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Abstract
Generative Adversarial Networks (GANs) can successfully
approximate a probability distribution and produce realistic
samples. However, open questions such as sufficient conver-
gence conditions and mode collapse still persist. In this pa-
per, we build on existing work in the area by proposing a
novel framework for training the generator against an en-
semble of discriminator networks, which can be seen as a
one-student/multiple-teachers setting. We formalize this prob-
lem within the full-information adversarial bandit framework,
where we evaluate the capability of an algorithm to select
mixtures of discriminators for providing the generator with
feedback during learning. To this end, we propose a reward
function which reflects the progress made by the generator
and dynamically update the mixture weights allocated to each
discriminator. We also draw connections between our algo-
rithm and stochastic optimization methods and then show that
existing approaches using multiple discriminators in literature
can be recovered from our framework. We argue that less ex-
pressive discriminators are smoother and have a general coarse
grained view of the modes map, which enforces the generator
to cover a wide portion of the data distribution support. On the
other hand, highly expressive discriminators ensure samples
quality. Finally, experimental results show that our approach
improves samples quality and diversity over existing baselines
by effectively learning a curriculum. These results also sup-
port the claim that weaker discriminators have higher entropy
improving modes coverage.

1 Introduction
Generative Adversarial Networks (GANs, Goodfellow et
al., 2014) have reshaped the state of machine learning in
tasks that involve generating data. A GAN is an unsupervised
method that consists of two neural networks, a generator
and a discriminator, with opposing (or adversarial) objec-
tives. The typical goal of the generator is to transform noise
(e.g., drawn from a normal distribution) into samples whose
statistical and structural characteristics match well those of
an empirical target dataset (such as a collection of images).
The discriminator, which acts as an adversary to the gener-
ator, needs to discriminate between (or classify) samples as
coming from the real data or the generator.
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While GANs can achieve impressive qualitative perfor-
mance (most notably with image data, e.g., see Karras et
al., 2017; Miyato et al., 2018; Roth et al., 2017), the most
successful methods depart from the original formulation to
address various instabilities and other optimization difficul-
ties (Arjovsky and Bottou, 2017; Arjovsky, Chintala, and
Bottou, 2017). One such difficulty in training GANs occurs
when the generator produces samples only from a small
subset of the target distribution, a phenomenon known as
missing modes (a.k.a., mode-dropping, e.g. see Che et al.,
2016). Numerous works try to address the problem by mod-
ifying the original objective, such as unrolling (Metz et al.,
2016), aggregating samples (Lin et al., 2017), stacked ar-
chitectures (Huang et al., 2016; Karras et al., 2017), mutual
information / entopy maximization (Belghazi et al., 2018),
multiple discriminators (Juefei-Xu, Boddeti, and Savvides,
2017; Neyshabur, Bhojanapalli, and Chakrabarti, 2017), or
multiple generators (Hoang et al., 2017; Kwak and Zhang,
2016; Tolstikhin et al., 2017).

In our work, we follow the intuition that missing modes in
GANs are due in part to mode-specific vanishing gradients.
As a simple illustrative example which we explore in detail in
our experiments below (Fig. 1), consider a discriminator that
is well representing the target distribution and a generator
that is only generating a subset of the modes in the data. If
any of the missing modes are disjoint from those represented
in the generator (i.e., are composed of sets of features with
low intersection), there is no way for the generator to receive
gradient signal on missing modes from the discriminator.
However, if the discriminator only represents the data ap-
proximately (in the sense that it also cannot fully distinguish
between these modes), it may be possible to recover the miss-
ing mode gradient signal. If this can be achieved by using
a low capacity1 discriminator, it is ultimately undesirable
given that the end goal is to generate samples that resemble
well the target dataset. From now on, we will refer to such
low capacity discriminators as weak and to high capacity
discriminators as strong. In order to ensure both high quality
and mode coverage, we consider multiple discriminators (as
in Durugkar, Gemp, and Mahadevan, 2016) with different
strengths to train the generator. We propose to train the gen-

1Throughout the paper, we refer to capacity as the architecture
size of a given neural network in terms of number of parameters.



Figure 1: Recovering dropped modes via multiple
discriminators. The weak discriminator provides feedback,

allowing the generator to recover forgotten modes. The
strong discriminator experiences vanishing gradient and

cannot help the generator to recover modes.

erator using a curriculum based on an on-line multi-armed
bandit algorithm (Graves et al., 2017; Matiisen et al., 2017),
dynamically changing the weight/resources allocated to each
discriminator, which we show is crucial for achieving good
results. Our primary contributions are:

1. We provide important insights into the missing mode prob-
lem as demonstrated by the gradient signal available to
the generator from the discriminator.

2. As a potential solution to the missing modes problem,
we introduce a new framework based on adversarial ban-
dits (Auer et al., 1995; Freund and Schapire, 1997; Lit-
tlestone and Warmuth, 1994) resource allocation, where
the generator gets its training signal from a set of teacher
networks with increasing capacity.

3. We show that the proposed approach leads to a curricu-
lum learning characterized by successive phases of the
generator prioritizing different discriminators.

The remainder of this paper is organized as follows. Pre-
vious literature relevant to this work is briefly reviewed on
Section 2. The proposed approach is formally introduced in
Section 3, and an empirical analysis is reported in Section 4.
Conclusions and future directions are finally presented in
Section 5.

2 Related Work
Mode coverage and data / model augmentation The in-
tuition that missing modes are due to vanishing gradients
resonates with some successful approaches on stabilizing
and improving GAN training through data and model aug-
mentation. Instance noise (Arjovsky and Bottou, 2017) has
been shown to improve stability (see also Roth et al., 2017),
which can be understood as smoothing the data modes in
the pixel space. Progressively reducing the downsampling
through training (either by copying parameters or feeding
low resolution samples into a larger generator) have also
been considered previously (Huang et al., 2016; Karras et al.,
2017) as solutions to increase mode overlap. This is akin to a

hand-crafted curriculum, progressively increasing the diffi-
culty of the problem at a-priori chosen points in the complete
training procedure.

Multiple discriminators and generators Several works
have also incorporated multiple generators or discrimina-
tors in order to improve learning. Multiple-generator meth-
ods (Hoang et al., 2017; Kwak and Zhang, 2016; Tolstikhin
et al., 2017) typically work by encouraging the generators to
divide the task of generating by modes in the target dataset
(without additional supervision). Using multiple discrimina-
tors (Juefei-Xu, Boddeti, and Savvides, 2017; Neyshabur,
Bhojanapalli, and Chakrabarti, 2017), on the other hand, is
known to provide a better learning signal for the generator if
said discriminators compositionally represent well the target
datasets. Closest to our work, Durugkar, Gemp, and Mahade-
van (2016) consider discriminators of different complexity
to provide varied signal. We will show that wisely designing
the reward allows to track the progress made by the generator
and encourages a curriculum learning.

Multi-armed bandit as a curriculum learning method for
GANs Curriculum learning (Bengio et al., 2009) phrases a
given machine learning problem as a set of tasks of increas-
ing difficulty. GANs can also be said to share aspects with
curriculum learning: the discriminator defines an objective
of progressive difficulty,

thus allowing the generator to gradually learn to more
faithfully mimic the target distribution. However, there is
no explicit mechanism to encourage a sensible curriculum
for either model. For example, if the discriminator learns to
represent disjoint modes faster than the generator learns to
cover them, this can lead to the generator missing modes with
no gradient signal to recover.

In this paper, we propose an algorithm which gives rise to
a curriculum in a direct manner. Our approach borrows from
curriculum learning in multi-armed bandit setting (Graves et
al., 2017; Matiisen et al., 2017), where learning is typically
done by measuring the change in a performance criterion of
a given agent (i.e. a loss function, score or gradient norm can
be used) that appears to affect the form of the optimal policy.
In our method, given a set of discriminators, the goal is to
weight the feedback received by the generator proportion-
ally to the information contained in the gradients from each
discriminator.

3 Adaptative Curriculum GAN
Here we formulate the problem and approach for training
a single generator on a target dataset using a curriculum
over multiple discriminators, which we call Adaptative Cur-

riculum GAN (acGAN). First, define a generator function,
G : Z 7! X , which maps noise from a domain Z to the do-
main of a target dataset, X (such as the space of images). Let
p(x) denote the target density 2, and let p(z) denote the prior
density defined on Z used to draw noise samples for input
into the generator. We wish to train this generator function
using N discriminators, D = {Di : X 7! R}Ni=1, such that

2Here, we assume for the sake of notation that the target data
admits a density.
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Figure 2: Proposed procedure for training the generator

on each episode t, we select the mixture of discriminators
that provides the best learning signal.

3.1 Mixing discriminators
This mixture-of-experts problem, where each discriminator
plays the role of a teacher, can be tackled under the full-
information adversarial bandit setting (Auer et al., 1995;
Freund and Schapire, 1997; Littlestone and Warmuth, 1994).
On each episode t, a bandit player associates normalized
weights ⇧(t) = {⇡i(t)}Ni=1 with discriminators {Di}Ni=1.
The generator is then trained based on the mixture described
by ⇧(t), and a reward Ri(t) is observed for each discrimi-
nator Di, characterizing the generator’s improvement with
respect to Di. Let R(t) =

PN
i=1 ⇡iRi(t) denote the total ob-

served reward at time t. The goal of the player is to learn the
optimal policy ⇧?(t) := argmax⇧2�(N�1) E⇧(t),p(z)[R(t)]

that maximizes the expected total reward3.
The Hedge algorithm (Freund and Schapire, 1997), also

known as Boltzmann or Gibbs distribution, addresses this
full-information game by maintaining probabilities

⇡i(t) =
exp�Qi(t)

NP
j=1

exp�Qj(t)

, � � 0, (1)

for each discriminator Di, where Qi(t) estimates the gain
of Di at episode t. In this case, � is a parameter of the dis-
tribution: � = 0 corresponds to a uniform distribution over
all models. We found experimentally that using a moving
average on previous rewards (which also featured in Matiisen
et al., 2017) stabilizes the training:

Qi(t) = ↵Ri(t) + (1� ↵)Qi(t� 1), (2)

where ↵ 2 (0, 1) is the smoothing parameter.
To demonstrate how this can be used to train GANs, con-

sider the usual value function (Goodfellow et al., 2014):

V (D,G) = Ep(x)[log(D(x))] + Ep(z)[log(1�D(G(z)))].
(3)

On each episode t, given the mixture of discriminators ⇧(t),
each discriminator is trained by taking a gradient step to
increase the expected value function

E⇧(t)[V (Di, G)] =
X

j

⇡j(t)V (Dj , G), (4)

3�(N � 1) denotes the standard simplex on RN .

and the generator is trained by taking a gradient step to in-
crease

E⇧(t)[Ep(z)[log(D(G(z)))]]. (5)

The latter corresponds to the non-saturated version of Eq. 4
for the generator. The intuition is that training the genera-
tor with all the discriminators simultaneously (as a mixture)
should force the generator to fool all discriminators at the
same time (Durugkar, Gemp, and Mahadevan, 2016). Since
each discriminator has an increasing level view of the modes
distribution, they should have a complementary role. While
the weaker discriminator focuses on modes coverage, the
stronger discriminator ensures samples quality (showed in
Section 4.1). This should result into a better overall coverage
of the modes in the input distribution.

Algorithm 1 describes our proposed acGAN procedure. We
denote and parameterize this algorithm as acGAN(�,↵,Rr)
where � � 0,↵ 2 (0, 1).

Algorithm 1 Generic acGAN algorithm
1: Given: N : number of discriminators, Tmax: time steps,

Twarmup: warmup time, ↵: moving average coefficient,
�: Boltzmann constant

2: Qi(0) 0, 8i = 1, . . . , N
3: for t = 1, . . . , Tmax do
4: Update all discriminators {Di}Ni=1 using Eq. 4
5: Update the generator G using Eq. 5
6: if t � Twarmup then
7: Evaluate the performance of G and observe a re-

ward Ri(t) for each discriminator i
8: Update all values {Qi(t)}Ni=1 according to Eq. 2

9: ⇡i(t) exp�Qi(t) /
NP
j=1

exp�Qj(t) 8i = 1 . . . N

10: end if
11: end for

Remark 1. At the beginning of the training, we define a

warm-up period Twarmup, prior to which we train Di and G
with a uniform probability, i.e ⇡i =

1
N , 8i = 1, . . . , N . In

other words, we consider � = 0, 8t  Twarmup. This guaran-

tees that each discriminator is updated a minimum number

of times (or provides feedback a minimum number of times

to the generator) and prevents one Dj from dominating the

others (i.e, ⇡j � ⇡i, 8i 6= j) at the beginning of the training.

Without this safeguard, the remaining weights ⇡i, i 6= j would

hardly recover a significant probability and the generator

may never get informative gradient from the corresponding

discriminator. Note that warm-ups are not uncommon either

in bandits algorithm, e.g. for adding robustness to the tails of

reward distributions (Baransi, Maillard, and Mannor, 2014).

3.2 Reward shaping
In order to provide meaningful feedback for learning effi-
cient mixtures of discriminators, we consider different re-
ward functions to generate Ri(t). We argue that progress
(i.e., the learning slope (Graves et al., 2017; Matiisen et al.,
2017)) of the generator is a more sensible way to evaluate our



policy. Let ✓(t) be the generator parameters at episode t. We
define the two following quantities for measuring generator
progress:

RS
i (t) = Ep(z)[Di(G(z; ✓(t)))

�Di(G(z; ✓(t� 1)))], (6)

RV
i (t) = Ep(z)[V (Di, G(z; ✓(t)))

� V (Di, G(z; ✓(t� 1)))]. (7)

The former measures the progress of the generator with re-
spect to the discriminator i score Di(·), while the latter assess
the change in the loss function (Eq. 3). Since the change in
the quality sample (Eq .6) led to better performance than the
change in the loss function (Eq .7), all our experiments (see
Section. 4) use Eq .6.

3.3 Connection to existing methods
Interestingly, some existing methods in the GAN literature
can be seen as a specific case of acGAN:

GMAN: The original GMAN (Durugkar, Gemp, and Ma-
hadevan, 2016) algorithm can be recovered by setting ↵ = 1
and taking the loss function to be the reward Ri(t) =
V (Di, G). Note how the authors of GMAN call their algo-
rithm GMAN-�, where � is also the Boltzmann coefficient.

Uniform: The uniform case is defined by assigning a fixed
uniform probability for each discriminator Di:

⇡i(t) =
1

N
, 8t 2 N.

This corresponds to Eq. 1 with � = 0.
To support the results of our theoretical work, we con-

ducted a set of experiments which we describe below.

4 Experiments
In this section, we first give an understanding of how each
discriminator provides informative feedback to the generator.
We then compare our proposed approach (acGAN) against
existing methods from the literature.

4.1 Retaining mode information through weaker
capacity discriminators and smoothness

We begin by analyzing the gradient norm of the discrimi-
nator networks and we show that weak capacity discrimi-
nators are smoother than strong discriminators. This prop-
erty corresponds to a "coarse-grained" representation of the
distribution, which allows the generator to recover missing
modes. We further show we can increase the smoothness of a
weak discriminator by corrupting its inputs with white noise.
This results in an increase of the discriminator’s entropy (see
Supplementary Material section 5.3) and hence smoother
gradient signal.

Weak Discriminators: a way to retain modes We now
highlight the role of weaker capacity discriminators. To this
extent, we performed the following experiments on the 8
Gaussian synthetic dataset:

• We pretrained the generator (with 3 dense layers of 400
units with ReLU activation layers except for the last layer)
with one discriminator on only 2 of the original 8 modes.

• We trained a (vanilla) GAN on all 8 Gaussian compo-
nents, initializing with the 2-mode generator above. The
discriminator had 3 dense layers of 400 units (ReLU hid-
den activation layers).

• We trained acGAN with the generator initialized with the
2-mode generator (as with vanilla GAN). We considered 3
discriminators, with 1, 2 and 3 dense layers respectively
(same activation scheme as previously applies here).

Figure 3: Modes used for pretraining the generator (left) and
modes recovered by Vanilla GAN (middle) and acGAN

(right). The more modes the better.

Figure 4: Gradient norm of each discriminator with respect
to the input. We clipped the magnitude with respect to the

weaker discriminator range. Since weaker discriminators are
smoother by construction, they help the generator to recover
missing modes. On the other hand, vanilla GAN can hardly

recover modes due to its vanishing gradient.

Results (Fig. 3) show the Vanilla GAN could only retrieve
2 additional modes, while acGAN recovered all (8) modes.
We examined the gradients provided by the discriminators
using a density plot (Fig. 4) of the gradient norm for each
discriminator with respect to the input, i.e., ||rXD(X)||2 for
X 2 [�2, 2]2. Observe that there is a clear progression from
a stronger discriminator with more distinct, higher gradients
to the weaker discriminator smoother gradients. Additionally,
note that the discriminator from the vanilla GAN, which has
very high gradient norm values, has gradients for modes not
present in the generator: the discriminator has information
useful for learning about these missing modes, but the gener-
ator does not learn these modes due to vanishing gradients.



FD Modes Quality samples
Vanilla GAN 7.28 17 88%
Uniform (3D) 6.64 20 93.4%
acGAN (3D) 6.65 25 92.9%

Table 1: Results on the Gaussian mixture synthetic data. Our
method acGAN could cover allc 25 modes.

Figure 5: KDE plots of the modes recovered by each
examined approach with 3 discriminators.

Our results support both our original hypothesis that miss-
ing modes are due to vanishing gradients and that using a
coarse-grain discriminator can be used to recover missing
modes. To provide further insight, we show the evolution of
the gradient norm of each discriminator at training time in the
Supplementary Material (Section 13). We also note that the
discontinuities in the gradients is due to the ReLU activation
partitioning the subspace through overlapping half-planes,
which contrasts the smooth decay of hyperbolic tangent and
sigmoid4 nonlinearities, and we further explore the effect
of different nonlinear activation layers on the gradient norm
of the weak discriminator in the Supplementary Material
(Section 5.1).

4.2 Performance of acGAN against existing
baselines

In this section, we evaluate the performance of our proposed
method (acGAN), on various datasets. All experiments con-
sider the reward shown in Eq. 6. We first conducted a sanity
check on 2 mode-dropping datasets: synthetic data consist-
ing of a mixture of 25 Gaussians and Stacked-MNIST with
1000 modes. We then tested it on CIFAR10 and finally show
generated samples on celebA dataset in the Supplementary
Material (Section 5.6). We aim to analyze specific properties
such as diversity of generated samples and quality in terms of
(FID, Heusel et al., 2017) score when available, along with
convergence of the method (how fast it reaches its minimum
FID score). Additionally, our results hint at the emergence of
a curriculum during the training process.
All parameters used to obtain the results can be found in the
Supplementary Material (Table 4). We split the batch of in-
puts between discriminators. We abuse of language with the
term epoch, which in the context of the current paper means
that the generator has been trained on a number of iterations
equivalent to an epoch. For example, CIFAR-10 has 50,000
training images and, assuming a batch size of 64, one epoch
represents roughly 781 iterations for the generator.

4�(y) = 1/1 + e�y

Modes (max 1000) KL
DCGAN (Radford, Metz, and Chintala, 2015) 99.0 3.40

ALI (Dumoulin et al., 2016) 16.0 5.40
Unrolled GAN (Metz et al., 2016) 48.7 4.32

VEEGAN (Srivastava et al., 2017a) 150.0 2.95
PacGAN (Lin et al., 2017) 1000.0± 0.00 0.06± 1.0e�2

GAN+MINE (Belghazi et al., 2018) 1000.0± 0.00 0.05± 6.3e�3

acGAN (3D) 1000.0± 0.00 7.4e�2 ± 0.0
acGAN (5D) 1000.0± 0.00 9.65e�2 ± 0.0

Table 2: Number of modes covered and Kullback-Leiber
divergence between the real and generated distributions on
Stacked-MNIST. acGAN could recover the 1000 modes.

Figure 6: Stacked-MNIST generated samples for acGAN
with 3 (left) and 5 (right) discriminators.

Synthetic Gaussian mixture dataset The synthetic
dataset is composed of 25 bivariate Gaussian mixtures ar-
ranged in a two-dimensional grid. We launched a single run
of 15 epochs for all methods with 3 discriminators. We re-
port 3 measures in Table 1: the Fréchet Distance (FD), the
number of recovered modes and the proportion of high qual-
ity samples (which is the proportion of samples covering a
mode). More details on those metrics can be found in the
Supplementary Material (Section 5.5).

We compared the performance of our proposed methods to
that of the Uniform algorithm and of the vanilla GAN (Good-
fellow et al., 2014). Our proposed methods could cover the
25 modes. KDE plots for the 3 discriminators case are shown
in Fig. 5.

Stacked-MNIST We use the Stacked-MNIST dataset (Sri-
vastava et al., 2017b) to measure the mode coverage of our
proposed approach. The dataset is generated by stacking 3
randomly selected digits from the MNIST dataset: one on
each RGB channel to produce a final 28⇥28⇥3 RGB tensor.
The dataset has 128,000 training images and is assumed to
have 103 modes. Results of our experiments are shown in
Table 2.

We report our results (averaged over 10 runs) in Table 2 and
compare them with other existing baselines in the literature.
Our method could recover all 1000 modes like PaCGAN (Lin
et al., 2017) and MINE (Belghazi et al., 2018); these two
approaches either increase the dimensionality of the generator
inputs either by packing multiple samples or by adding a
latent code vector which helps overcoming mode collapse.
Generated samples are shown in Fig. 6, our results further
verify our hypothesis that acGAN is a sensible approach to



ensuring good mode coverage and sample quality.

Figure 7: Weight ⇡i of each discriminator over the training
epochs. We can see phase switching at the beginning where
each discriminator’s weight is dominating before eventually

converging to a uniform distribution.

CIFAR-10 We conducted an in-depth study of acGAN’s
performance on CIFAR-10 by running experiments on 5
independent seeds for 50 epochs each.

We found a particular pattern in the acGAN’s learning pro-
cess: it consists of distinct regimes where one discriminator’s
weight ⇡i dominates over the others. To illustrate this, we
averaged the sampling probability of each discriminator over
every 200 iterations and plotted results in Fig. 7 for 2 and 3
discriminators, respectively. The reported curves suggest that,
for N = 2 discriminators, the weakest discriminator network
is often sampled at the beginning until the generator G learns
enough from it, at which point it begins to use the stronger
discriminator more often. Note how the strong discrimina-
tor is sampled more frequently than the weak one. In fact,
because the generator needs to produce samples of higher
quality to fool the strong discriminator, training with the latter
might take longer as opposed to using weaker discriminators
(which are more lenient). By the end of training, all discrim-
inators are being used in equal proportions, meaning that
every discriminator plays a complementary role from mode
coverage to quality samples. A similar pattern is observed for
the 3-discriminators case.

To assess the quality of produced results, we report the
minimum Fréchet Inception Distance (FID, Heusel et al.,
2017) (and corresponding epoch) reached in Table 3. The
squared FID was computed every epoch with 1,000 held-
out samples at training time. As in Fedus et al. (2017), a
ResNet pre-trained on CIFAR-10 was employed to obtain
representations for FID computation rather than Inception
V3. Proceeding this way yields a more informative score,
given that our classifier was trained on the same data as the
generative models. Details on the FID score can be found in
the Supplementary Material (Section 5.6). We compared our
results to Durugkar, Gemp, and Mahadevan (2016). Since
the authors reported that GMAN-1 (� = 1) had an overall
better performance, we used this version in our experiments
and refer to it as GMAN. Previously, we observed that the
feedback provided to the generator is shared between all the

discriminators. Especially, not all gradient comes from the
strong discriminator (unlike for the Vanilla GAN). One might
be concerned by a degradation of the quality samples. We
show that having more discriminators leads to better mode
coverage and samples quality (see the FID values in the Fig
16 of the Supplementary Material). Overall, we noticed that
acGAN achieved the best FID score when compared to the
baseline as presented in Fig. 8 and 9 (plots are shown in a
larger format in Fig. 17 in the Appendix). GMAN performed
worse than expected and increasing the number of discrimi-
nators did not significantly improve its FID score. We suspect
that the original loss function of the GAN (which is equiva-
lent to the Jensen-Shannon divergence minimization) is not
a good signal to assess the progress of G. Indeed, Arjovsky,
Chintala, and Bottou (2017) argued and introduced a toy
example showing that this version of adversarial nets is not
informative when there is little overlap between the supports
of the true and approximate distributions, as commonly seen
at the beginning of the training process. Finally, not keeping
a moving average via a Q-value can lead to high variance.

Figure 8: FID scores computed with 1,000 samples at the end
of each epoch for different methods with 3 discriminators.
acGAN outperforms the baselines Uniform and GMAN.

Best FID (epoch) Mean Best FID
Vanilla GAN 5.02 (20) - 5.28 (27) - 4.27 (30) - 4.80 (34) - 4.63 (41) 4.80

WGAN-GP5
4.29 (43) - 4.24 (28) - 3.98 (47) - 3.99 (37) - 3.93 (50) 4.08

3
D

is
c Uniform 4.18 (20) - 4.07 (39) - 4.35 (45) - 5.07 (30) - 4.39 (47) 4.41

GMAN 3.87 (43) - 4.05 (46) - 5.24 (42) - 5.71 (42) - 4.10 (22) 4.59

acGAN 3.93 (39) - 3.57 (38) - 4.25 (42) - 3.43 (40) - 3.11 (43) 3.66

5
D

is
c Uniform 3.42 (47) - 3.69 (49) - 4.37 (37) - 3.64 (37) - 3.47 (40) 3.72

GMAN 4.58 (44) - 4.40 (20) - 3.91 (47) - 4.81 (25) - 4.42 (38) 4.42

acGAN 3.62 (35) - 2.62 (49) - 4.14 (35) - 2.66 (42) - 3.67 (34) 3.34

Table 3: Best FID scores on CIFAR-10 computed on 1,000
samples during training time (lower is better).

5 Conclusion
In this work, we model the training of the generator
against discriminators of increasing complexity within a one-
student/multiple-teachers paradigm. We address this mixture-
of-experts problem under the adversarial bandit setting with

5We replaced the batch norm layer with instance norm



Figure 9: FID curves with 5 discriminators. acGAN
presented earlier convergence and reached lower FID values.

full-information, where we rely on the Hedge algorithm to
learn the weights assigned to each discriminator in the mix-
ture. Since designing a suitable reward function is a key
ingredient to control the shape of the learned policy, we ex-
amined two sensible reward functions which relied on sample
quality and the GAN loss function. We empirically found the
high quality sample reward (Eq. 6) to yield the best results.
Keeping a moving average on the rewards helped smooth-
ing the weights put on discriminators and resulted in a more
stable mixture.

Then, we demonstrated a complementary regulation mech-
anism between weak and strong discriminators. While weaker
discriminators enjoy smoother properties and provide more
informative feedback to the generator, stronger discriminators
focus one finer grain detail to ensure sample quality.

Finally, we conducted a series of experiments to show the
emergence of a curriculum during the training process. That
is, lower-capacity discriminators have higher weights at the
beginning but, as the training progresses, higher weights are
allocated to higher-capacity discriminators. We showed how
existing algorithms could be recovered from our model via
the Q-value. The performed experiments showed that our
proposed approach leads to an earlier convergence and a
better FID score compared to existing baselines in the field,
i.e. Uniform and GMAN.

As a direction for future investigation, approaches not
relying on the adversarial framework could be investigated
to model the non-stationarity of the reward distributions. For
example, finding a meaningful representation for the state
of the generator could allow the use of contextual bandits
algorithms.
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Supplementary Material

Figure 10: Adding noise (bottom row) reduces gradient norm magnitude of each discriminator. This increases their smoothness
properties and helps recovering modes of the distribution. We clipped the gradient magnitude with respect to the corresponding

discriminator corrupted with noise.

Figure 11: Probability D(x) for each discriminator without (top) and with (bottom) white Gaussian noise. Noise tends to smooth
their decision boundary and increase their entropy. That helps to provide more informative gradient to the generator.



Regularizing the discriminator through additive white noise As was explored in Arjovsky and Bottou (2017), one way to
stabilize GAN training is corrupting the input of the network with additive white Gaussian noise of the form N(0,�). Here, we
explore smoothing the discriminator by using the noise, We ran the following experiment in order to illustrate the mechanism.
We (once again) train G on the 8 Gaussian synthetic dataset with 3 discriminators (1,2 and 3 hidden layers of 256 units) both
with and without adding independent Gaussian noise to the discriminator’s input. A noticeable downside of feeding corrupted
inputs to the network is the degradation of samples’ quality: the so-called salt and pepper effect becomes more visible as the
discriminators train. To solve this issue, we decay the noise at time step t by a multiplicative coefficient: exp t

C , where C > 0 is
a real constant controlling the noise reduction speed. Initial Gaussian noise was picked to be of the form N(0,�i), with variances
of �1 = 0.06, �2 = 0.04, �3 = 0.02, for i = 1 being the weakest discriminator and i = 3 the strongest. Adding white noise
increases the entropy (read uncertainty) of the discriminator (a proof is shown in the Section 5.3 of the Appendix) and tends
to smooth its decision boundary (see the probability and gradient norm values in Figs. 11 and 10). Fitting a discriminator to
uncorrupted input is prone to faster overfitting as opposed to training on noisy data when fixing the number of parameters, a
great illustration of which is provided by Gu (2008). Empirical results are shown in Fig. 10. We see that by corrupting the real
data we manage to cover all 8 modes and the sample quality is conserved by decaying the variance of the noise. The evolution of
generated data points is shown in Fig. 14.

5.1 Effect of different nonlinear activation layer on the weak discriminator’s smoothness

In this section, we aim to illustrate the effect of 3 nonlinear activation layers (Tanh, Leaky RelU and ReLU) on the gradient
norm of the discriminator. We ran the training of the generator with 3 discriminator (using Soft-acGAN) on the 8 Gaussian
dataset. For some performance issue, we just replace the activation layer of the weak discriminator with respectively the 3
above mentionned activation layers and let the other discriminator with ReLU. Fig. 12 shows the gradient norm of the weak
discriminator on the whole space [�2, 2]2. We see that Tanh has a very uniform gradient norm accross the space while ReLU is
the most discontinuous. Leaky ReLU has an intermediate pattern. Yet, tanh seems to have flat behaviour (very small magnitude),
this may be due to the tanh function that has very low gradient signal at the extremity (indeed, we witness very poor performance
with that activation layer). Leaky ReLU is less discontinuous although it also partitions the subspace in the same way as ReLU.

Figure 12: Although Tanh (left) presents smoother partition of the subspace than LeakyReLU (middle) and ReLU (right), it
seems to have weak gradient signal (small gradient norm magnitude).

5.2 Evolution of the gradient norm during the training

In this section, we show the evolution of the gradient norm of each discriminator throughout the training process (results shown
in Fig. 13). We see at the beginning of the training (first row) as the generator has just learned the top left modes, discriminator
has flat behavior on the bottom right part of the subspace and has higher gradient norm on the top left part. A the training process,
we see that missing modes has high gradient norm (second row third column). Finally, at the end when the generator has learned
all the modes the weak discriminator seems to have more uniform gradient norm on the space while strong discriminator has
equal gradient norm value at each modes locations.



Figure 13: Evolution of the gradient norm for each discriminator and samples generated (last column). The generator recovers
modes thanks to the gradients provided by the weak and intermediate discriminators. Each discriminator in turn evolves to learn
its coarse to fine-grained representation of the data. Note also that the strong discriminator has a good representation of all the

modes before the generator has learned them, indicating that mode dropping in this setting is not due to those modes being
absent in the discriminator. We have clipped the gradient range with respect to the weak discriminator of the corresponding row.

5.3 Regularizing the discriminator through additive noise

Figure 14: As we exponentially decay the noise, samples quality increase (2500 samples are plotted).

Increasing entropy with additive Gaussian noise. In order to have discriminator networks with varying degrees of strength,
we first resorted to nested architectures: for instance, the stronger discriminator should have a more complex architecture than the
weaker. Moreover, we proceeded to corrupt the inputs with additive Gaussian white noise. Formally, to the input matrix Xi 2 X
of the discriminator Di we added "i ⇠ N (0,�2

i ), thus creating new input Yi = Xi + "i which was then fed to the discriminator.
For practical purposes, noise for image data should be on a bounded support R("i) ✓ R(Xi) in order to obtain meaningful RGB
values.
Letting the weaker discriminators train on inputs corrupted with a Gaussian noise with larger variance allows the network to
learn a high-level representation of the dataset, while feeding uncorrupted inputs will let the corresponding Di to specialize. This
tradeoff between sample space coverage and estimation accuracy is known as the spike-and-slab prior and is frequently used in
Bayesian variable selection methods similar to the one proposed by (Mitchell and Beauchamp, 1988).



Consider the following relation, known in information theory as the entropy power inequality (EPI). Let X be a continuous,
real-valued and independent random vector on a bounded support and " ⇠ N (0,�2), both of dimension n:
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from which it follows that adding i.i.d. Gaussian noise to the inputs increases the total entropy of the data. Here we used the fact
that log(1 + exp(x)) � 0 for all x 2 R and that the uniform distribution U has the maximal entropy over all continuous random
variables with bounded support R(U) = (a, b). The quantity log �

p
2⇡e

(b�a) controls the tightness of the bound. Because Eq. 9 is

valid for all �, it is necessary valid for sup�>0 log
�
p
2⇡e

(b�a) . Maximizing the expression shows that picking � >> 0 increases the
overall entropy h(X + ") and approaches the uniform distribution.
Finally, recall that the entropy h(X) = �DKL(X||U) + c where U ⇠ Uniform(a, b). That is, maximizing the entropy of a
distribution is equivalent up to an additive constant to minimizing the Kullback-Leibler divergence between the distribution and a
uniform random variable with identical support (provided adequate restrictions on the support).
Fitting a weak discriminator to the corrupted data should increase its capacity to generalize more than that of the stronger
discriminator by acting as a regularization technique and preventing the network from overfitting.
Analogous mechanisms are widely used in conjunction with other learning algorithms, such as support vector machines, where
adding noise to the data is equivalent to increasing the classification margin as shown by (Xu, Caramanis, and Mannor, 2009).
As a final remark, it is important to select a proper noise distribution in order to avoid introducing bias and respect the original
structure of the data.



5.4 Experimental parameters

Algorithm parameters
acGAN

↵ 0.01
� 15

Twarmup 15⇥N
N number of discriminators

Optimizer parameters
Stacked-MNIST RMSprop (↵ = 0.9, lr = 0.0001)

CIFAR-10 Adam (�1 = 0.5,�2 = 0.999, lr = 0.0002)
Synthetic (25 Gaussians) Adam (�1 = 0.5,�2 = 0.999, lr = 0.0002)
Synthetic (8 Gaussians) Adam (�1 = 0.5,�2 = 0.999, lr = 0.0001)

CelebA Adam (�1 = 0.5,�2 = 0.999, lr = 0.0002)

Table 4: General experimental hyperparameters.

5.5 Synthetic data
We utilize the 2D-ring with 8 Gaussians and the 2D-grid with 25 Gaussians Gulrajani et al. (2017). Three metrics were employed
to evaluate the results:
1. % High Quality samples
2. Number of Covered modes
3. Fréchet Distance (FD)

The percentage of "High Quality" samples is defined as the proportion of generated samples G(z) which are within 3 standard
deviation of the closest mode. The next metric reported is the number of modes covered, i.e. the count of modes that has generated
samples closes enough (3�). The Fréchet Distance originally from Dowson and Landau (1982) is defined as:

FD = ||md �mg||2 + Tr(Cd + Cg � 2(CdCg)
1
2 ), (10)

where md, Cd and mg, Cg are first and second order moments of the real data distributions and estimates from generated data,
respectively.

Architecture. The generator network’s architecture comprises 4 dense layers of 512 units each. We used 3 discriminators with
respectively 2,3 and 4 dense layers of 512 units. ReLU activations were used in all layers, except for the last one, where a linear
activation function was used for the generator and a sigmoid for the discriminator.



Stacked-MNIST

Architecture. We used DCGAN’s architecture Radford, Metz, and Chintala (2015) to create lower capacity discriminators (in
terms of feature representation power). For the 3Ds case, we used discriminators 3, 4, 5 (described in the following tables). For
the 5Ds case, we used discriminators 1, 2, 3, 4, 5.

Layer Outputs Kernel size Stride BN Activation
Input: z ⇠ N (0, I100)

Fully connected 2*2*512 4, 4 2, 2 Yes ReLU
Transposed convolution 4*4*256 4, 4 2, 2 Yes ReLU
Transposed convolution 8*8*128 4, 4 2, 2 Yes ReLU
Transposed convolution 14*14*64 4, 4 2, 2 Yes ReLU
Transposed convolution 28*28*3 4, 4 2, 2 No Tanh

Table 5: Generator’s architecture.

Layer Outputs Kernel size Stride BN Activation
Input 28*28*3

Convolution 14*14*64 4, 4 2, 2 No LeakyReLU
Convolution 7*7*128 4, 4 2, 2 Yes LeakyReLU
Convolution 4*4*256 4, 4 2, 2 Yes LeakyReLU
Convolution 2*2*512 4, 4 2, 2 Yes LeakyReLU
Convolution 1 4, 4 2, 2 No Sigmoid

Table 6: Discriminator 5.

Layer Outputs Kernel size Stride BN Activation
Input 28*28*3

Convolution 14*14*64 4, 4 2, 2 No LeakyReLU
Convolution 7*7*128 4, 4 2, 2 Yes LeakyReLU
Convolution 4*4*256 4, 4 2, 2 Yes LeakyReLU
Convolution 2*2*512 4, 4 2, 2 Yes LeakyReLU

Fully connected 1 4, 4 2, 2 No Sigmoid

Table 7: Discriminator 4.

Layer Outputs Kernel size Stride BN Activation
Input 28*28*3

Convolution 13*13*64 6, 6 2, 2 No LeakyReLU
Convolution 6*6*128 6, 6 2, 2 Yes LeakyReLU
Convolution 2*2*256 6, 6 2, 2 Yes LeakyReLU
Convolution 1 6, 6 2, 2 No Sigmoid

Table 8: Discriminator 3.

Layer Outputs Kernel size Stride BN Activation
Input 28*28*3

Convolution 13*13*64 6, 6 2, 2 No LeakyReLU
Convolution 6*6*128 6, 6 2, 2 Yes LeakyReLU
Convolution 2*2*256 6, 6 2, 2 Yes LeakyReLU

Fully connected 1 6, 6 2, 2 No Sigmoid

Table 9: Discriminator 2.



Layer Outputs Kernel size Stride BN Activation
Input 28*28*3

Convolution 12*12*64 8, 8 2, 2 No LeakyReLU
Convolution 4*4*128 8, 8 2, 2 Yes LeakyReLU
Convolution 1 8, 8 2, 2 No Sigmoid

Table 10: Discriminator 1.

(a) acGAN - 3 disc. (b) acGAN - 5 disc.

Figure 15: Stacked-MNIST generated samples.



5.6 CIFAR-10

FID score. FID scores, as introduced in Heusel et al. (2017), were computed for CIFAR-10. It is defined as the squared Fréchet
distance between the Gaussian having the first and second order statistics matching those obtained from image features. The late
layers of a pretrained classifier are used as low dimensional representation of images for statistics estimation.

Architecture. For our strongest discriminator we use the DCGAN architecture but with halved the number of filter, i.e.
{64, 128, 256, 512}. For the 3D case, we introduced two extra discriminators with kernel sizes of 6 and 8. For the 5D case, we
add two discriminators with kernel sizes 4 and 6 respectively to the set of 3D discriminator networks. In both 3D and 5D, we
replaced the last layer from the DCGAN model with a fully connected dense layer. The generator network was taken from the
original DCGAN architecture but with halved filter sizes too, i.e. {512, 256, 128, 64}. ReLU activation units were used for the
generator network while LeakyRelu is used for the discriminators with a coefficient of 0.2.

Influence of the number of discriminators. An important assumption in the current paper is that increasing the number of
discriminator networks helps the model converge faster. To assess that, we conducted experiments with the acGAN algorithm
while varying the number of discriminators for N 2 {1, 3, 5} (N = 1 being the Vanilla GAN) and averaging results over 5 seeds.
According to Fig. 16, we see that a higher number of discriminators indeed leads to earlier convergence of the FID score curve.

Figure 16: Increasing the number of discriminators induces an earlier convergence of FID. Moreover, lower FID values are
reached.



(a) 3 Discriminators

(b) 5 Discriminators

Figure 17: Average FID score of each method for different number of discriminators. In both plots, the acGAN algorithm
presented faster convergence compared to the other methods.



(a) Real Images (b) Vanilla GAN

(c) Uniform - 3 disc. (d) Uniform - 5 disc.

(e) GMAN - 3 disc. (f) GMAN - 5 disc.

Figure 18: CIFAR-10 generated samples (1).



(a) acGAN - 3 disc. (b) acGAN - 5 disc.

Figure 19: CIFAR-10 generated samples (2).



CelebA

For both the CelebA (Liu et al., 2015) datasets, we conducted single-run experiments of 50,000 iterations each counted in
generator steps (⇡ 15 epochs). We downscaled the original images to 64⇥ 64 pixels out of practical concerns.

Results. Similarly to CIFAR-10, we observe the emergence of a curriculum in Fig. 22. In particular, we note the
presence of alternating phases during which a specific discriminator is dominating in the 3D and 5D cases. In the end, all
discriminator probabilities converge to a stationary (i.e. long term) uniform distribution just like for previously mentioned datasets.

Architecture. We used the same architecture as for the CIFAR-10 experiments except that the original numbers of filters were
set to: {128, 256, 512, 1024} for the discriminators and {1024, 512, 256, 128} for the generator.

(a) Real Images (b) Vanilla GAN

(c) Uniform - 3 disc. (d) Uniform - 5 disc.

Figure 20: CelebA generated samples (1).



(a) GMAN - 3 disc. (b) GMAN - 5 disc.

(c) acGAN - 3 disc. (d) acGAN - 5 disc.

Figure 21: CelebA generated samples (2).

Figure 22: Weight ⇡i of each discriminator over the training epochs. We could see switching phase, where one discriminator’s
weight ⇡i is dominant with respect to the rest. After some epochs, all weights ⇡i converge to a uniform regime.


