(Z|θ)[α(x,Z)∇θ log p(Z|θ)].

The unbiased MC estimator of the gradient of the PO with respect to θ is given by

∇θEZ∼p(Z|θ)[α(x,Z)] ≈ 1

N

N∑
i=1

α(x, z̃i)∇θ log p(z̃i|θ). (7)

Since the score function gradient is only defined when p(z|θ) > 0, we reparameter-
ize θ to ensure p(z|θ) > 0 for all z and θ by using the softmax transformations pro-
vided in Table 3, which are commonly used for computational convenience and stabil-
ity in probablistic reparameterization [64, 65], and the solution converges as τ → 0.

PARAMETER TYPE TRANSFORMATION (θ = g(φ))

BINARY θ = σ((φ− 1
2
)/τ)

ORDINAL θ = bφc+ σ((φ− bφc − 1
2
)/τ)

CATEGORICAL θ(c) = SOFTMAX((φ− 0.5)/τ)(c)

Table 3: Transformations where τ ∈ R+ and φ, θ ∈ Θ.

Moreover, even though p(z|θ) > 0,
when p(z|θ) is small, a small num-
ber N of MC samples are unlikely to
produce any samples where z̃ = z.
Instead of optimizing θ directly, we
instead optimize φ. Since the trans-
formations g(·) are differentiable with
respect to φ, the gradient (and MC
gradient estimator) of the PO with respect to φ are easily obtained using the gradient of the PO with
respect to θ and a simple application the chain rule (multiplying by∇φθ).

4.2 Variance Reduction in Monte Carlo Gradient Estimation

Although the MC gradient estimator in (7) is unbiased, score function gradient estimators can suffer
from high variance [39]. Therefore, we adopt a popular technique for variance reduction where the
score function itself is used as a control variate, since its expectation is zero under p(Z|θ) [39].
Score function estimators with this control variate have been shown to be among the best performing
gradient estimators [39]. Moreover, this technique is simple and merely amounts to subtracting a
value β from the acquisition value in the score function estimator in Equation (7):

∇θEZ∼p(Z|θ)[α(x,Z)] ≈ 1

N

N∑
i=1

[α(x, z̃i)− β]∇θ log p(z̃i|θ). (8)

The β is commonly known as a baseline and is often taken to be a moving average of the (acquisition)
values [39]. See Appendix C for details on β.

4.3 Convergence Guarantee using Stochastic Gradient Ascent
Since the score function gradient estimator is unbiased, we can leverage previous work on convergence
in probability under stochastic gradient ascent [47] to arrive at our main convergence result for
acquisition optimization.
Theorem 2 (Convergence Guarantee). Let α : X × Z → R be differentiable in x for every z ∈ Z .
Let (x̂t,m, θ̂t,m) be the best solution after running stochastic gradient ascent for t time steps on the
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probabilistic objective EZ∼p(Z|θ)[α(x,Z)] from m starting points with its unbiased MC estimators
proposed above. Let {at}∞t=1 be a sequence of positive step sizes such that 0 <

∑∞
t=1 a

2
t = A <∞

and
∑∞
t=1 at = ∞, where at is the step size used in stochastic gradient ascent at time step t.

Let ẑt,m ∼ p(Z|θ̂t,m). Then as t → ∞, m → ∞, and τ → 0, (x̂t,m, ẑt,m) → (x∗, z∗) ∈
arg max(x,z)∈X×Z α(x, z) in probability.

The significance of Theorem 2 is that optimizing the PO is guaranteed to converge in probability to
a global maximizer of the AF, meaning that optimizing the PO guarantees that resulting candidate
design has maximal AF value. The implication is that the intended BO policy is followed and
the underlying regret bounds of the AF are recovered (provided that the other conditions of the
regret bound are met). Although global convergence is only guaranteed as m → ∞, we observe
in Figure 1(left) that PR yields strong, stable acquisition optimization with only m = 20 starting
points, 200 steps, and τ = 1

10 (see Appendix G for further discussion) and outperforms alternative
optimization approaches.

5 Related Work
Many methods for BO over discrete and mixed search spaces have been proposed. Previous work has
largely focused on (i) improving the surrogate models or (ii) improving AF optimization.

Improving models: Historically, methods leveraging tree-based surrogate models, e.g., SMAC
[30] and TPE [4], have been popular for optimizing discrete or mixed search spaces. Many recent
works have considered alternative surrogate models. BOCS encodes categorical parameters as binary
variables and uses Bayesian linear regression with pairwise interactions [2]. COMBO uses a diffusion
kernel on the graph defined by the Cartesian product of discrete parameters [41]. MERCBO similarly
exploits the combinatorial graph, but with Mercer features and Thompson sampling [16]. HYBO
extends the diffusion kernels to mixed continuous-discrete spaces [15]. However, these methods
scale poorly with respect to the number of data points and parameters. Moreover, of the methods
listed above, only HYBO supports continuous parameters without restricting them to a discrete
set. HYBO enjoys a universal function approximation property, but relies on summing over all
possible orders of interactions between base kernels for each parameter which results in exponential
complexity with respect to the number of parameters and limits its applicability to low-dimensional
problems. Moreover, the computational issues of such approaches make it difficult to apply them
to multi-objective and constrained optimization. GRYFFIN [29] uses kernel density estimation, but
is limited to categorical search spaces. MIVABO uses a linear combination of basis functions (e.g.
pseudo Boolean features [7] for discrete parameters) with interaction terms[13]. MVRSM [6] uses
ReLU-based surrogates for computational efficiency, but is limited by the expressiveness of these
models.

Optimizing acquisition functions: As discussed previously, Garrido-Merchán and Hernández-
Lobato [26] propose using continuous relaxation and discretize the inputs before evaluating the
AF. However, the resulting AF after discretization is piece-wise-flat along slices of the continuous
relaxation of the discrete parameters and therefore is difficult to optimize. COCABO [48] samples
discrete parameters using a multi-armed bandit and optimizes the continuous parameters conditional
upon the sampled discrete parameters. However, COCABO’s performance degrades as number
of discrete configurations increases. CASMOPOLITAN [57] uses local trust regions combined with
an interleaved AF optimization strategy that alternates between local search steps on the discrete
parameters and gradient ascent for the continuous parameters. Furthermore, both COCABO and
CASMOPOLITAN do not inherently exploit ordinal structure.

Probabilistic reparameterization: PR has been considered for optimizing discrete parameters in
other domains such as reinforcement learning [62] and sparse regression [65]. However, PR has not
been leveraged for BO. Although the reparameterization trick used by Wilson et al. [63] is in a similar
vein to PR, Wilson et al. [63] reparameterize an existing multivariate normal random variable in terms
of standard normal random variables and then use sample-path gradient estimators. In contrast, our
approach introduces a new probabilistic formulation using discrete probability distributions and uses
likelihood-ratio-based gradient estimators since sample-path gradients cannot be computed through
discrete sampling.

Alternative methods for propagating gradients: Alternative methods for propagating gradients
through discrete structures have been considered in the deep learning community (among others).
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One approach is to use approximate discrete Concrete distributions [31, 37], which admit sample-
path gradients. However, samples from Concrete distributions are not discrete and approximation
error can result in pathologies similar to evaluating the AF using continuous relaxation. Moreover,
approximately discrete samples prohibit using surrogate models that require discrete inputs (without
discretizing the samples)—e.g., GPs with Hamming distance kernels [48]. Another approach for
gradient propagation in the deep learning community is to use straight-through gradient estimators
(STE) [3], where the gradient of the discretization function with respect to its input is estimated
using, for example, an identity function. This approach works well empirically in some cases, these
estimators are not well-grounded theoretically. Nevertheless, we discuss and evaluate using STE for
AF optimization in Appendix H.

6 Experiments
In this section, we provide an empirical evaluation of PR on a suite of synthetic problems and
real world applications. For PR, we use stochastic mini-batches of N = 128 MC samples in our
experiments and demonstrate that PR is robust with respect to the number of MC samples (and
compare against analytic PR, where computationally feasible) in Appendix F. We optimize PR using
Adam [34] with an initial learning rate of 1

40 . We show that PR Adam is generally robust to the
choice of learning rate (more so than vanilla stochastic gradient ascent) in the sensitivity analysis in
Figure 21 in Appendix M. We compare PR against two alternative acquisition optimization strategies:
using a continuous relaxation (CONT. RELAX.) and using exact discretization with approximate
gradients (EXACT ROUND) [26]. These approaches optimize the acquisition function with L-BFGS-B
with exact and approximate gradients, respectively. In addition, we compare against two state-of-
the-art methods for discrete/mixed BO: a modified version of CASMOPOLITAN [57] that additionally
supports ordinal variables introduced in Wan et al. [58] and HYBO [15], both of which are shown
to outperform the other related works discussed in Section 5. In addition, we showcase how PR is
complementary to existing methods such as trust region methods [22]. We demonstrate this by using
PR with a trust region for the continuous and discrete ordinal parameters and optimize PR within
this trust region. In Appendix H, we provide comparison of TR methods with alterative optimizers
and find that PR is the best optimizer when using TRs on 6 of the 7 benchmark problems. See
Appendix C for additional discussion of PR + TR. For PR, EXACT ROUND, and PR + TR we use the
sum of a product kernel and a sum kernel of a categorical kernel [48] for the categorical parameters
and Matérn-5/2 kernel for all other parameters.3 Alternative kernels over different representations
of categorical parameters such as one-hot encoded vectors, latent embeddings [67], and known
embeddings (e.g. using fingerprint-based reaction encodings for categorical parameters in chemical
reaction optimization [51]) are evaluated in Appendix J.

CONT. RELAX., EXACT ROUND, PR, and PR + TR use expected improvement [24, 32] for single
objective (constrained problems) and expected hypervolume improvement [20] for the multi-objective
oil sorbent problem (where exact gradients with respect to continuous parameters are computed
using auto-differentiation [8]). We report the mean for each method ± 2 standard errors across 20
replications. Performance is evaluated in terms of regret (feasible regret for constrained problems
and hypervolume regret for multi-objective problems). CASMOPOLITAN and HYBO are not run on
Welded Beam and Oil Sorbent as they do not support constrained and multi-objective optimization.
We also leave the multi-objective extension of PR+TR to future work because it would add additional
complexity [11]. For HYBO, we only run 60 BO iterations on SVM due to the large wall time (see
Figure 3) and only report partial results on Cellular Network due to a singular covariance matrix
error. See Appendix C for details on the experiment setup, regret metrics, benchmark problems, and
methodological details. We leverage existing open source implementations of CASMOPOLITAN and
HYBO (see Appendix C for links), and the implementations of all of other methods are available at
https://github.com/facebookresearch/bo_pr.

6.1 Synthetic Problems
We evaluate all methods on 3 synthetic problems. Ackley is a 13-dimensional function with 10
binary and 3 continuous parameters (a modified version of the problem in Bliek et al. [6]). Mixed
Int F1 is a 16-dimensional variant of the F1 function from Tušar et al. [56] with 2 binary, 6 discrete
ordinal parameters, and 8 continuous parameters. The discrete ordinal parameters have following

3CONT. RELAX. is incompatible with a categorical kernel, so we use a Matérn-5/2 with one-hot encoded
categorical parameters.
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cardinalities: 2 parameters with 3 values, 2 with 5 values, and 2 with 7 values. Rosenbrock is a
10-dimensional Rosenbrock function with 6 discrete ordinal parameters with 4 values each and 4
continuous parameters.

6.2 Real World Problems

We consider 5 real world applications including a problem with 5 black-box outcome constraints and
a 3-objective problem (see Appendix D for details on constrained and multi-objective BO).

Welded Beam Optimizing the design of a welded steel beam is a classical engineering optimization.
In this problem, the goal is to minimize manufacturing cost subject to 5 black-box constraints on
structural properties of the beam (including shear stress, bending stress, and buckling load) by tuning
6 parameters: the welding configuration (binary), the metal material type (categorical with 4 options),
and 4 ordinal parameters controlling the dimensions of the beam [54].

SVM Feature Selection This problem involves jointly performing feature selection and hyperparam-
eter optimization for a Support Vector Machine (SVM) trained on the CTSlice UCI data set [18, 36].
The design space for this problem involves 50 binary parameters controlling whether a particular
feature is included or not, and 3 continuous hyperparameters of the SVM.

Cellular Network Optimization In this 30-dimensional problem, the goal is to tune the tilt (ordinal
with 6 values) and transmission power (continuous) for a set of 15 antennas [50] to maximize a
coverage quality metric that is a function of signal power and interference [38] over a geographic
region of interest. We use the simulator from Dreifuerst et al. [17].

Direct Arylation Chemical Synthesis Palladium-catalysed direct arylation has generated significant
interest in the pharamceutical development sector[12]. In this problem, the goal is maximize yield
for a direct arylation chemical reaction by tuning 3 categorical parameters corresponding to the
choice of solvent, base, and ligand, as well 2 continuous parameters controlling the temperature
and concentration. We fit a surrogate model to the direct arylation dataset from Shields et al. [51]
in order to facilitate continuous optimization of temperature and concentration. In Appendix J, we
demonstrate that PR can leverage a kernel over fingerprint-based reaction encodings computed via
density functional theory (DFT) for the categorical parameters [51].

Electrospun Oil Sorbent Marine oil spills can cause ecological catastrophe. One avenue for miti-
gating environmental harm is to design and deploy absorbent materials to capture the spilled oil. In
this problem, we tune 5 ordinal parameters (3 parameters with 5 values and 2 with 4 values) and 2
continuous parameters controlling the composition and manufacturing conditions for an electrospun
oil sorbent material to maximize 3 competing objectives: the oil absorbing capacity, the mechanical
strength, and the water contact angle [59].
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Figure 2: PR (or PR + TR) consistently outperforms alternatives with respect to log regret.
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Figure 3: Wall time for candidate generation at each BO iteration in seconds. CONT. RELAX.,
EXACT ROUND, PR, and PR + TR are run on a single Tesla V100-SXM2-16GB GPU and other
methods are run on an Intel Xeon Gold 6252N CPU.

6.3 Results
We find PR consistently delivers strong empirical performance as shown in Figure 2. On all
benchmark problems, PR (or PR + TR) outperforms all baseline methods (except for Mixed Int
F1, where HYBO performs comparably). Figure 3 shows the wall time for candidate generation
over the number of BO iterations. Although PR is computationally intensive, the computation is
embarrassingly parallel and therefore exploiting GPU acceleration yields competitive wall times.
Importantly, PR’s wall time scales well with the number of observations and design parameters,
unlike HYBO which scales poorly with both. However, the complexity of PR scales additively
in the number of GPs being used (e.g. outcomes being modeled), assuming they are evaluated
sequentially. Hence, in multi-objective or constrained settings, PR incurs a high cost in terms of wall
time. However, empirically PR achieves better optimization performance on constrained and multi-
objective problems relative to CONT. RELAX. and EXACT ROUND. We note that CASMOPOLITAN
does not support multi-objective BO or constrained BO, and although HYBO could be used in those
settings, it would be impractically slow because 1) its wall time would scale linearly with the number
of modeled outcomes (using independent GPs) and 2) its diffusion kernel is non-differentiable, which
would make optimizing hypervolume-based AFs slow [8, 9].

7 Discussion
The performance and regret properties of BO depend critically on properly maximizing the AF. For
problems with discrete features, exhaustively trying all possible combinations of discrete values
quickly becomes infeasible as the number of combinations grows. Alternatives such as trying a
subset of the possible combinations or resorting to continuous relaxations often leads to a failure to
effectively optimize the AF which may result in sub-optimal BO performance. As an alternative, we
propose using PR to better optimize the AF, and we demonstrate that PR achieves strong performance
on a large number of real-world problems. Our approach is complementary to many other BO
extensions, and combines seamlessly with, for example, trust region-based BO and specialized
kernels for discrete parameters. One limitation of PR is that it requires computationally-demanding
MC integration. However, given that the computation in PR is embarrassingly parallel, it motivates
for future research on optimizing AFs on distributed hardware.
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Appendix to:

Bayesian Optimization over Discrete and Mixed
Spaces via Probabilistic Reparameterization

A Potential Societal Impacts

Our work advances Bayesian optimization, a generic class of methods for optimization of expensive,
difficult-to-optimize black-box problems. With this paper in particular, we improve the performance
of Bayesian optimization on problems with mixed types of inputs. Given the ubiquity of such
problems in many practical applications, we believe that our method could lead to positive broader
impacts by solving these problems better and more efficiently while reducing the costs incurred for
solving them. Concrete and high-stake examples where our method could be potentially applied
(some of which have been already demonstrated by the benchmark problems considered in the paper)
include but are not limited to applications in communications, chemical synthesis, drug discovery,
engineering optimization, tuning of recommender systems, and automation of machine learning
systems. On the flip side, while the method proposed is ethically neutral, there is potential of misuse
given that the exact objective of optimization is ultimately decided by the end users; we believe that
practitioners and researchers should be aware of such possibility and aim to mitigate any potential
negative impacts to the furthest extent.

B Theoretical Results and Proofs

B.1 Results

Let P(i)
Z := P(Z(i)) denote the set of probability measures on Z(i) for each i = 1, ..., dz , and let

PZ :=
∏dz
i=1 P

(i)
Z . For any α : X × Z → R, define α̃ : X × P → R as

α̃(x, p) =

∫
Z
α(x, z)dp(z) =

∑
z∈Z

α(x, z)p({z}). (9)

Let Θ be a compact metric space, and consider the set of functionals Φ = {ϕ s.t. ϕ : Θ→ PZ}. Let

α̂(x,θ) := α̃(x,ϕ(θ)) =

∫
Z
α(x, z)dpϕ(θ)(z) =

∑
z∈Z

α(x, z)pϕ(θ)({z}) (10)

Since Z is finite, each element of ϕ ∈ Φ can be expressed as a mapping from Θ to R|Z|. Namely,
each ϕ(θ) corresponds to a vector with |Z| elements containing the probability mass for each
element of Z under pϕ(θ). Thus (PZ , ‖ · ‖) is a metric space under any norm ‖ · ‖ on R|Z|.
Let α∗ := max(x,z)∈(X×Z) α(x, z) and let H∗ := arg max(x,z)∈(X×Z) α(x, z) denote the set of
maximizers of α.

Lemma 1. Suppose α is continuous in x for every z ∈ Z and that ϕ : Θ 7→ (PZ , ‖ · ‖) is continuous
with ϕ(Θ) = PZ . Let J ∗ := arg max(x,θ)∈X×Θ α̂(x,θ). Then for any (x∗,θ∗) ∈ J ∗, it holds that
(x∗, z) ∈ H∗ for all z ∈ supp pϕ(θ∗).

Proof. First, note that α̂ : X ×Θ→ R is continuous (using that ϕ is continuous and α is bounded).
Since both X and Θ are compact α̂ attains its maximum, i.e., J ∗ exists. Let (x∗,θ∗) ∈ J ∗. Clearly,
there exists z∗ ∈ arg maxz∈Z α(x∗, z) such that α(x∗, z∗) = α∗. Suppose there exists z′ ∈
supp pϕ(θ∗) such that (x∗, z′) /∈ H∗. Then α(x∗, z′) < α∗ and, since Z is finite, pϕ(θ∗)({z′}) > 0.
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Consider the probability measure p′ given by

p′({z}) =

{
0 if z = z′

pϕ(θ∗)({z∗}) + pϕ(θ∗)({z′}) if z = z∗

pϕ(θ∗)({z}) otherwise

Then

α̃(x∗, p′)− α̂(x∗,θ∗) =
∑
z∈Z

α(x∗, z)p′({z})− α̂(x∗,θ∗)

=
∑
z∈Z

α(x∗, z)pϕ(θ∗)({z}) + pϕ(θ∗)({z′})(α(x∗, z∗)− α(x∗, z′))

− α̂(x∗,θ∗)

= pϕ(θ∗)({z′})(α(x∗, z∗)− α(x∗, z′))

> 0

Now p′ ∈ PZ , and so p′ = ϕ(θ′) for some θ′ ∈ Θ. But then α̂(x∗,θ′) > α̂(x∗,θ∗). This is a
contradiction.

Corollary 2. Suppose the optimizer of g is unique, i.e., thatH∗ = {(x∗, z∗)} is a singleton. Then
the optimizer of α̂ is also unique and J ∗ = {(x∗,θ∗)}, with pϕ(θ∗)({z∗}) = 1.

Corollary 3. Consider the following mappings:

• Binary: ϕ : [0, 1]→ P{0,1} with pϕ(θ)({1}) = θ and pϕ(θ)({0}) = 1− θ.

• Ordinal: ϕ : [0, C − 1]→ P{0,1,...,C} with pϕ(θ)({i}) = (1− |i− θ|)1{|i− θ| ≤ 1} for
i = 1, . . . , C.

• Categorical: ϕ : [0, 1]C → P{0,1,...,C} with pϕ(θ)({i}) = θi∑C
i=1 θi

.

These mappings satisfy the conditions for Lemma 1. In the setting with multiple discrete parameters
where the above mappings are applied in component-wise fashion for each discrete parameter, the
component-wise mappings also satisfy the conditions for Lemma 1.

Clearly, the mappings given in Corollary 3 are continuous functions of θ. In the setting with multiple
discrete parameters , the component-wise function is also continuous with respect to the distribution
parameters for each discrete parameter. Hence, the mappings satisfy the conditions for Lemma 1.

Lemma 2. If (x∗, z∗) ∈ H∗ = arg max(x,z)∈X×Z α(x, z), then

α(x∗, z∗) = max
θ

EZ∼p(Z|θ)[α(x∗,Z)].

Proof. For any z∗, let θ∗ be the parameters such that p(z∗|θ∗) = 1 (i.e. a point mass on z∗). From
Equation (2),

EZ∼p(Z|θ∗)[α(x∗,Z)] =
∑
z∈Z

α(x∗, z)p(z|θ∗) = α(x∗, z∗).

Claim: EZ∼p(Z|θ∗)[α(x∗,Z)] = maxθ EZ∼p(Z|θ)[α(x∗,Z)].

Suppose there exists θ′ such that EZ∼p(Z|θ′)[α(x∗,Z)] > EZ∼p(Z|θ∗)[α(x∗,Z)]. Since (x∗, z∗) ∈
H∗, α(x∗, z∗) = max(x,z)∈X×Z α(x, z). Hence, there is no convex combination of values of α
that is greater than α(x∗, z∗). This is a contradiction.

Theorem 1 (Consistent Maximizers). Suppose that α is continuous in x for every z ∈ Z . Let H∗
be the maximizers of α(x, z): H∗ = {(x, z) ∈ arg max(x,z)∈X×Z α(x, z)}. Let J ∗ ⊆ X ×Θ be
the maximizers of EZ∼p(Z|θ)[α(x,Z)]: J ∗ = {(x,θ) ∈ arg max(x,θ)∈X×Θ EZ∼p(Z|θ)[α(x,Z)]},
where Θ is the domain of θ. Let Ĥ∗ ⊆ X × Z be defined as: Ĥ∗ = {(x, z̃) : (x,θ) ∈ J ∗, z̃ ∼
p(Z|θ)}. Then, Ĥ∗ = H∗.
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Proof. From Lemma 1, we have that for any (x∗,θ∗) ∈ J ∗, it holds that (x∗, z) ∈ H∗ for all
z ∈ supp pϕ(θ∗). Hence, Ĥ∗ ⊆ H∗.

Now, let (x∗, z∗) ∈ H∗. Let θ∗ ∈ Θ such that p(z∗|θ∗) = 1. From the proof of
Lemma 2, we have that EZ∼p(Z|θ∗)[α(x∗,Z)] = α(x∗, z∗). As in the proof of Lemma 2, there
is no convex combination of values of α greater than α(x∗, z∗). So EZ∼p(Z|θ∗)[α(x∗,Z)] =

max(x,θ)∈X×Θ EZ∼p(Z|θ)[α(x,Z)], and therefore, x∗,θ∗ ∈ J ∗. Hence (x∗, z∗) ∈ Ĥ∗. So
H∗ ⊆ Ĥ∗, and hence, Ĥ∗ = H∗.

Lemma 3. Suppose that α : (x, z) 7→ R is differentiable with respect to x for all z ∈ Z , and that
the mapping ϕ : θ 7→ PZ is such that pϕ(θ)({z}) is differentiable with respect to θ for all z ∈ Z .
Then the probabilistic objective EZ∼p(Z|θ)[α(x,Z)] is differentiable with respect to (x,θ).

Proof. For any z ∈ Z , the function p(z,θ)α(x, z) = pϕ(θ)({z})α(x, z) is the product of two
differentiable functions, hence differentiable. Therefore the probabilistic objective is a (finite) linear
combination of differentiable functions, hence differentiable.

Theorem 2 (Convergence Guarantee). Let α : X × Z → R be differentiable in x for every z ∈ Z .
Let (x̂t,m, θ̂t,m) be the best solution after running stochastic gradient ascent for t time steps on the
probabilistic objective EZ∼p(Z|θ)[α(x,Z)] from m starting points with its unbiased MC estimators
proposed above. Let {at}∞t=1 be a sequence of positive step sizes such that 0 <

∑∞
t=1 a

2
t = A <∞

and
∑∞
t=1 at = ∞, where at is the step size used in stochastic gradient ascent at time step t.

Let ẑt,m ∼ p(Z|θ̂t,m). Then as t → ∞, m → ∞, and τ → 0, (x̂t,m, ẑt,m) → (x∗, z∗) ∈
arg max(x,z)∈X×Z α(x, z) in probability.

Proof. The binary and categorical mappings in Corollary 3 are differentiable in θ (the ordinal mapping
is differentiable almost everywhere4). Since the acquisition function α : X × Z → R is differentiable
in x for every z ∈ Z , this means that the PO is differentiable. Using the prescribed sequence of
step sizes, optimizing the PO using stochastic gradient ascent will converge almost surely to a local
maximum after a sufficient number of steps [47]. As we increase the number of randomly distributed
starting points, the probability of not finding the global maximum of the PO will converge to zero
[60]. From Theorem 1, the PO and the AF have the same set of maximizers. Hence, convergence in
probability to a global maximizer of the PO means convergence in probability to a global maximizer
of the AF.

C Experiment Details

For each BO optimization replicate, we use Ninit = min(20, 2 ∗ deff) points from a scrambled Sobol
sequence, where deff is the “effective dimensionality” after one-hot encoding categorical parameters.
Unless otherwise noted, all experiments use 20 replications and confidence intervals represent 2
standard errors of the mean. The same initial points are used for all methods for that replicate and
different initial points are used for each replicate. For each method we report the log10 regret. Since
the optimal value is unknown for many problems, we set the optimal value to be f∗+ 0.1 where f∗ is
the best observed value across all methods and all replications. For constrained optimization f∗ is the
best feasible observed value and for multi-objective optimization f∗ is the maximum hypervolume
across all methods and replications. In total, the experiments in the main text (excluding HYBO and
CASMOPOLITAN) ran for an equivalent of 2,009.82 hours on a single Tesla V100-SXM2-16GB GPU.
The baseline experiments (HYBO and CASMOPOLITAN) ran for an equivalent of 745.10 hours on a
single Intel Xeon Gold 6252N CPU.

4Technically, the arguments presented here do not prove convergence under the ordinal mapping, but we
have found this to work well and reliably in practice. Alternatively, ordinal parameters could also just be treated
as categorical ones in which case the convergence results hold. In practice, however, this introduces additional
optimization variables that make the problem unnecessarily hard by removing the ordered structure from the
problem.
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C.1 Additional Problem Details

In this section, we describe the details of each synthetic problem considered in the experiments (the
details of the remaining real-world problems are already described in Section 6.2).

Ackley. We use an adapted version of the 13-dimensional Ackley function modified from Bliek
et al. [6]. The function is given by:

f(x) = −a exp
(
− b

√√√√1

d

d∑
i=1

x2
i )
)
− exp

(1

d

d∑
i=1

cos(cxi)
)

+ a+ exp(1), (11)

where in this case a = 20, n = 0.2, c = 2π and d = 13 and x ∈ [−1, 1]13. We discretize the first 10
dimensions to be binary with the choice {−1, 1}, and the final 3 dimensions are unmodified with the
original bounds.

Mixed Int F1. Mixed Int F1 is a partially discretized version of the 16-dimensional Sphere opti-
mization problem [28], given by:

f(x) =

d∑
i=1

(xi − xopt,i)
2 + fopt, (12)

where fopt is sampled from a Cauchy distribution with median = 0 and roughly 50% of the values
between−100 and 100. The sampled fopt is then clamped to be between [−1000, 1000] and rounded
to the nearest integer. xopt is sampled uniformly in [−4, 4]d, and in this case d = 16. We discretize
the first 8 dimensions as follows: the first 2 dimensions are binary with 2 choices {−5, 5}; the next 2
dimensions are ordinal with 3 choices {−5, 0, 5}; the next 2 dimensions are ordinal with 5 choices
{−5,−2.5, 0, 2.5, 5}; the final 2 dimensions are ordinal with 7 choices {−5,− 10

3 ,−
5
3 , 0,

5
3 ,

10
3 , 5}.

The remaining 8 dimensions are continuous with bounds [−5, 5]8.

Rosenbrock. We use an adapted version of the Rosenbrock function, given by:

f(x) =
( d−1∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

))
, (13)

where in this case d = 10. The first 6 dimensions are discretized to be ordinal variables, with 4
possible values each xi ∈ {−5, 0, 5, 10}∀i ∈ [1, 6]. The final 4 dimensions are continuous with
bounds [−5, 10]4.

Chemical Reaction (Direct Arylation Chemical Synthesis). For this problem, we fit a GP surro-
gate (with the same kernel used by the BO methods) to the dataset from Shields et al. [51] (avail-
able at https://github.com/b-shields/edbo/tree/master/experiments/data/direct_
arylation under the MIT license) in order to facilitate continuous optimization of temperature and
concentration. The surrogate is included with our source code.

Oil Sorbent. We set the reference point for this problem to be [−125.3865,−57.8292, 43.2665],
which we choose using a commonly used heuristic to scale the nadir point (component-wise worst
objective values across the Pareto frontier) [61].

C.2 Method details

PR, CONT. RELAX., EXACT ROUND, PR + TR, and EXACT ROUND + STE. We implemented
all of these methods using BoTorch [1], which is available under the MIT license at https://
github.com/pytorch/botorch. PR and PR + TR use stochastic minibatches of 128 samples
and the probabilistic objectives are optimized via Adam using a learning rate of 1

40 . The AFs of
CONT. RELAX., EXACT ROUND, EXACT ROUND + STE are deterministic and are optimized via
L-BFGS-B—EXACT ROUND approximates gradients via finite differences [26]. All methods use 20
random restarts and are run for a maximum of 200 iterations. We follow the default initialization
heuristic in BoTorch [1], which initializes the optimizer by evaluating the acquisition function at a
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large number of starting points (here, 1024, chosen from a scrambled Sobol sequence), and selecting
(20) points using Boltzmann sampling [19] of the 1024 initial points, according to their acquisition
function utilities.

Combining PR with trust regions: When combining PR with the trust regions used in TURBO
we only use a trust region over the continuous parameters and discrete ordinals with at least 3
values. While methods like CASMOPOLITAN uses a Hamming distance for the trust regions over the
categorical parameters, we choose not to do so as there is no natural way of efficiently optimizing PR
using gradient-based methods. Finally, we do not use a trust region over the Boolean parameters as the
trust region will quickly shrink to only include one possible value. We use the same hyperparameters
as TURBO [22] for unconstrained problems and SCBO [21] in the presence of outcome constraints,
including default trust region update settings.

Casmopolitan: We use the implementation of CASMOPOLITAN—which is available at https:
//github.com/xingchenwan/Casmopolitan under the MIT licence—but modify it where ap-
propriate to additionally handle the ordinal variables. Specifically, the ordinal variables are treated
as continuous when computing the kernel. However, during interleaved search, ordinal variables
are searched via local search similar to the categorical variables. We use a set of CASMOPOLITAN
hyperparameters (i.e. success/failure sensitivity, initial trust region sizes and expansion factor) recom-
mended by the authors. We use the same implementation of interleaved search for the acquisition
optimization comparisons.

HyBO: We use the official implementation of HYBO at https://github.com/aryandeshwal/
HyBO, which is licensed by the University of Amsterdam. We use the default hyperparameters
recommended by the authors in all the experiments, and we use the full HYBO method with
marginalization treatment of the hyperparameters as it has been shown to perform stronger empirically
[14].

C.3 Gaussian process regression

When there are no categorical variables we use kordinal which is a product of an isotropic Matern-
5/2 kernel for the binary parameters and a Matern-5/2 kernel with ARD for the remaining ordinal
parameters. In the presence of categorical parameters, this kernel is combined with a categorical
kernel [48] kcat as kcat × kordinal + kcat + kordinal. We use a constant mean function. The GP
hyperparameters are fitted using L-BFGS-B by optimizing the log-marginal likelihood. The ranges
for the ordinal parameters are rescaled to [0, 1] and the outcomes are standardized before fitting the
GP.

C.4 Variance Reduction via Control Variates

As discussed in Section 4.2, we use moving average baseline for variance reduction. Specifically, the
baseline is an exponential moving average with a multiplier of 0.7, where each element is the mean
acquisition value across the N MC samples obtained while evaluating the probabilistic objective.

C.5 Deterministic Optimization via Sample Average Approximation

Although multi-start stochastic ascent is provably convergent, an alternative optimization approach is
to use common random numbers (i.e. a fixed set of base samples) to reduce variance when comparing
a stochastic function at different inputs by using the same random numbers. The method of common
random numbers leads to biased deterministic estimators that are lower-variance than their stochastic
counterparts where random numbers are re-sampled at each step. Such techniques have been used
in the context of BO in settings such as efficiently optimizing MC acquisition functions [1] and for
optimizing risk measures of acquisition functions under random inputs [10].

Sampling a fixed set of points z̃1, ..., z̃N ∼ p(Z|θ) would be a poor choice because p(Z|θ) can
vary widely during AF optimization as θ changes. Therefore, instead sample from p(Z|θ) using
reparameterizations provided in Table 4. Specifically, we reparameterizeZ as a deterministic function
h(·, ·) that operates component-wise on θ and the random variable U = (u(1), ..., u(dz)), u(i) ∼
Uniform(0, 1): Z = h(θ,U). That is, each random variable Z(j), where j = 1, ..., dz has a
corresponding independent base random variable U (j) such that Z(j) = h(θ(j), U (j)). Using a fixed
a set of base samples {ũi}Ni=1, the samples of Z can be be computed as zi = h(θ, ũi). We note that
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even with fixed base samples, the samples {zi}Ni=1 depends on θ, and hence, by using common base
uniform samples, we obtain a deterministic estimator where the values of the samples z̃1, ..., z̃N can
still vary with θ. Under this reparameterization, our probabilistic objective can be written as

EZ∼p(Z|θ)[α(x,Z)] = EU∼p(U)[α(x, h(θ,U))], (14)

where under the reparameterizations in Table 4, U is a uniform random variable across the dz-
dimensional unit cube—P (U) = Uniform(0, 1)dz . Under this reparameterization we can define our
sample average approximation estimator of the probabilistic objective as

EZ∼p(Z|θ)[α(x,Z)] ≈ 1

N

N∑
i=1

α(x, h(θ, ũi)). (15)

Our sample average approximation estimator of the gradient of the probabilistic objective with respect
to θ is given by

∇θEZ∼p(Z|θ)[α(x,Z)] ≈ 1

N

N∑
i=1

α(x, h(θ, ũi))∇θ log p(h(θ, ũi)|θ). (16)

Sample average approximation estimators are deterministic and biased conditional on the selection
of base samples. However, the reparameterizations in Table 4 create discontinuities in the PO, and
the number of discontinuities increases with the number of MC samples. Nevertheless, we find that
optimizing the PO using L-BFGS-B delivers strong performance on the benchmark problems and we
compare against stochastic optimization in Figures 21 and 20. As in the stochastic case, we reduce
the variance further by leveraging quasi-MC sampling [42] instead of i.i.d. sampling.

Table 4: Discrete random variables and their reparameterizations in terms of a Uniform random
variable U ∼ Uniform(0, 1) and θ via a deterministic function h(·, ·).

TYPE RANDOM VARIABLE REPARAMETERIZATION (Z = h(θ, U))

BINARY Z ∼ BERNOULLI(θ) h(θ, U) = 1(U < θ)
ORDINAL Z = bθc+B, h(θ, U) = bθc+ 1(U < θ − bθc)

B ∼ BERNOULLI(θ − bθc)
CATEGORICAL Z ∼ CATEGORICAL(θ) h(θ, U) = min(arg maxC−1

i=0 1(U <
∑i

c θ
(c)))

D Constrained and Multi-Objective Bayesian Optimization

In many practical problems, the black-box objective must be maximized subject to V > 0 black-box
outcome constraints f (v)

c (x, z) ≥ 0 for v = 1, ..., V . See Gardner et al. [24] for a more in depth
review of black-box optimization with black-box constraints and BO techniques for this class of
problems.

In the multi-objective setting, the goal is to maximize (without loss of generality) a set ofM objectives
f (1), ..., f (M). Typically there is no single best solution, and hence the goal is to learn the Pareto
frontier (i.e. the set of optimal trade-offs between objectives). In the multi-objective setting, the
hypervolume indicator is a common metric for evaluating the quality of a Pareto frontier. See [20] for
a review of multi-objective optimization.

E Comparison with Enumeration

When computationally feasible, the gold standard for acquisition optimization over discrete and
mixed search spaces is to enumerate the discrete options and optimize any continuous parameters
for each discrete configuration (or simply evaluated each discrete configuration for fully discrete
spaces). In Figures 4 and 5 we compare PR (optimized with Adam using stochastic mini-batches of
128 MC samples) and analytic PR (optimized with L-BFGS-B) against enumeration and show that
PR achieves log regret performance that is comparable to the gold standard of enumeration and does
so in less wall time.

21



0 50 100
Iteration

1.0

0.5

0.0

Lo
g 

Re
gr

et

Ackley

PR Enumerate PR (Analytic)

0 100 200
Iteration

1

0

1

Chemical Reaction

Figure 4: A comparison with an enumeration (gold standard) with respect to log regret.
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Figure 5: A comparison with enumeration with respect to wall time.

F Analysis of MC sampling in Probabilistic Reparameterization

The main text considers 1024 MC for PR. We consider 128, 256, and 512 samples, in addition
to the default of 1024. For problems with discrete spaces that are enumerable, we also consider
analytic PR. We do not find statistically significant differences between the final regret of any of
these configurations (Figure 6). Run time is linear with respect to MC samples, and so substantial
compute savings are possible when fewer MC samples are used (Figure 7). We observe comparable
performance between PR with 1,024 MC samples and as few as 128 MC samples. With 64 or fewer
MC samples, we observe performance degradation with respect to log regret in Figure 8, although
wall time is considerably faster for fewer 64 or less MC samples as shown in Figure 9.
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Figure 6: A sensitivity analysis of the optimization performance of PR with respect to the number of
MC samples. We find that PR is robust to the number of MC samples, and that the performance of
MC PR matches that of analytic PR.
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Figure 7: A sensitivity analysis of the wall time of PR with respect to the number of MC samples.
We observe that wall time scales linearly with the number of MC samples, which is expected since
we compute PR in N

32 chunks to avoid overflowing GPU memory.
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Figure 8: A sensitivity analysis of the optimization performance of PR with respect to a small number
of MC samples (with samples between 8 and 64). Performance degrades slightly when few samples
are used.
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Figure 9: A sensitivity analysis of the wall time of PR with respect to the number of MC samples
(with samples between 8 and 64). We observe that wall time scales linearly with the number of MC
samples, which is expected since we compute PR in N

32 chunks to avoid overflowing GPU memory.
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F.0.1 Evaluation of Approximation Error in MC Sampling

We examine the MC approximation error relative to analytic PR on the chemical reaction and ackley
problems. The results in Figure 10 show the mean absolute percentage error (MAPE)

100

|Xdiscrete|
·

∑
x∈Xdiscrete,θ∈Θdiscrete

EZ∼p(Z|θ)α(x,Z)− 1
N

∑N
i=1 α(x, z̃i)

maxx∈Xdiscrete,θ∈Θdiscrete EZ∼p(Z|θ)α(x,Z)

evaluated over a random set of |Xdiscrete| = |Θdiscrete|10, 000 points from X × × (the sampled sets
are denoted Xdiscrete,Θdiscrete). We observe a rapid reduction in MAPE as we increase the number of
samples. With 1024 samples, MAPE is 0.055% (+/- 0.0002 %) over 20 replications (different MC
samples in PR) on the chemical reaction problem and MAPE is 0.018% (+/- 0.0003 %) on the ackley
problem.

With 128 samples, MAPE is 0.282% (+/- 0.0029 %) over 20 replications (different MC samples in
PR) on the chemical reaction problem and MAPE is 0.052% (+/- 0.0021 %) on the ackley problem.
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Figure 10: An evaluation of the mean absolute percentage error for the MC estimator of PR (relative
to analytic PR).

G Effect of τ in Transformation

Throughout the main text, we use τ = 0.1, which we selected based on the observation that it provides
a reasonable balance between retaining non-zero gradients of g(φ) with respect to φ and allowing θ
to become close to 0 or 1 as shown in Figure 11.
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Figure 11: A comparison of the reparameterization of θ under various choices of τ . We observe that
τ = 0.1 provides a reasonable balance between retaining non-zero gradients of g(φ) with respect to
φ and allowing θ to become close to 0 or 1.

As τ → 0, the θ can take more extreme values, but the gradient of the transformation with respect to
φ also moves closer to zero. For larger values of τ , the gradient of the transformation with respect
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to φ is larger, but θ has a more limited domain with less extreme values. We find that τ = 0.1 is a
robust setting across all experiments.

H Alternative methods

H.1 Straight-through gradient estimators

An alternative approach to using approximating the gradients under exact rounding using finite
differences is to approximate the gradients using straight-through gradient estimation (STE) [3]. The
idea of STE is to approximate the gradient of a function with the identity function. In our setting, the
gradient of the discretization function with respect to its input is estimated using an identity function.
Using this estimator enables gradient-based AF optimization, even though the true gradient of the
discretization function is zero everywhere that it is defined. Although STEs have been shown to
work well empirically, these estimators are not well-grounded theoretically. Their robustness and
potential pitfalls in the context of AF optimization have not been well studied. Below, we evaluate the
aforementioned EXACT ROUND + STE approach and show that it offers competitive optimization
performance (Figure 12) with fast wall times (Figure 13), but does not quite match the optimization
performance of PR on several benchmark problems.

0 50 100
1

0

1

2

Lo
g 

Re
gr

et

Mixed Int F1

0 50 100
1

2

3

Rosenbrock

0 50 100
1.0

0.5

0.0

Ackley

PR Sobol Cont. Relax. Exact Round Exact Round + STE

0 50 100
0.5

0.0

0.5

1.0
Welded Beam (5 constraints)

0 100 200
Iteration

1.0

0.9

0.8

0.7

Lo
g 

Re
gr

et

SVM

0 200 400
Iteration

0.9

0.8

Cellular Network

0 100 200
Iteration

1

0

1

Chemical Reaction

0 100 200
Iteration

4

5

6
Oil Sorbent (3 objectives)

Figure 12: A comparison of exact rounding with straight-through gradient estimators versus other
acquisition optimization strategies. Log regret on each problem. We report log hypervolume regret
for Oil Sorbent and report the log regret of the best feasible objective for Welded beam.

26



0 50 100

1

10

100

W
all

 T
im

e (
s)

Mixed Int F1

0 50 100

1

10

100 Rosenbrock

0 50 100

1

10

Ackley

PR Sobol Cont. Relax. Exact Round Exact Round + STE

0 50 100
3

10

32

100

Welded Beam (5 constraints)

0 100 200
Iteration

1

10

100

W
all

 T
im

e (
s)

SVM

0 200 400
Iteration

1

10

100
Cellular Network

0 100 200
Iteration

1

10

100
Chemical Reaction

0 100 200
Iteration

1

10

100 Oil Sorbent (3 objectives)

Figure 13: A comparison of wall times of exact rounding with straight-through gradient estimators
versus other acquisition optimization strategies.

H.2 TR methods with alternative optimizers

In this section, we consider alternative methods to PR for optimizing AFs using within trust regions.
The results in Figure 14 show that PR is a consistent best optimizer using TRs, but that STEs work
quite well with TRs in many scenarios.
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Figure 14: A comparison of TR methods with different acquisition optimization strategies. Log
regret on each problem. We report log hypervolume regret for Oil Sorbent and report the log regret of
the best feasible objective for Welded beam.
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Figure 15: A comparison of wall times of TR methods with different acquisition optimization
strategies.

I Acquisition Function Optimization at a Given Wall Time Budget

In Figure 16, we provide additional starting points (64 points, rather than 20) to other non-PR
methods in order to provide them with additional wall-time budget. We find that using PR with 64
MC samples, PR provides rapid convergence compared to other baselines and therefore is a good
optimization routine for any wall time budget.
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Figure 16: A comparison of methods for optimizing acquisition functions at a given wall time budget.

J Alternative categorical kernels

In this section, we demonstrate that PR can be used with arbitrary kernels over the categorical
parameters including those that require discrete inputs (which CONT. RELAX. is incompatible with).
Specifically for the categorical parameters, we compare using (a) a Categorical kernel (default) versus
with a Matérn-5/2 kernel with either (b) one-hot encoded categoricals, (c) a latent embedding kernel
[67], or known embeddings based on density functional theory (DFT) [51]. For the latent embedding
kernel, we follow Pelamatti et al. [44] and use a 1-d latent embedding for categorical parameters
where the cardinality is less than or equal to 3 and a 2-d embedding for categorical parameters
where the cardinality is greater than 3. For each latent embedding, we use an isotropic Matérn-5/2
kernel and use product kernel across the kernels for the categorical, binary, ordinal, and continuous
parameters. For the kernel over DFT embeddings, we use the DFT embeddings for the direct arylation
dataset from Shields et al. [51], which are available at https://github.com/b-shields/edbo.
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It is worth noting that in the Chemical Reaction problem, the black-box objective is a GP surrogate
model with a Categorical kernel that is fit to the direct arylation dataset. The purpose of this section
is demonstrate that PR is agnostic to the choice of kernel over discrete parameters. Because the
Chemical Reaction problem is based on a GP surrogate, we do not draw conclusions about which
choice of kernel is best suited for modeling the true, unknown underlying Chemical Reaction yield
function.
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Figure 17: A comparison of different kernels over categorical parameters. Left: Welded beam has
one categorical parameter, metal type (4 levels). Right: Chemical reaction has three categorical
parameters, solvent, base, and ligand (with 4, 12, and 4 levels, respectively).

K Alternative Acquisition Functions

In this section, we compare PR with expected improvement (EI) against PR with upper confidence
bound (UCB). For UCB, we set the hyperparameter β in each iteration using the method in Kandasamy
et al. [33]. Although UCB comes enjoys bounded regret [52], we find empirically that EI works better
on most problems.
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Figure 18: A comparison of expected improvement (EI) and upper confidence bound (UCB) acquisi-
tion functions with PR.

L Additional Results on Optimizing Acquisition Functions

In this section, we provide additional results on various approaches for optimizing acquisition
functions using the same evaluation procedure as in the main text. We use 50 replications.
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Figure 19: A comparison of methods for optimizing acquisition functions.

M Stochastic vs Deterministic Optimization

We compare optimizing PR with stochastic and deterministic optimization methods. For stochastic
optimizers, we compare stochastic gradient ascent (SGA) and Adam with various initial learning
rates. For SGA, the learning rate is decayed each time step t by multiplying the initial learning rate
by t−0.7 and for Adam a fixed learning rate is used. For stochastic optimizers, the MC estimators of
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PR and its gradient stochastic mini-batches of N = 128 MC samples are used. For deterministic
optimization, base samples are kept fixed. All routines are run for a maximum of 200 iterations. In
Figure 20, we observe that Adam is more robust to the choice of learning rate than SGA and generally
is the best performing method. Furthermore, Adam consistently performs better than deterministic
optimization. We compare Adam with a learning rate of 1

40 against L-BFGS-B in Figure 21.
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Figure 20: A comparison of PR using stochastic and deterministic optimization methods. The initial
learning rate for stochastic gradient ascent is given in parentheses.
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Figure 21: A comparison of optimizing the PO using deterministic estimation (via SAA) and
optimization versus stochastic estimation and optimization.

N Comparison with an Evolutionary Algorithm

In Figures 22 and 22, we compare against the evolutionary algorithm PortfolioDiscreteOnePlusOne,
which is the recommended algorithm for discrete and mixed search spaces in the Nevergrad package
[45]. We find that PR significantly outperforms this baseline by a large margin with respect to log
regret, but is slower than the evolutionary algorithm with respect to wall time.
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Figure 22: A comparison with an evolutionary algorithm with respect to log regret.
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Figure 23: A comparison with an evolutionary algorithm with respect to wall time.
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