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Abstract

Natural language questions are inherently compositional,
and many are most easily answered by reasoning about their
decomposition into modular sub-problems. For example, to
answer “is there an equal number of balls and boxes?” we
can look for balls, look for boxes, count them, and com-
pare the results. The recently proposed Neural Module Net-
work (NMN) architecture [3, 2] implements this approach to
question answering by parsing questions into linguistic sub-
structures and assembling question-specific deep networks
from smaller modules that each solve one subtask. However,
existing NMN implementations rely on brittle off-the-shelf
parsers, and are restricted to the module configurations pro-
posed by these parsers rather than learning them from data.
In this paper, we propose End-to-End Module Networks
(N2NMNs), which learn to reason by directly predicting
instance-specific network layouts without the aid of a parser.
Our model learns to generate network structures (by imitat-
ing expert demonstrations) while simultaneously learning
network parameters (using the downstream task loss). Exper-
imental results on the new CLEVR dataset targeted at com-
positional question answering show that N2NMNs achieve
an error reduction of nearly 50% relative to state-of-the-
art attentional approaches, while discovering interpretable
network architectures specialized for each question.

1. Introduction

Visual Question Answering (VQA) requires joint com-
prehension of images and text. This comprehension often
depends on compositional reasoning, for example locating
multiple objects in a scene and inspecting their properties
or comparing them to one another (Figure 1). While con-
ventional deep networks have shown promising VQA perfor-
mance [9], there is limited evidence that they are capable of
explicit compositional reasoning [15]. Much of the success
of state-of-the-art approaches to VQA instead comes from
their ability to discover statistical biases in the data distribu-
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Figure 1: For each instance, our model predicts a computa-
tional expression and a sequence of attentive module param-
eterizations. It uses these to assemble a concrete network
architecture, and then executes the assembled neural module
network to output an answer for visual question answering.
(The example shows a real structure predicted by our model,
with text attention maps simplified for clarity.)

tion [10]. And to the extent that such approaches are capable
of more sophisticated reasoning, their monolithic structure
makes these behaviors difficult to understand and explain.
Additionally, they rely on the same non-modular network
structure for all input questions.

In this paper, we propose End-to-End Module Networks
(N2NMNs): a class of models capable of predicting novel
modular network architectures directly from textual input
and applying them to images in order to solve question an-
swering tasks. In contrast to previous work, our approach
learns to both parse the language into linguistic structures
and compose them into appropriate layouts.

The present work synthesizes and extends two recent mod-
ular architectures for visual problem solving. Standard neu-
ral module networks (NMNs) [3] already provide a technique
for constructing dynamic network structures from collections
of composable modules. However, previous work relies on
an external parser to process input text and obtain the mod-
ule layout. This is a serious limitation, because off-the-shelf
language parsers are not designed for language and vision
tasks and must therefore be modified using handcrafted rules
that often fail to predict valid layouts [15]. Meanwhile, the
compositional modular network [12] proposed for grounding



referring expressions in images does not need a parser, but is
restricted to a fixed (subject, relationship, object) structure.
None of the existing methods can learn to predict a suitable
structure for every input in an end-to-end manner.

Our contributions are 1) a method for learning a layout
policy that dynamically predicts a network structure for each
instance, without the aid of external linguistic resources at
test time and 2) a new module parameterization that uses a
soft attention over question words rather than hard-coded
word assignments. Experiments show that our model is ca-
pable of directly predicting expert-provided network layouts
with near-perfect accuracy, and even improving on expert-
designed networks after a period of exploration. We ob-
tain state-of-the-art results on the recently released CLEVR
dataset by a wide margin.

2. Related work
Neural module networks. The recently proposed neural
module network (NMN) architecture [3]—a general class
of recursive neural networks [22]—provides a framework
for constructing deep networks with dynamic computational
structure. In an NMN model, every input is associated with
a layout that provides a template for assembling an instance-
specific network from a collection of shallow network frag-
ments called modules. These modules can be jointly trained
across multiple structures to provide reusable, compositional
behaviors. Existing work on NMNs has focused on natu-
ral language question answering applications, in which a
linguistic analysis of the question is used to generate the
layout, and the resulting network applied to some world
representation (either an image or knowledge base) to pro-
duce an answer. The earliest work on NMNs [3] used fixed
rule-based layouts generated from dependency parses [27].
Later work on “dynamic” module networks (D-NMNs) [2]
incorporated a limited form of layout prediction by learning
to rerank a list of three to ten candidates, again generated
by rearranging modules predicted by a dependency parse.
Like D-NMNs, the present work attempts to learn an optimal
layout predictor jointly with module behaviors themselves.
Here, however, we tackle a considerably more challenging
prediction problem: our approach learns to optimize over the
full space of network layouts rather than acting as a reranker,
and requires no parser at evaluation time.

We additionally modify the representation of the assem-
bled module networks themselves: where [3] and [2] param-
eterized individual modules with a fixed embedding supplied
by the parser, here we predict these parameters jointly with
network structures using a soft attention mechanism. This
parameterization resembles the approach used in the “com-
positional modular network” architecture [12] for grounding
referential expressions. However, the model proposed in [12]
is restricted to a fixed layout structure of (subject, relation-
ship, object) for every referential expression, and includes

no structure search.
Learning network architectures. More generally than
these dynamic / modular approaches, a long line of research
focuses on generic methods for automatically discovering
neural network architectures from data. Past work includes
techniques for optimizing over the space of architectures
using evolutionary algorithms [23, 8], Bayesian methods [6],
and reinforcement learning [28]. The last of these is most
closely related to our approach in this paper: both learn a
controller RNN to output a network structure, train a neural
network with the generated structure, and use the accuracy of
the generated network to optimize the controller RNN. A key
difference between [28] and the layout policy optimization
in our work is that [28] learns a fixed layout (network archi-
tecture) that is applied to every instance, while our model
learns a layout policy that dynamically predicts a specific
layout tailored to each individual input example.
Visual question answering. The visual question answering
task [19] is generally motivated as a test to measure the ca-
pacity of deep models to reason about linguistic and visual
inputs jointly [19]. Recent years have seen a proliferation
of datasets [19, 4] and approaches, including models based
on differentiable memory [25, 24], dynamic prediction of
question-specific computations [20, 2], and core improve-
ments to the implementation of the multi-modal represen-
tation and attention mechanism [9, 18]. Together, these
approaches have produced substantial gains over the initial
baseline results published with the first VQA datasets.

It has been less clear, however, that these improvements
correspond to an improvement in the reasoning abilities of
models. Recent work has found that it is possible to do
quite well on many visual QA problems by simply mem-
orizing statistics about question / answer pairs [10] (sug-
gesting that limited visual reasoning is involved), and that
models with bag-of-words text representations perform com-
petitively against more sophisticated approaches [14] (sug-
gesting that limited linguistic compositionality is involved).
To address this concern, newer visual question answering
datasets have focused on exploring specific phenomena in
compositionality and generalization; examples include the
SHAPES dataset [3], the VQAv2 dataset [10], and the CLEVR
dataset [15]. The last of these appears to present the great-
est challenges to standard VQA approaches and the hardest
reasoning problems in general.

Most previous work on this task other than NMN uses a
fixed inference structure to answer every question. However,
the optimal reasoning procedure may vary greatly from ques-
tion to question, so it is desirable to have inference structures
that are specific to the input question. Concurrent with our
work, [16] proposes a similar model to ours. Our model
is different from [16] in that we use a set of specialized
modules with soft attention mechanism to provide textual
parameters for each module, while [16] uses a generic mod-
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Figure 2: Model overview. Our approach first computes a deep representation of the question, and uses this as an input to a
layout-prediction policy implemented with a recurrent neural network. This policy emits both a sequence of structural actions,
specifying a template for a modular neural network in reverse Polish notation, and a sequence of attentive actions, extracting
parameters for these neural modules from the input sentence. These two sequences are passed to a network builder, which
dynamically instantiates an appropriate neural network and applies it to the input image to obtain an answer.

ule implementation with textual parameters hard-coded in
module instantiation.

3. End-to-End Module Networks

We propose End-to-End Module Networks (N2NMNs)
to address compositionality in visual reasoning tasks. Our
model consists of two main components: a set of co-attentive
neural modules that provide parameterized functions for
solving sub-tasks, and a layout policy to predict a question-
specific layout from which a neural network is dynamically
assembled. An overview of our model is shown in Figure 2.

Given an input question, such as how many other things
are there of the same size as the matte ball?, our lay-
out policy first predicts a coarse functional expression like
count(relocate(find()) that describes the structure
of the desired computation, Next, some subset of function
applications within this expression (here relocate and
find) receive parameter vectors predicted from text (here
perhaps vector representations of matte ball and size, re-
spectively). Then a network is assembled with the modules
according to this layout expression to output an answer.

We describe the implementation details of each neural
module fm in Sec. 3.1, and our layout policy in Sec. 3.2. In
Sec. 3.3, we present a reinforcement learning approach to
jointly optimize the neural modules and the layout policy.

3.1. Attentional neural modules

Our model involves a set of neural modules that
can be dynamically assembled into a neural network.
A neural module m is a parameterized function y =
fm(a1, a2, . . . ;xvis, xtxt, θm) that takes zero, one or multi-
ple tensors a1, a2, . . . as input, using its internal parameter
θm and features xvis and xtxt from the image and question
to perform some computation on the input, and outputs a
tensor y. In our implementation, each input tensor ai is an

image attention map over the convolutional image feature
grid, and the output tensor y is either an image attention map,
or a probability distribution over possible answers.

Table 1 shows the set of modules in our N2NMNs model,
along with their implementation details. We assign a name
to each module according to its input and output type and po-
tential functionality, such as find or describe. However,
we note that each module is in itself merely a function with
parameters, and we do not restrict its behavior during train-
ing. In addition to the input tensors (that are outputs from
other modules), a module m can also use two additional fea-
ture vectors xvis and x(m)

txt , where xvis is the spatial feature
map extracted from the image with a convolutional neural
network, and x(m)

txt is a textual vector for this module m that
contains information extracted from the question q. In addi-
tion, and and or take two image attention maps as inputs,
and return their intersection or union respectively.

In Table 1, the find module outputs an attention map
over the image and can be potentially used to localize some
objects or attributes. The relocate module transforms
the input image attention map and outputs a new attention
map, which can be useful for spatial or relationship infer-
ence. Also the filter module reuses find and and, and
can be used to simplify the layout expression. We use two
classes of modules to infer an answer from a single attention
map: the first class has the instances exist and count
(instances share the same structure, but have different pa-
rameters). They are used for simple inference by looking
only at the attention map. The second class, describe,
is for more complex inference where visual appearance is
needed. Similarly, for pairwise comparison over two atten-
tion maps we also have two classes of available modules with
(compare) or without (eq count,more,less) access
to visual features.

The biggest difference in module implementation be-
tween this work and [3] is the textual component. Hard-



Module name Att-inputs Features Output Implementation details
find (none) xvis, xtxt att aout = conv2 (conv1(xvis)�Wxtxt)
relocate a xvis, xtxt att aout = conv2 (conv1(xvis)�W1sum(a� xvis)�W2xtxt)
and a1, a2 (none) att aout = minimum(a1, a2)
or a1, a2 (none) att aout = maximum(a1, a2)
filter a xvis, xtxt att aout = and(a, find[xvis, xtxt]()), i.e. reusing find and and
[exist, count] a (none) ans y = WT vec(a)
describe a xvis, xtxt ans y = WT

1 (W2sum(a� xvis)�W3xtxt)
[eq count, more, less] a1, a2 (none) ans y = WT

1 vec(a1) +WT
2 vec(a2)

compare a1, a2 xvis, xtxt ans y = WT
1 (W2sum(a1 � xvis)�W3sum(a2 � xvis)�W4xtxt)

Table 1: The full list of neural modules in our model. Each module takes 0, 1 or 2 attention maps (and also visual and textual
features) as input, and outputs either an attention map aout or a score vector y for all possible answers. The operator �
is element-wise multiplication, and sum is summing the result over spatial dimensions. The vec operation is flattening an
attention map into a vector, and adding two extra dimensions: the max and min over attention map.

coded textual components are used in [3], for example,
describe[‘shape’] and describe[‘where’] are two dif-
ferent instantiations that have different parameters. In con-
trast, our model obtains the textual input using soft attention
over question words similar to [12]. For each module m, we
predict an attention map α(m)

i over the T question words
(in Sec. 3.2), and obtain the textual feature xtxt for each
module:

x
(m)
txt =

T∑
i=1

α
(m)
i wi (1)

where wi is the word embedding vector for word i
in the question. At runtime, the modules can be
assembled into a network according to a layout l,
which is a computation expression consisting of modules,
such as fm2(fm4(fm1), fm3(fm1, fm1)), where each of
fm1, · · · , fm4 is one of the modules in Table 1.

3.2. Layout policy with sequence-to-sequence RNN

We would like to predict the most suitable reasoning
structure tailored to each question. For an input question q
such as What object is next to the table?, our layout policy
outputs a probability distribution p(l|q), and we can sam-
ple from p(l|q) to obtain high probability layout l such as
describe(relocate(find())) that are effective for
answering the question q. Then, a neural network is assem-
bled according to the predicted layout l to output an answer.

Unlike in [2] where the layout search space is re-
stricted to a few parser candidates, in this work, we search
over a much larger layout space: in our model, the lay-
out policy p(l|q; θlayout) predicts a distribution over the
space of all possible layouts. Every possible layout l is
an expression that consists of neural modules, such as
fm2(fm1, fm3(fm1, fm1)), and can be represented as a syn-
tax tree. So each layout expression can be mapped one-to-
one into a linearized sequence l = {m(t)} using Reverse
Polish Notation [7] (the post-order traversal over the syntax
tree). Figure 3 shows an example for an expression and its
linearized module token sequence.

After linearizing each layout l into a sequence of module
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Figure 3: An example showing how an arbitrary layout
expression can be linearized as a sequence of module tokens.

tokens {m(t)}, the layout prediction problem turns into a
sequence-to-sequence learning problem from questions to
module tokens. We address this problem using the atten-
tional Recurrent Neural Network [5]. First, we embed every
word i in the question into a vector wi (also embedding all
module tokens similarly), and use a multi-layer LSTM net-
work as the encoder of the input question. For a question
q with T words, the encoder LSTM outputs a length-T se-
quence [h1, h2, · · · , hT ]. The decoder is a LSTM network
that has the same structure as the encoder but different pa-
rameters. Similar to [5], at each time step in the decoder
LSTM, a soft attention map over the input sequence is pre-
dicted. At decoder time-step t, the attention weights αti of
input word at position i ∈ {1, · · · , T} are predicted as

uti = vT tanh(W1hi +W2ht) (2)

αti =
exp(uti)∑T
j=1 exp(utj)

(3)

where hi and ht are LSTM outputs at encoder time-step i
and decoder time-step t, respectively, and v, W1 and W2

are model parameters to be learned from data. Then a con-
text vector ct is obtained as

∑T
i=1 αtihi, and the probability

for the next module token m(t) is predicted from ht and ct
as p(m(t)|m(1), · · · ,m(t−1), q) = softmax(W3ht+W4ct).
We sample from p(m(t)|m(1), · · · ,m(t−1), q) to discretely
get the next token m(t), and also construct its textual in-
put x(t)txt according to Eqn. 1 using the attention weights
αti in Eqn. 3. The probability of a layout l is p(l|q) =



∏
m(t)∈l p(m

(t)|m(1), · · · ,m(t−1), q). At test time, we de-
terministically predict a maximum-probability layout l from
p(l|q) using beam search, and assemble a neural network
according to l to output an answer for the question.

3.3. End-to-end training

During training, we jointly learn the layout policy p(l|q)
and the parameters in each neural module, and minimize the
expected loss from the layout policy. Let θ be all the param-
eters in our model. Suppose we obtain a layout l sampled
from p(l|q; θ) and receive a final question answering loss
L̃(θ, l; q, I) on question q and image I after predicting an
answer using the network assembled with l. Our training
loss function L(θ) is as follows.

L(θ) = El∼p(l|q;θ)[L̃(θ, l; q, I)] (4)

where we use the softmax loss over the output answer scores
as L̃(θ, l; q, I) in our implementation.

The loss function in L(θ) is not fully differentiable
since the layout l is discrete, so one cannot train it with
full back-propagation. We optimize L(θ) using back-
propagation for differentiable parts, and policy gradient
method in reinforcement learning for non-differentiable
part. The gradient ∇θL of the loss L(θ) is ∇θL =

El∼p(l|q;θ)

[
L̃(θ, l)∇θ log p(l|q; θ) +∇θL̃(θ, l)

]
which can

be estimated using Monte-Carlo sampling as

∇θL ≈
1

M

M∑
m=1

(
L̃(θ, lm)∇θ log p(lm|q; θ) +∇θL̃(θ, lm)

)
(5)

where both log p(lm|q; θ) and L̃(θ, lm) are fully differen-
tiable so the above equation can be computed with back-
propagation, allowing end-to-end training for the entire
model. We use M = 1 in our implementation.

To reduce the variance of the estimated gradient, we
introduce a simple baseline b, by replacing L̃(θ, lm) with
L̃(θ, lm)− b in Eqn. 5, where b is implemented as an expo-
nential moving average over the recent loss L̃(θ, lm). We
also use an entropy regularization α = 0.005 over the policy
p(l|q) to encourage exploration through the layout space.

Behavioral cloning from expert polices. Optimizing the
loss function in Eqn. 4 from scratch is a challenging rein-
forcement learning problem: one needs to simultaneously
learn the parameters in the sequence-to-sequence RNN to
optimize the layout policy and textual attention weights to
construct the textual features x(m)

txt for each module, and also
the parameters in the neural modules. This is more challeng-
ing than a typical reinforcement learning scenario where one
only needs to learn a policy.

On the other hand, the learning would be easier if we
have some additional knowledge of module layout. While

we do not want to restrict the layout search space to only a
few candidates from the parser as in [2], we can treat these
candidate layouts as an existing expert policy that can be
used to provide additional supervision. More generally, if
there is an expert policy pe(l|q) that predicts a reasonable
layout l from the question, we can first pre-train our model by
behavioral cloning from pe. This can be done by minimizing
the KL-divergenceDKL(pe||p) between the expert policy pe
and our layout policy p, and simultaneously minimizing the
question answering loss L̃(θ, l; q, I) with l obtained from pe.
This supervised behavioral cloning from the expert policy
can provide a good set of initial parameters in our sequence-
to-sequence RNN and each neural module. Note that the
above behavioral cloning procedure is only done at training
time to obtain a supervised initialization our model, and the
expert policy is not used at test time.

The expert policy is not necessarily optimal, so behavioral
cloning itself is not sufficient for learning the most suitable
layout for each question. After learning a good initialization
by cloning the expert policy, our model is further trained end-
to-end with gradient ∇θL computed using Eqn. 5, where
now the layout l is sampled from the layout policy p(l|q) in
our model, and the expert policy pe can be discarded.

We train our models using the Adam Optimizer [17]
in all of our experiments. Our model is implemented us-
ing TensorFlow [1] and our code is available at http:
//ronghanghu.com/n2nmn/.

4. Experiments
We first analyze our model on a relatively small SHAPES

dataset [3], and then apply our model to two large-scale
datasets: CLEVR [15] and VQA [4].

4.1. Analysis on the SHAPES dataset

The SHAPES dataset for visual question answering (col-
lected in [3]) consists of 15616 image-question pairs with
244 unique questions. Each image consists of shapes of
different colors and sizes aligned on a 3 by 3 grid. Despite
its relatively small size, effective reasoning is needed to suc-
cessfully answer questions like “is there a red triangle above
a blue shape?”. The dataset also provides a ground-truth
parsing result for each question, which is used to train the
NMN model in [3].

We analyze our method on the SHAPES dataset under
two settings. In the first setting, we train our model using
behavioral cloning from an expert layout policy as described
in Sec. 3.3. An expert layout policy pe is constructed by
mapping the the ground-truth parsing for each question to
a module layout in the same way as in [3]. Note that unlike
[3], in this setting we only need to query the expert policy at
training time. At test time, we obtain the layout l from the
learned layout policy p(l|q) in our model, while NMN [3]
still needs to access the ground-truth parsing at test time.

http://ronghanghu.com/n2nmn/
http://ronghanghu.com/n2nmn/


Method Accuracy
NMN [3] 90.80%
ours - behavioral cloning from expert 100.00%
ours - policy search from scratch 96.19%

Table 2: Performance of our model on the SHAPES dataset.
“ours - behavioral cloning from expert” corresponds to the
supervised behavioral cloning from the expert policy pe, and
“ours - policy search from scratch” is directly optimizing the
layout policy without utilizing any expert policy.

is a circle below a 
square?

is a square left of right 
of a green shape?

predicted layout and answer

behavior cloning from the expert policy
exist(and(find(), relocate(find())))
ans_output: "yes"

policy search from scratch (without expert policy)
exist(relocate(find()))
ans_output: "yes"

behavior cloning from the expert policy
exist(and(find(),

relocate(relocate(find()))))
ans_output: "no"

policy search from scratch (without expert policy)
exist(find())
ans_output: "no"

image and question

Figure 4: Examples of layouts predicted by our model on
the SHAPES dataset, under two training settings (Sec. 4.1).

In the second setting, we train our model without using
any expert policy, and directly perform policy optimization
by minimizing the loss function L(θ) in Eqn. 4 with gradient
∇θL in Eqn. 5. For both settings, we use a simple randomly
initialized two-layer convolutional neural network to extract
visual features from the image, trained together with other
parts of our model.

The results are summarized in Table 2. In the first setting,
we find that our model (“ours - behavioral cloning from
expert”) already achieves 100% accuracy. While this shows
that the expert policy constructed from ground-truth parsing
is quite effective on this dataset, the higher performance of
our model compared to the previous NMN [3] also suggests
that our implementation of modules is more effective than
[3], since the NMN is also trained with the same expert
module layout obtained from the ground-truth parsing. In
the second setting, our model achieves a good performance
on this dataset by performing policy search from scratch
without resorting to any expert policy. Figure 4 shows some
examples of predicted layouts and answers on this dataset.

4.2. Evaluation on the CLEVR dataset

We evaluate our End-to-End Module Networks on the
recently proposed CLEVR dataset [15] with 100,000 images
and 853,554 questions. The images in this dataset are photo-
realistic rendered images with objects of different shapes,
colors, materials and sizes and possible occlusions, and the
questions in this dataset are synthesized with functional pro-

grams. Compared to other datasets for visual question an-
swering such as [4], the CLEVR dataset focuses mostly on the
reasoning ability. The questions in the CLEVR dataset have
much longer question length, and require handling long and
complex inference chains to get an answer, such as “what
size is the cylinder that is left of the brown metal thing that
is left of the big sphere?” and “there is an object in front of
the blue thing; does it have the same shape as the tiny cyan
thing that is to the right of the gray metal ball?”.

In our experiment on this dataset, we resize each image
to 480 × 320, and extract a 15 × 10 convolutional feature
map from each image by forwarding the image through the
VGG-16 network [21] trained on ImageNET classification,
and take the 512-channel pool5 output. To help reason about
spatial properties, we add two extra x = i

15 and y = j
10

dimensions to each location (i, j) on the feature map similar
to [13], so the final visual feature xvis on each image is a
15× 10× 514 tensor. Each question word is embedded to a
300-dimensional vector initialized from scratch. We use a
batch size of 64 during training.

In the first training stage, behavioral cloning is used with
an expert layout policy as described in Sec. 3.3. We con-
struct an expert layout policy pe that deterministically maps
a question q into a layout le by converting the annotated
functional programs in this dataset into a module layout with
manually defined rules: first, the program chain is simplified
to keep all intermediate computation in the image attention
domain, and then each function type is mapped to a module
in Table 1 that has the same number of inputs and closest
potential behavior.

While the manually specified expert policy pe obtained
in this way might not be optimal, it is sufficient to pro-
vide supervision to learn good initial model parameters that
can be further optimized in the later stage. During behav-
ioral cloning, we train our model with two losses added
together: the first loss is the KL-divergence DKL(pe||p) =
− log(p(l = le|q)), which corresponds to maximizing the
probability of the expert layout le in our policy p(l|q) from
the sequence-to-sequence RNN, and the second loss is the
question answering loss L̃(θ, le; q, I) for question q and im-
age I , where the layout le is obtained from the expert. Note
that the second loss L̃(θ, le; q, I) also affects the parame-
ters in the sequence-to-sequence RNN through the textual
attention in Eqn. 3.

After the first training stage, we discard the expert policy
and continue to train our model for a second stage with end-
to-end reinforcement learning, using the gradient in Eqn. 5.
In this stage, the model is no longer constrained to get close
to the expert, but is encouraged to explore the layout space
and search for the optimal layout of each question.

As a baseline, we also train our model without using
any expert policy, and directly perform policy search from
scratch by minimizing the loss function L(θ) in Eqn. 4.
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(excluding the initial ball). On the right, it can be seen the various modules similarly assume intuitive semantics. Of particular
interest is the second find module, which picks up the word right in addition to metallic red thing: this suggests that model
can use the fact that downstream computation will look to the right of the detected object to focus its initial search in the left
half of the image, a behavior supported by our attentive approach but not a conventional linguistic analysis of the question.

Compare Integer Query Attribute Compare Attribute

Method Overall Exist Count equal less more size color material shape size color material shape

CNN+BoW [26] 48.4 59.5 38.9 50 54 49 56 32 58 47 52 52 51 52
CNN+LSTM [4] 52.3 65.2 43.7 57 72 69 59 32 58 48 54 54 51 53
CNN+LSTM+MCB [9] 51.4 63.4 42.1 57 71 68 59 32 57 48 51 52 50 51
CNN+LSTM+SA [25] 68.5 71.1 52.2 60 82 74 87 81 88 85 52 55 51 51

NMN (expert layout) [3] 72.1 79.3 52.5 61.2 77.9 75.2 84.2 68.9 82.6 80.2 80.7 74.4 77.6 79.3

ours - policy search
from scratch 69.0 72.7 55.1 71.6 85.1 79.0 88.1 74.0 86.6 84.1 50.1 53.9 48.6 51.1

ours - cloning expert 78.9 83.3 63.3 68.2 87.2 85.4 90.5 80.2 88.9 88.3 89.4 52.5 85.4 86.7
ours - policy search
after cloning 83.7 85.7 68.5 73.8 89.7 87.7 93.1 84.8 91.5 90.6 92.6 82.8 89.6 90.0

Table 3: Evaluation of our method and previous work on CLEVR test set. With policy search after cloning, the accuracies are
consistently improved on all questions types, with large improvement on some question types like compare color.

We evaluate our model on the test set of CLEVR. Table 3
shows the detailed performance of our model and previous
methods on each question type, where “ours - policy search
from scratch” is the baseline using pure reinforcement learn-
ing without resorting to the expert, “ours - cloning expert”
is the supervised behavioral cloning from the constructed
expert policy in the first stage, and “ours - policy search
after cloning” is our model further trained for the second
training stage. It can be seen that without using any ex-
pert demonstrations, our method with policy optimization
from scratch already achieves higher performance than most
previous work, and our model trained in the first behavioral
cloning stage outperforms the previous approaches by a large
margin in overall accuracy. This indicates that our neural
modules are capable of reasoning for complex questions in
the dataset like “does the block that is to the right of the big
cyan sphere have the same material as the large blue thing?”

Our model also outperforms the NMN baseline [3] trained
on the same expert layout as used in our model1. This shows
that our soft attention module parameterization is better than
the hard-coded textual parameters in NMN. Figure 5 shows
some question answering examples with our model.

By comparing “ours - policy search after cloning” with
“ours - cloning expert” in Table 3, it can be seen that the
performance consistently improves after end-to-end training
with policy search using reinforcement learning in the second
training stage, with especially large improvement on the
compare color type of questions, indicating that the original
expert policy is not optimal, and we can improve upon it
with policy search over the entire layout space. Figure 6
shows an example before and after end-to-end optimization.

1The question parsing in the original NMN implementation does not
work on the CLEVR dataset, as confirmed in [15]. For fair comparison with
NMN, we train NMN using the same expert layout as our model.



question: do the small cylinder that is in front of the small green thing and the object right of the green cylinder have the same material?
ground-truth answer: no

image layout find[0] relocate[1] filter[2] find[3] relocate[4] compare[5]
compare[5](
filter[2](
relocate[1](
find[0]())),

relocate[4](
find[3]()))

"yes"

image layout find[0] relocate[1] filter[2] find[3] relocate[4] filter[5] compare[6]
compare[6](
filter[2](
relocate[1](
find[0]())),

filter[5](
relocate[4](
find[3]())))

"no"

after 2nd

training 
stage

before 2nd

training 
stage

textual 
attention

Figure 6: An example illustrating the layout change before (top row) and after (middle row) the second stage of end-to-end
optimization with reinforcement learning. After end-to-end learning, a new filter module is inserted by the layout policy to
remove the attention over the non-object area before feeding it into the final compare module, correcting the previous error.

desk

What is behind the foot of 
the bed?

find

relocate

describe

Figure 7: An example from our model on the VQA dataset.

5. Evaluation on the VQA dataset

We also evaluate our method on the VQA dataset [4] with
real images. On the VQA dataset, although there are no un-
derlying functional programs annotation for the questions,
we can still construct an expert layout policy using a syntac-
tic parse of questions as in [3, 2]. We extract visual features
from the ResNet-152 network [11], and train our model in
the same way as in Sec. 4.2. On this dataset, however,
we find that the second training stage of policy search after
cloning does not lead to noticeable improvement in the accu-
racy, so we only evaluate our model with behavioral cloning
from the expert layout obtained by syntactic parsing. Unlike
previous work [3, 2], the syntactic parser is only used during
the training stage and is not needed at test time.

The results are summarized in Table 4, where our method
significantly outperforms NMN [3] and D-NMN [2] that
also use modular structures. Compared with MCB [9] (the
VQA 2016 challenge winner method) trained on the same
ResNet-152 image features, our model achieves compara-
ble performance while being more interpretable as one can

Method Accuracy
MCB [9] 64.7
NMN [3] 57.3
D-NMN [2] 57.9
ours 64.2

Table 4: Evaluation of our method on the VQA dataset. Our
model outperforms previous work NMN and D-NMN and
achieves comparable performance as MCB.

explicitly see the underlying reasoning procedure. Figure 7
shows a prediction example on this dataset.

6. Conclusion

In this paper, we present the End-to-End Module Net-
works for visual question answering. Our model uses a set of
neural modules to break down complex reasoning problems
posed in textual questions into a few sub-tasks connected
together, and learns to predict a suitable layout expression
for each question using a layout policy implemented with a
sequence-to-sequence RNN. During training, the model can
be first trained with behavioral cloning from an expert layout
policy, and further optimized end-to-end using reinforcement
learning. Experimental results demonstrate that our model
is capable of handling complicated reasoning problems, and
the end-to-end optimization of the neural modules and lay-
out policy can lead to significant further improvement over
behavioral cloning from expert layouts.
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