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ABSTRACT
There is great demand for scalable, secure, and efficient privacy-

preserving machine learning models that can be trained over dis-

tributed data. While deep learning models typically achieve the

best results in a centralized non-secure setting, different models can

excel when privacy and communication constraints are imposed. In-

stead, tree-based approaches such as XGBoost have attracted much

attention for their high performance and ease of use; in particular,

they often achieve state-of-the-art results on tabular data. Conse-

quently, several recent works have focused on translating Gradient

Boosted Decision Tree (GBDT) models like XGBoost into feder-

ated settings, via cryptographic mechanisms such as Homomorphic

Encryption (HE) and Secure Multi-Party Computation (MPC). How-

ever, these do not always provide formal privacy guarantees, or

consider the full range of hyperparameters and implementation

settings. In this work, we implement the GBDT model under Differ-

ential Privacy (DP). We propose a general framework that captures

and extends existing approaches for differentially private decision

trees. Our framework of methods is tailored to the federated setting,

and we show that with a careful choice of techniques it is possible to

achieve very high utility while maintaining strong levels of privacy.
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1 INTRODUCTION
It is well known that machine learning models can leak private in-

formation about individuals in the training set [12, 56]. Differential

privacy (DP) [19] is a popular definition that has been developed to
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mitigate such privacy risks and has become the dominant notion

of privacy in recent years. Much of the current research on private

machine learning is focused on training deep learning models with

differential privacy [1, 34, 39, 58]. DP is often combined with feder-

ated learning, where data resides on client devices, and only small

information about model updates is collected from clients, in order

to further minimize the privacy risk [35].

While deep learning models are powerful for a range of real-

world tasks in a centralized setting, they are sometimes beaten by

“simpler” models on tabular datasets. One such competitor is Gradi-

ent Boosted Decision Trees (GBDTs) [20, 29, 57] [30]. GBDT meth-

ods build an ensemble of weak decision trees that incrementally

correct for past mistakes in training to improve predictions. Many

GBDT frameworks such as XGBoost [14], LightGBM [37], and Cat-

Boost [17] have seen widespread industry adoption [5, 10, 38, 42].

GBDT methods are an attractive alternative to deep learning due

to their speed, scalability, ease of use, and impressive performance

on tabular datasets.

Recent works have studied GBDT implementations such as XG-

Boost under secure training in the federated setting [15, 16, 22, 46].

These methods typically rely on cryptographic techniques such

as Homomorphic Encryption (HE) or Secure Multi-Party Compu-

tation (MPC). While this allows secure joint training of a GBDT

model without any participant directly releasing their data, the

end model may not necessarily be private and will not guarantee

formal differential privacy (DP) [21]. For instance, in the case of

decision trees, split decisions in a tree can directly reveal sensitive

information regarding the training set. Moreover, such reliance on

heavyweight cryptographic techniques such as HE or MPC often

makes methods computationally intensive or require a large num-

ber of communication rounds, making them impractical to scale

beyond more than a few participants [15, 40].

In parallel, many works have studied decision tree models under

the central model of DP [23, 50, 65]. Most studies focus on training

random forest (RF) models and there has been little research to

explore trade-offs between gradient boosting and DP; those that do

often use central DP mechanisms that cannot easily be extended to

federated settings [31]. It therefore remains an open problem to im-

plement GBDTs in the federated DP setting, and show how to obtain

utility comparable to their centralized non-private counterparts.

Our focus is on DP-GBDT methods that operate within the fed-

erated setting via lightweight MPC methods such as secure aggre-

gation [6, 9]. This setting has recently risen to prominence, as it

promises an attractive trade-off between the computational effi-

ciency of central DP techniques and the security of cryptographic
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methods. Recent federated works that consider GBDTs have pro-

posed methods under the local model of DP, but due to the use of

local noise, incur a significant loss in utility [41, 59, 63].

In this paper, we bring together existing methods under a unified

framework where we propose techniques to satisfy DP that are

well suited to the federated setting. We find that by dissecting the

GBDT algorithm into its constituent parts and carefully considering

the options for each component of the algorithm we can identify

specific combinations that achieve the best balance of privacy and

utility. We also emphasise variants that can train such private GBDT

models in only a small number of communication rounds, which is

of particular importance to the federated setting.

Our high-level finding is that it is possible to achieve high perfor-

mance with GBDT models, even comparable to that of non-private

methods. In order to do so, one must allocate privacy budget to

the quantities that are most important for the learning process. For

example, we show that spending such budget on computing split

decisions of trees is not as important as spending it on the leaf

weights. Using our findings under the efficient privacy accounting

of Rényi Differential Privacy (RDP) leads to performance that is far

closer to the non-private setting than seen in previous works.

Our main contributions are as follows:

• A clear and concise framework for differentially private gra-

dient boosting with decision trees. We deconstruct the GBDT

algorithm into five main components, showing how to fed-

erate each component while satisfying Rényi Differential

Privacy (RDP). We present a unifying approach, capturing

recently proposed DP tree-based models as special cases.

• A new set of techniques for improving the utility of private

federated GBDT models. For example, we propose a private

method for discretising continuous features that makes as

much use of the private training information as possible,

incurring little additional privacy cost. Additionally, we ex-

plore batching weight updates, showing it is possible to

maintain competitive model performance while reducing

the number of communication rounds needed.

• An extensive set of experiments on a range of benchmark

datasets exploring the trade-offs between various options

in our framework. By evaluating the choices in each of the

components of our framework,we find a clear dominant ap-

proach is formed by adapting and simplifying the GBDT

algorithm while combining it with our improved split candi-

date method. We show it is possible to achieve higher utility

than state-of-the-art (SOTA) DP-RF and DP-GBDT methods

on a range of datasets with reasonable levels of privacy.

• We provide open-source code, available anonymously at:

https://anonymous.4open.science/r/FDP-GBDT-48DE/

Roadmap. In Section 2 we outline technical preliminaries required

to understand differentially private GBDTs before covering related

works in Section 3. In Section 4 and 5 we describe our framework

for DP-GBDTs, fitting existing methods within this and proposing

combinations to study. In Section 6 we provide extensive experi-

mental evaluations, comparing our methods to existing baselines

within our framework before concluding with Section 7.

2 PRELIMINARIES
2.1 Gradient Boosted Decision Trees (GBDT)
Tree-based ensemble methods form a collection of 𝑇 decision trees

that predict 𝑦𝑖 for each input 𝒙𝑖 :

𝑦𝑖 := 𝑓 (𝒙𝑖 ) =
∑𝑇
𝑡=1 𝑓𝑡 (𝒙𝑖 )

For a specific tree 𝑓𝑡 let 𝐿𝑡 denote the number of leaf nodes. Each

leaf node of a tree contains a weight, which will be the output of

the tree for observations that are classified into that leaf. We denote

𝒘 (𝑡 ) ∈ R𝐿𝑡 as the vector of leaf node weights for a tree 𝑓𝑡 .
GBDT methods train trees sequentially making use of past pre-

dictions to correct for mistakes. This is in contrast to random forest

(RF) methods that train 𝑇 trees in parallel, averaging the weights

of trees for the final prediction.

For a set of examples 𝐷 = {(𝒙𝑖 , 𝑦𝑖 )}𝑛𝑖=1 with corresponding

predictions {𝑦𝑖 }𝑛𝑖=1 the GBDT objective function is defined as

L(𝑓 ) = ∑𝑛
𝑖=1 ℓ (𝑦𝑖 , 𝑦𝑖 ) +

∑𝑇
𝑡=1 Ω(𝑓𝑡 ) (1)

where ℓ is a twice-differentiable loss function, typically the cross-

entropy loss (binary classification) or squared-error loss (regres-

sion). The term Ω(𝑓𝑡 ) = 𝛾𝐿𝑡 + _
2
| |𝒘 (𝑡 ) | |2

2
is a form of regularisation

such that 𝛾 ≥ 0 penalises the size of the tree and _ ≥ 0 penalises

the magnitude of weights. This regularisation term is present in

the popular XGBoost algorithm but is often omitted in other GBDT

variants; we adopt it for our experimental study.

Equation (1) evades direct optimization. Rather, GBDT models

are trained sequentially based on previous models. At step 𝑡 we can

define the model prediction 𝑦
(𝑡 )
𝑖

=
∑𝑡
𝑘=1

𝑓𝑘 (𝒙𝑖 ) = 𝑦
(𝑡−1)
𝑖

+ 𝑓𝑡 (𝒙𝑖 ).
The objective for optimising 𝑓𝑡 becomes

L (𝑡 ) (𝑓𝑡 ) =
∑𝑛
𝑖=1 ℓ (𝑦𝑖 , 𝑦

(𝑡−1)
𝑖

+ 𝑓𝑡 (𝒙𝑖 )) + Ω(𝑓𝑡 ) (2)

For step 𝑡 we are concerned with finding a tree 𝑓𝑡 that minimises

(2). Since 𝑓𝑡 is not differentiable we can use a Taylor approxima-

tion. Taking the first-order approximation leads to the standard

Gradient Boosting Machine (GBM) method. Taking a second-order

approximation leads to Newton boosting as used by XGBoost [14].

When taking a first-order approximation we obtain

L (𝑡 ) (𝑓𝑡 ) ≈
∑𝑛
𝑖=1

(
ℓ (𝑦𝑖 , 𝑦 (𝑡−1) ) + 𝑔 (𝑡 )𝑖

𝑓𝑡 (𝒙𝑖 )
)
+ Ω

where 𝑔
(𝑡 )
𝑖

= 𝜕

𝜕�̂�
(𝑡−1)
𝑖

ℓ (𝑦𝑖 , 𝑦 (𝑡−1)𝑖
) is the gradient of the loss function

at the start of step 𝑡 . By considering the index sets of examples

mapped to leaf node 𝑙 i.e., 𝐼𝑙 = {𝑖 |𝒙𝑖 belongs to leaf 𝑙 of 𝑓𝑡 } one can
show by expanding the above and differentiating with respect to

𝑤
(𝑡 )
𝑙

that the optimal leaf weight is

𝑤
(𝑡 )
𝑙

= −
∑

𝑖∈𝐼𝑙 𝑔
(𝑡 )
𝑖

|𝐼𝑙 |+_ (3)

We denote this as a gradient weight update. Taking a second-order

approximation of (2) instead gives

L (𝑡 ) (𝑓𝑡 ) ≈
∑𝑛
𝑖=1

(
ℓ (𝑦𝑖 , 𝑦 (𝑡−1) ) + 𝑔 (𝑡 )𝑖

𝑓𝑡 (𝒙𝑖 ) + ℎ (𝑡 )𝑖

𝑓 2𝑡 (𝒙𝑖 )
2

)
+ Ω(𝑓𝑡 )

where ℎ
(𝑡 )
𝑖

= 𝜕2

𝜕 (�̂� (𝑡−1)
𝑖
)2
ℓ (𝑦𝑖 , 𝑦 (𝑡−1)𝑖

) is the Hessian of the loss at the

start of step 𝑡 . As before one can show that the optimal weights

https://anonymous.4open.science/r/FDP-GBDT-48DE/
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this time are

𝑤
(𝑡 )
𝑙

= −
∑

𝑖∈𝐼𝑙 𝑔
(𝑡 )
𝑖∑

𝑖∈𝐼𝑙 ℎ
(𝑡 )
𝑖
+_

(4)

which we denote as a Newton weight update. Substituting optimal

weights from either the first or second-order approximation into

Equation (2) leads to quantities that can be used to measure a split

score. In other words, when considering a split option that partitions

examples into disjoint index sets 𝐼 = 𝐼1 ∪ 𝐼2, the split score is a

measure of how useful a split is for classification. The split score

for Newton updates can be computed as

𝑆𝑆 (𝐼1, 𝐼2) = 1

2

[
(∑𝑖∈𝐼

1
𝑔𝑖 )2∑

𝑖∈𝐼
1
ℎ𝑖+_ +

(∑𝑖∈𝐼
2
𝑔𝑖 )2∑

𝑖∈𝐼
2
ℎ𝑖+_ −

(∑𝑖∈𝐼 𝑔𝑖 )2∑
𝑖∈𝐼 ℎ𝑖+_

]
− 𝛾 (5)

In practice to form such split options, GBDT methods often dis-

cretize continuous features (e.g., via quantiles) into 𝑄 split candi-

dates. In order to handle categorical features, GBDT methods like

XGBoost typically transform them e.g., via a one-hot encoding. In

either case, this leads to splits of the form 𝐼≤ = {𝑖 : 𝑥𝑖 𝑗 ≤ 𝑠
𝑗
𝑞}

for a split candidate 𝑠
𝑗
𝑞 . Equation (5) can then be used to greedily

choose the feature split-candidate pair with the largest score when

growing the tree structure during training.

2.2 Differential Privacy
Differential Privacy (DP) is a formal definition of privacy that guar-

antees the output of a data analysis does not depend significantly

on a single individual’s data item. Such a definition can be based

on the notion of privacy loss.

Definition 2.1 (Privacy Loss RandomVariable). Given a randomised

mechanismM : X → Y we define the privacy loss random vari-

able 𝐿M,𝑥,𝑥 ′ over “neighbouring” datasets 𝑥, 𝑥
′ ∈ X as

𝐿M,𝑥,𝑥 ′ = log

(
𝑝M(𝑥 ) (𝑋 )
𝑝M(𝑥′) (𝑋 )

)
where 𝑋 ∼ M(𝑥) and 𝑝M(·) is the density of the mechanism

applied to the respective dataset.

We take neighbouring datasets 𝑥, 𝑥 ′ ∈ X to mean that 𝑥 and 𝑥 ′

differ on a single individual. The privacy loss allows us to succinctly

describe differential privacy.

Definition 2.2 (Differential Privacy in terms of privacy loss [4]). We

say that a randomised mechanismM : X → Y satisfies (𝜖, 𝛿)-DP
if for any adjacent datasets 𝑥, 𝑥 ′ ∈ X

P(𝐿M,𝑥,𝑥 ′ ≥ 𝜖) ≤ 𝛿

The privacy parameter 𝜖 is referred to as the privacy budget. When

𝛿 = 0, we say thatM satisfies 𝜖-DP. In this work we only consider

privacy guarantees where 𝛿 > 0 i.e., the case of approximate-DP.

While (𝜖, 𝛿)-DP is a useful definition of privacy it does not allow

us to tightly quantify the privacy loss from the composition of mul-

tiple mechanisms [36]. This is particularly important in machine

learning where we wish to use mechanisms many times over the

same dataset to train models. Instead, the notion of Rényi Differ-

ential Privacy (RDP) provides a succinct way to track the privacy

loss from a composition of multiple mechanisms by representing

privacy guarantees through moments of the privacy loss.

Definition 2.3 (Rényi Differential Privacy [47]). A mechanism

M : X → Y is said to satisfy (𝛼, 𝜏)-RDP if the following holds for

any two adjacent datasets 𝑥, 𝑥 ′ ∈ X

E
[
𝐿
(𝛼−1)
M,𝑥,𝑥 ′

]
≤ exp((𝛼 − 1)𝜏)

One of the simplest and most widely-used mechanisms to guar-

antee (𝛼, 𝜏)-RDP is the Gaussian mechanism.

Fact 2.1 (Gaussian Mechanism [19, 47]). The Gaussian mecha-
nismM : X → R𝑚 of the form

M(𝑥) = 𝑞(𝑥) + 𝑁 (0,Δ2 (𝑞)2𝜎2𝐼𝑚)

satisfies (𝛼, 𝜏)-RDP with 𝜏 = 𝛼
2𝜎2

and

Δ2 (𝑞) = max𝑥,𝑥 ′ ∥𝑞(𝑥) − 𝑞(𝑥 ′)∥2

The quantity Δ2 (𝑞) is the 𝐿2-sensitivity of the query𝑞. The above
shows that in order to make a real-valued query 𝑞 differentially

private we just need to add suitably calibrated Gaussian noise.

An attractive property of this formulation of DP is that it is easy

to reason about the privacy of an analysis where mechanisms are

used multiple times on the same dataset.

Fact 2.2 (Parallel Composition). Given a dataset 𝑋 , a disjoint
partition 𝑋 = 𝑋1 ∪ 𝑋2 · · · ∪ 𝑋𝑘 and a mechanismM that satisfies
(𝛼, 𝜏)-RDP. Then the mechanismM ′(𝑋 ) := (M(𝑋1), . . . ,M(𝑋𝑘 ))
satisfies (𝛼, 𝜏)-RDP.

Fact 2.3 (Seqential Composition). IfM1 andM2 are (𝛼, 𝜏1)-
RDP and (𝛼, 𝜏2)-RDP respectively then the mechanism that releases
(M1 (·),M2 (·)) is (𝛼, 𝜏1 + 𝜏2)-RDP.

Fact 2.4 (Post-Processing). IfM is an (𝛼, 𝜏)-RDP mechanism
and 𝑓 is any function that does not depend on any private data then
𝑓 (M(·)) is also (𝛼, 𝜏)-RDP.

Sequential composition tells us that using a mechanism multiple

times on the same data leads to an increase in privacy loss. In the

case of composing 𝑘 Gaussian mechanisms, we must increase the

noise added through 𝜎 by the order of

√
𝑘 under RDP.

In practice, we care about obtaining the more meaningful notion

of (𝜖, 𝛿)-DP. When working with RDP we can rely on conversion

lemmas such as those presented in [11] to convert between (𝛼, 𝜏)-
RDP and (𝜖, 𝛿)-DP. In our implementations, we use the analytical

moment accountant developed by Wang et al. to provide tight

numerical accounting of the privacy loss under RDP [64].

It is common to fix the privacy parameters (𝜖, 𝛿) before the

analysis and then minimises 𝜎 over a range of 𝛼 values to obtain the

smallest such noise needed to guarantee the chosen level of privacy.

We use the autodp package
1
to verify our accounting provides the

correct (𝜖, 𝛿)-DP guarantee. An additional benefit of working with

RDP is then that our framework easily extends to other mechanisms

that satisfy RDP such as the Skellam mechanism which may be

more suited to distributed settings [2].

1
https://github.com/yuxiangw/autodp
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Table 1: Summary of our Private Federated GBDT Framework

Component Methods Privacy Cost (in terms of ^𝑠 , ^𝑤 , ^𝑐 )

(C1) Split Method • Histogram-based (Hist) (§4.3.1) ^𝑠 = 𝑇𝑚𝑑

• Partially Random (PR) (§4.3.2) ^𝑠 = 𝑇𝑚𝑑 , does not require construction of a histogram

• Totally Random (TR) (§4.3.2) ^𝑠 = 0

(C2) Weight Update • Averaging (§4.4.1) If using a Hist or PR ^𝑤 = 0 otherwise ^𝑤 = 𝑇

• Gradient (§4.4.2)

• Newton (§4.4.3)

(C3) Split Candidate • Uniform, Log (§4.5.1) Data-independent, ^𝑐 = 0

• Quantiles (non-private) (§4.5.1) N/A

• Iterative Hessian (IH) (§4.5.2) If using Hist, ^𝑐 = 0. If using TR, with 𝑠 rounds of IH, ^𝑐 = 𝑠𝑚

(A1) Feature Interactions • Cyclical 𝑘-way (§5.1) If using Hist or PR, ^𝑠 = 𝑇𝑘𝑑 , if 𝑘 = 1 then ^𝑠 = 𝑇 .

• Random 𝑘-way (§5.1) If using TR with IH then ^𝑐 = 𝑠𝑘

(A2) Batched Updates • 𝐵 = 1 (Boosting) (§5.2) Post-processing, no effect on privacy

• 𝐵 = 𝑇 (RF-type predictions) (§5.2)

• 𝐵 = 𝑝 · 𝑇 for some 𝑝 ∈ (0, 1) (§5.2)

2.3 The Federated Model of Computation
Federated Learning (FL) has become a popular paradigm for large-

scale distributed training of machine learning models [35]. In this

work, we consider the horizontal setting, where a set of participants

each hold a local dataset over the same space of 𝑚 features. We

assume that there are 𝑛 data items in total and we consider the

problem of training a differentially private GBDT model over the

distributed dataset. A powerful tool is secure aggregation, which

allows the computation of a sumwithout revealing any intermediate

values [6, 9]. Specifically, when each participant 𝑃𝑘 has a number

𝑥𝑘 ∈ Z, secure aggregation computes the result

∑
𝑘 𝑥𝑘 securely

without any participant directly sharing their 𝑥𝑘 .

Our focus is on a framework that combines secure aggregation

with DP to securely and privately train GBDT models. For the

rest of this paper, we present algorithms as if the data were held

centrally, with the understanding that all the operations we use

can be performed in the federated model (with rounding to fixed

precision)
2
. This means that we avoid techniques designed for

central evaluation such as the exponential mechanism [31, 43, 65].

Threat Model: In this work, in common with many other works

in the federated setting, we assume an honest-but-curious model,

where the clients do not trust others with their raw data. We study

the aggregating server’s knowledge based on the information gath-

ered from clients. While there is potential for clients to attempt to

disrupt the protocol, we leave the detailed study of more malicious

threat models and model poisoning to future work. In order to com-

bine secure aggregation with DP, we act as if there were a trusted

central server that securely aggregates quantities and adds the re-

quired DP noise before sending the updated (private) model back to

participants (as assumed in [45]). In practice, we can eliminate the

need for a central server by well-established implementations of

secure computation that rely on techniques from secure multi-party

computation, either among a small number of honest-but-curious

servers, or via clients working with small groups of neighbors and

2
The rounding introduces a small amount of imprecision in representing values, but

this is overwhelmed by the noise added for privacy.

a single untrusted server [6]. Sufficient noise for DP guarantees

can be added by honest-but-curious servers, or introduced by each

client adding a small amount of discrete noise, such that the total

noise across clients adds up to the desired volume [7, 8, 13, 51–55].

3 RELATEDWORK
Differentially private decision trees have been well studied in the

central setting with a strong focus on random forest (RF) models [23,

25, 65]. However, the boosted approach (i.e., private GBDT models)

has been less well-explored. Recently, federated XGBoost models

have been presented, with most works focused on secure training

via cryptographic primitives such as Homomorphic Encryption

(HE) and Secure Multi-Party Computation (MPC) and with no DP

guarantees [15, 16, 22].

Some related works (e.g., [59]) study XGBoost in a federated

setting with local DP (LDP) guarantees. The closest work to ours

in this regard is the FEVERLESS method [63], which translates

the XGBoost algorithm into the vertical federated setting using

secure aggregation and the Gaussian mechanism. In particular,

FEVERLESS securely aggregates gradient information into a private

histogram which is used to compute split scores and leaf weights

(Equations (4) and (5)). A certain subset of the participants are

chosen as “noise leaders” to add Gaussian noise to their gradients

information before aggregating to achieve an overall DP guarantee

after securely aggregating across all participants. As we will see, the

main disadvantage of directly translating the XGBoost algorithm

in this way is the high privacy cost of repeatedly computing split

scores. This results in having to add more noise into split score/leaf

weight calculations and a lower utility model.

To reduce this privacy cost, one can consider making split de-

cisions independently of the data. These so-called totally random

(TR) trees have been studied in both the non-private and private

settings with random forests [24, 27]. In the private setting, pro-

posed methods often use central DP mechanisms that are hard to

federate [3, 25]. For example, Fletcher and Islam [25] propose a DP-

RF method that utilises the exponential mechanism to output the
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majority label in leaf nodes under the notion of smooth sensitivity,

which is unsuited to the federated setting.

In this work, we also consider TR trees as an option under our

framework but for a federated and private GBDT model. To the

best of our knowledge, the only other work that considers private

boosting with random trees is that of Nori et al. [49]. They consider

a central DP setting with a focus on training private explainable

models via Explainable Boosting Machine (EBMs). We compare the

technical differences in Section 5.1 and empirically in Section 6.6.

4 PRIVATE GBDT FRAMEWORK
In this section, we perform a comprehensive investigation of the

main components needed to train GBDT models in the federated

setting. We propose a framework of methods for training DP-GBDT

models by identifying three main components that require DP noise

and two additional components that interact with these. The full

framework is summarized in Table 1.

We explain the various options in each component and how

they affect privacy guarantees and conclude by instantiating re-

lated work into the framework before empirically evaluating meth-

ods in Section 6. A particular strategy we highlight is replacing

data-dependent choices with random or uniform choices. Although

counter-intuitive, it often holds that the privacy “cost” of fitting

the choices to the data is not made up for by the utility gain, and

picking among a set of random options is sufficient for good results.

This is evaluated in our experimental study.

For simplicity, we assume that each participant holds a single

data item (𝒙𝑖 , 𝑦𝑖 ) with 𝑛 participants (data items) in total. We ad-

ditionally assume that we have (publicly) known bounds on each

feature. All of these assumptions can be easily removed, potentially

with some additional privacy cost. Table 7 in the appendix displays

commonly used notation for convenience.

4.1 A General Recipe
In order to train the GBDT algorithm outlined in Section 2.1 we only

need to specify a few core choices: How to pick split candidates

(for discretizing continuous features), calculate the split scores at

each internal node, and compute the leaf weights for prediction.

One can note from Equations (4) and (5) that the leaf weights and

split scores only depend on the sum of gradients and Hessians at

an internal or leaf node of a decision tree. It is therefore natural to

utilise secure aggregation as a tool to federate the GBDT algorithm.

In Algorithm 1 we present the general GBDT algorithm assuming

these quantities can be gathered. Looking closely at Algorithm 1,

the only time we need to directly query participants’ data is when

we compute the three quantities just mentioned.

Based on this we divide the general algorithm into 3 core com-

ponents that require some form of DP noise: Split Methods (C1),
Weight Updates (C2), and Split Candidates (C3). These are the core
components required for training a GBDT model. We also consider

two additional aspects to specify when training a GBDT model: Fea-

ture Interactions (A1) and Batched Updates (A2). These are aspects
that interact with the core components but do not require any addi-

tional noise. To reason about the privacy guarantees of our GBDT

framework, we introduce some variables to count the number of

queries needed when training a GBDT model with 𝑇 trees. Let ^𝑐

Algorithm 1 General GBDT

Input: Number of trees 𝑇 , maximum depth 𝑑 , number of split

candidates 𝑄 , privacy parameters 𝜖, 𝛿

1:

For each feature 𝑗 = 1, . . . ,𝑚 generate 𝑄 split candidates

𝑆 𝑗 := {𝑠 𝑗
1
, . . . , 𝑠

𝑗

𝑄
} (C3)

2: Initialise the forest T ← ∅
3: for 𝑡 = 1, . . . ,𝑇 do

4:

For each (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝐷 compute the required gradient

information (𝑔𝑖 , ℎ𝑖 ) based on 𝑦
(𝑡−1)
𝑖

(C2)

5:

Choose a subset of features 𝐹 (𝑡 ) ⊆ {1, . . . ,𝑚} with
|𝐹 (𝑡 ) | = 𝑘 for the current tree 𝑓𝑡 (A1)

6: while depth of the current node (in 𝑓𝑡 ) is ≤ 𝑑 do

7:

Choose a feature split candidate pair ( 𝑗, 𝑠 𝑗𝑞) from 𝐹 (𝑡 )

(C1)

8:

Split the current node with observations 𝐼 into two

child nodes with index sets 𝐼≤ = {𝑖 : 𝑥𝑖 𝑗 ≤ 𝑠
𝑗
𝑞} and

𝐼> = 𝐼 \ 𝐼≤
9: Repeat (6)-(9) recursing separately on the child nodes

10:

For each leaf 𝑙 calculate a weight𝑤
(𝑡 )
𝑙

from the examples

in the leaf according to the chosen update method (C2)

11: Update predictions 𝑦
(𝑡 )
𝑖

or batch updates (A2)
12: Add the 𝑡 th tree 𝑓𝑡 to the ensemble, T = T ∪ {𝑓𝑡 }
13: return the trained forest T

denote the number of queries needed to calculate split candidates;

^𝑠 for the queries needed to calculate inner node splits; and ^𝑤
for the queries to calculate leaf weights. Counting the number of

queries needed for each component is enough to give a privacy

guarantee for Algorithm 1.

Theorem 4.1. Suppose that each mechanism for the framework
components satisfies (𝛼, 𝜏𝑐 ), (𝛼, 𝜏𝑠 ), (𝛼, 𝜏𝑤)-RDP respectively. Then
the GBDT algorithm satisfies (𝛼, 𝜏)-RDP with 𝜏 = ^𝑐𝜏𝑐 +^𝑠𝜏𝑠 +^𝑤𝜏𝑤 .

The above simply follows from the sequential composition prop-

erties of RDP. In our experimental study we utilise the Gaussian

mechanism for each core component, hence 𝜏 = (^𝑐 + ^𝑠 + ^𝑤) 𝛼
2𝜎2

and so 𝜎 = 𝑂𝜖 (
√
^𝑐 + ^𝑠 + ^𝑤). This shows that if we can minimise

the number of queries that each main component requires, then we

reduce the amount of noise we add to the learning process while

still maintaining privacy. Various methods affect the privacy cost

in different ways. The privacy implications for different choices in

terms of ^𝑐 , ^𝑠 , ^𝑤 are shown in Table 1.

4.2 Federating GBDTs
At the start of building the 𝑡-th tree, each participant calculates

gradient information (𝑔 (𝑡 )
𝑖

, ℎ
(𝑡 )
𝑖
) for their examples. Throughout

the training of a single tree, to calculate the desired components we

can rely on querying data in the form 𝑞(𝐼 ) =
(∑

𝑖∈𝐼 𝑔
(𝑡 )
𝑖

,
∑
𝑖∈𝐼 ℎ

(𝑡 )
𝑖

)
over some set of observations 𝐼 , e.g., all observations in a specific

tree node. To do this securely, we can apply secure aggregation to
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aggregate gradient information at the various stages that require it

in Algorithm 1 (C1- C3).
In order to apply the Gaussian mechanism, we must bound the

sensitivity of such a query function. In this case, we need bounds

on the gradient quantities 𝑔
(𝑡 )
𝑖

, ℎ
(𝑡 )
𝑖

. Our focus in this paper is

on binary-classification problems. In binary-classification our loss

function is of the form ℓ (𝑦𝑖 , 𝑦𝑖 ) = 𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 −
𝑦𝑖 ) (i.e., binary cross-entropy) and has gradients 𝑔𝑖 ∈ [−1, 1] and
Hessians ℎ𝑖 ∈ [0, 1

4
]. Hence the sensitivity of aggregating gradient

information is Δ2 (𝑞) =
√︃
1 + 1

16
=

√
17

4
.If the chosen loss function

has unbounded gradient information (e.g., regression problems) we

can employ gradient clipping (similarly to DP-SGD) to obtain a

bounded sensitivity [1].

The computational and communication costs of these steps are

low. Decision tree-based methods are often preferred for their ease

of construction, and this translates to the federated setting: each

client computes its local updates (e.g., gradients and Hessians) and

shares these through secure aggregation. The communication costs

are linear in the size of the updates computed, which are fairly low

dimensional: we quantify this in the subsequent sections.

4.3 Component 1: Split Methods
4.3.1 Greedy Approach: Histogram-Based. As described in Section

2.1, the standard GBDT algorithm will calculate 𝑄 split-scores for

every feature 𝑗 . This forms feature-split pairs ( 𝑗, 𝑠 𝑗𝑞) and at each in-

ternal node the pair with the highest score is chosen to grow the tree.

This split score depends on aggregating gradient andHessian values.

The most suitable way to do this in a federated setting is to form a

histogram over the split candidates for every feature. This requires

(securely) aggregating the gradient and Hessian values into bins

partitioned by the split candidate values. Hence the 𝑞-th gradient

histogram bin for feature 𝑗 contains 𝐺
𝑗
𝑞 =

∑
𝑖∈{𝑖:𝑠 𝑗

𝑞−1<𝑥𝑖 𝑗 ≤𝑠
𝑗
𝑞 }

𝑔
(𝑡 )
𝑖

,

and similarly for Hessians.

We can apply our generic aggregation query 𝑞(𝐼 ) with 𝐼 = {𝑖 :
𝑠
𝑗

𝑞−1 < 𝑥𝑖 𝑗 ≤ 𝑠
𝑗
𝑞} to aggregate bins of both the gradient and Hessian

histograms. Each participant’s data item will fall into exactly one

histogram bin, so via parallel composition we just need to count

the number of times a histogram is computed during training. At

each internal node of a tree, we must compute split-scores and thus

gradient histograms. When considering all𝑚 features per split, this

requires ^𝑠 = 𝑇𝑚𝑑 queries for a model with 𝑇 trees of maximum

depth 𝑑 . This incurs a high privacy cost for large ensembles
3
. Each

client can quickly compute and send their histograms of size 𝑄 for

each feature considered for a split.

4.3.2 Randomised Approach: Partially and Totally Random. In [27],

Geurts et al. initiate the study of “Extremely Randomised Trees”

(ERTs) in the non-private setting. In ERTs the idea is to add ran-

domness into the split choices when growing the tree. The moti-

vation was to show that accuracy comparable to that of greedy

tree-building models could be obtained for large enough ensem-

bles. ERTs are potentially much faster to train as there is no need

3
Default XGBoost parameters take 𝑑 = 6 and𝑇 = 100 which implies a high privacy

cost on any dataset with a moderate number of features𝑚

to compute split scores for each internal node. This leads to two

pragmatic choices for splitting nodes:

• Partially Random (PR): For each feature 𝑗 pick a split candidate
𝑠
𝑗
𝑞 ∈ 𝑆 𝑗 uniformly at random, where 𝑆 𝑗 is the set of split candi-

dates for 𝑗 . The split score of ( 𝑗, 𝑠 𝑗𝑞) is computed for each feature

and the pair with the highest score is chosen. This still requires

^𝑠 = 𝑇𝑚𝑑 queries but does not require building histograms.

• Totally Random (TR): Pick a feature 𝑗 ∈ [𝑚] and a split can-

didate 𝑠
𝑗
𝑞 , both uniformly at random. This does not require any

queries for internal nodes (̂ 𝑠 = 0) as it is data independent.

Since TR trees do not access data to build tree structure they

are attractive from a privacy perspective. All trees in the ensemble

can be pre-computed by choosing random splits, which can be

communicated to clients at a cost linear in the size of the tree. Hence

building a TR ensemble requires far fewer queries than histogram-

based methods. However, a TR ensemble often requires a much

larger number of trees to achieve similar model performance as

histogram-based counterparts. We explore such trade-offs between

TR and histogram-based methods in Section 6.2.

4.4 Component 2: Weight Updates
Once a tree has been built, the records in the dataset will be par-

titioned among the leaf nodes of the tree. In the following we

consider the 𝑙-th leaf of tree 𝑡 with weight 𝑤
(𝑡 )
𝑙

which contains

records 𝐼
(𝑡 )
𝑙

= {𝑖 ∈ [𝑛] : 𝑖 belongs to leaf 𝑙 of tree 𝑡}. Each client

needs to compute and send the weights of leaf nodes, at cost pro-

portional to the number of leaves, 2
𝑑
if there are 𝑑 binary splits.

Both RF and GBDT methods update these leaf nodes with a weight

that contributes to prediction. As we noted in Section 2.1, taking a

first-order or second-order approximation to Equation (2) leads to

two different weight updates. Note that by setting ℎ𝑖 = 1 in both (4)

and (5) we recover the gradient weight update of Equation (3) and

also obtain a split score for gradient updates. Hence when ℎ𝑖 = 1

both approaches are equivalent and so Newton updates can be seen

as generalising the standard gradient approach. While RFs do not

calculate gradient information, we can still view them as a special

case within our framework. RF trees typically compute the class

probabilities in leaf nodes which are averaged across all trees in the

ensemble. This leads to three main weight updates: zeroth-order

(Averaging), first-order (Gradient), and second-order (Newton).

4.4.1 Averaging Updates. For random forests the leaf nodes store

the class distribution. For regression problems this is the average

value of 𝑦 in the leaf node. With binary classification, the weight

update is simply the proportion of positive examples in the leaf

node i.e.,𝑤
(𝑡 )
𝑙

= 1

|𝐼 (𝑡 )
𝑙
|
∑
𝑖∈𝐼 (𝑡 )

𝑙

1{𝑦𝑖 = 1}.

Although RF models do not compute gradients we can still utilise

our generic aggregation query by having participants send 𝑔𝑖 =

1{𝑦𝑖 = 1} and ℎ𝑖 = 1. In this case

∑
𝑖∈𝐼 𝑔𝑖 counts the number of

class 1 examples and

∑
𝑖∈𝐼 ℎ𝑖 counts the number of examples in a

node. This changes the sensitivity of our query to Δ(𝑞) =
√
2.

In RF models the trees are independent from one another with

final predictions formed from the average of weights across all trees.

We denote this as an averaging update from now on.
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4.4.2 Gradient Updates. Each participant calculates𝑔𝑖 = 𝜕
𝜕�̂�𝑖

ℓ (𝑦𝑖 , 𝑦𝑖 )
andℎ𝑖 = 1 and uses this in the weight update defined in Equation (3),

i.e., the weights are the average negative gradient values in the leaf

node. This can be viewed as a gradient descent step over the batch

of observations in leaf node 𝑗 . The sensitivity of the query also

changes to Δ(𝑞) =
√
2.

4.4.3 Newton Updates. Participants calculate both first-order and

second-order gradients of the form 𝑔𝑖 =
𝜕ℓ
𝜕�̂�𝑖

, ℎ𝑖 =
𝜕2ℓ

𝜕 (�̂�𝑖 )2 and use

the weight update in Equation (4).

In classification problems the total weight across trees for an

observation 𝑖 is aggregated and the sigmoid function 𝜎 (·) is applied.
It is also standard in GBDT methods to perform post-processing

on leaf weights. In practice we consider updates of the form −[ ·
max{𝑤 (𝑡 )

𝑙
, 𝛽 ·sgn(𝑤 (𝑡 )

𝑙
)} where [ > 0 is the learning rate and 𝛽 ≥ 0

is a clipping factor to control the magnitude of updates.

For histogram-based splitting, the final gradient histograms from

the parent of a leaf node can be used to calculate weights, meaning

^𝑤 = 0. For TR splitting, participants do not calculate histograms

so they must directly aggregate the required gradient information

in each leaf node. This is a single query per leaf node that happens

once per tree, and so ^𝑤 = 𝑇 .

4.5 Component 3: Generating Split Candidates
One major step needed to train GBDT models is to identify split

candidates for each (continuous) feature. In traditional GBDT mod-

els such as XGBoost, split candidates are chosen by computing the

quantiles of a feature. Computing quantiles is a succinct way to

describe a feature’s distribution but can be slow in practice for large

datasets. The original XGBoost paper proposes a weighted quantile

sketch to make this process faster, using the Hessian information as

weights. While this is suitable in non-private settings, it is difficult

to calculate such quantiles (or quantile sketches) accurately without

incurring an appreciable privacy cost. Existing work on DP-GBDTs

has computed split candidates either with LDP quantiles in the local

setting [41], DP quantiles in the central setting [31] or with MPC

methods (without DP guarantees) in distributed settings [59].

4.5.1 Data-Independent Split Candidates. The simplest and cheap-

est (from a privacy perspective) approach is to propose split candi-

dates independently of the data, such as via uniform splits. For a

feature 𝑗 with values in [𝑎, 𝑏], one can generate a split candidate for

each 𝑞 ∈ [𝑄] uniformly over [𝑎, 𝑏] as 𝑠 𝑗𝑞 = 𝑎+ (𝑞−1) (𝑏−𝑎)/(𝑄−1).
As we assume bounds on features are public knowledge, we do not

need to query participants’ data, and hence ^𝑐 = 0.

A disadvantage of this approach arises when features are heavily

skewed as uniform splits are unlikely to cover important areas of

the feature’s distribution. One possible approach would be to take a

log transform of skewed features and then split uniformly over the

transformed feature. In the non-private setting, one can manually

check features or use statistical skewness tests to determine when

to transform features. This poses a problem in the private setting as

we may not know a priori which features are skewed and privately

computing such a test may be expensive privacy-wise.

4.5.2 Iterative Hessian (IH) Splitting. We propose an alternative

method based on making use of information that is usually calcu-

lated during the training process. We will verify for datasets with

heavily skewed features that we can achieve similar AUC to opti-

mal non-private split candidate methods for little to no additional

privacy cost. Specifically, the Hessian information in Newton boost-

ing captures the certainty of predictions and is often used in the

non-private setting to guide quantile finding. We can take a similar

approach in the private setting provided we estimate aggregated

Hessian values at each split candidate bin i.e., a Hessian histogram.

We propose the following intuition to propose new split candidates

at each round:

• Merge binswith low (or zero) Hessian since this indicates a split

is too fine-grained to be useful.

• Split bins that have large Hessian value as this indicates a large

number of observations lie in the bin. To refine a bin we can split

by taking the midpoint of adjacent bin edges.

In practice, we split a bin if its Hessian value is greater than the

total Hessian uniformly divided over the 𝑄 bins. If at the end of a

round we end up with fewer than𝑄 bins, then we fill the remaining

bins by uniformly splitting. The full algorithm for IH is given in

Algorithm 2 in the appendix. Carrying out IH splitting is a form of

post-processing on the Hessian histogram and thus has no extra

privacy cost beyond the cost to compute the histogram. However,

the choice of split method may incur additional privacy cost:

• Hist: In histogram-based methods, a Hessian histogram is com-

puted at the start of every tree for all features. We can use the

previous tree’s Hessian information to inform our split candi-

dates for each new tree. We incur no additional privacy cost and

hence ^𝑐 = 0

• Totally random: As TR trees are built independently of the data,

Hessian histograms are never computed. We propose to calculate

a Hessian histogram for the first 𝑠 rounds of training and thus the

number of queries we need for split candidates is ^𝑐 = 𝑠𝑚. For

the first 𝑠 rounds we refine our split candidates using IH, after

which we use the final set of candidates found in round 𝑠 for the

remaining 𝑇 − 𝑠 trees.

5 ADDITIONAL CONSIDERATIONS
5.1 Feature Interactions
Explainable Boosting Machines (EBMs) are a popular method for

training GBDTs to ensure explainability of the resulting model [44].

The main idea is to construct an additive model of the form 𝑓 (𝒙) =∑𝑚
𝑗=1 𝛼 𝑗 𝑓𝑗 (𝑥) where each 𝑓𝑗 (𝑥) is a boosted decision forest with

trees that are trained only on the 𝑗-th feature. Nori et al. [49] con-

sider the problem of training DP-EBM models in the central set-

ting. Their method relies on training many very shallow trees with

totally-random (TR) splits. In order to ensure explainability, each

tree of the ensemble is restricted to a single feature at a time. This

results in a “cyclical” boosting method where tree 𝑡 is trained only

on feature 𝑗 = 𝑡 mod 𝑚. Although the focus of our work is not

on explainability, Nori et al. note that the cyclical training method

of EBMs actually results in more accurate models (with DP) when

compared with models that can freely split on all features per tree.
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This presents another design decision—whether to train trees cycli-

cally (so that each tree only splits on a single feature at a time), or to

train trees that consider a subset of 𝑘 features to choose from when

splitting a node. We define 𝑘-way feature splitting as considering 𝑘

features at a time per tree. This can be done in two different ways:

1. Cyclical 𝑘-way: Consecutive trees train on a subset of the

next 𝑘 features and repeat in cycles every𝑚/𝑘 trees.

2. Random 𝑘-way: The 𝑘 features are chosen randomly at the

start of each tree.

When 𝑘 = 1with cyclical training we recover the method used in

EBM. When 𝑘 =𝑚 we recover the standard GBDT splitting method.

The choice of 𝑘 determines the maximum number of feature inter-

actions that are possible within a tree. We note that the random

𝑘-way method is also commonly used in the non-private setting to

reduce computation time and act as model regularisation [26]. The

computation and communication costs for each client scale propor-

tionally to 𝑘 . For histogram-based methods with 𝑘 > 1 the number

of queries required to form internal node splits for 𝑘-way splitting

is ^𝑠 = 𝑇𝑘𝑑 . When 𝑘 = 1 this reduces to ^𝑠 = 𝑇 and ^𝑤 = 0 since

gradient histograms can be computed once at the root node and

this same histogram can be used to calculate split-scores for every

level in the tree. For totally-random trees the value of 𝑘 does not

affect the number of queries and ^𝑠 = 0 remains. In Appendix A.3

we present experiments detailing the effect of feature interactions.

We observe that cyclical 𝑘 = 1 (i.e, EBM) performs the best and we

focus on this in our end-to-end comparison in Section 6.6.

5.2 Batched Updates
One advantage of random forests (RF) in distributed settings is

that trees can be trained in parallel. In the case of totally random

(TR) trees the model orchestrator can precompute the structure

of all trees and participants can compute gradient statistics for

leaf weights over the entire forest in a single round of communica-

tion. On the other hand, gradient boosting methods are inherently

sequential—results of the previous ensemble determine the gradi-

ent calculations for the next tree. This is a bottleneck for weight

updates. One way to parallelise this is to consider batching updates.

Suppose we use a batch size of 𝐵 and are training 𝑇 trees. A

batched update is of the form

𝑦
(𝑡 )
𝑖

= 𝑦
(𝑡−𝐵)
𝑖

+ [𝜎
(
1

𝐵

∑𝐵
𝑘=𝑡−𝐵 𝑤

(𝑘)
𝑖

)
where we abuse notation to let𝑤

(𝑘)
𝑖

denote the weight of the leaf

in tree 𝑘 that 𝒙𝑖 is partitioned into.

Batched updates require participants update their predictions

every 𝐵 rounds based on the average leaf weight of the trees in the

batch. At the start of the (𝐵 + 1)-th round the gradient information

is recomputed so that the next batch is boosting predictions from

the previous batch. One can think of this as boosting a set of 𝐵-sized

random forests. When 𝐵 = 𝑇 we recover RF-type predictions but

note that if𝑤
(𝑡 )
𝑙

uses gradient or Newton weights then the model

updates are different from averaging updates (which instead use

class probabilities as weights). Batching updates also has no extra

privacy cost as it is a form of post-processing.

If we wish to train 𝑇 trees with a batch size 𝐵 then the com-

munication rounds of the boosting process reduce from 𝑂 (𝑇 ) to

𝑂 (𝑇 /𝐵)4. In Section 6.5 we consider batching gradient and New-

ton updates for different batch sizes and compare to DP-RF which

requires 𝑂 (1) rounds of communication [24].

5.3 Instantiating the GBDT Framework
5.3.1 Instantiating Components. In the previous sections, we have

deconstructed the GBDT algorithm into various core components

that require us to add noise to guarantee DP. We also noted two

additional considerations that interact with the core components.

When instantiating our framework in experiments we will com-

bine the options for each component as listed in Table 1. A key

contribution of this work is in the comprehensive study of both

existing (Section 5.3.2) and new (Section 5.3.3) methods as follows:

(C1) Split Methods: The histogram over split candidates is how

centralized algorithms like XGBoost structure the problem [14].

It is also friendly to federation and has been used by prior works

so forms a natural baseline [15, 22, 63]. Totally random trees have

been widely used in non-private RF models but have not been well-

studied in private, federated and GBDT settings [27]. DP-EBM is

the only prior example we are aware of here [49]

(C2) Weight Updates:We consider standard update methods used

in GBDTs/RFs noting that Hessian updates have not been as well-

studied under privacy or the federated setting.

(C3) Split Candidates: Data-independent splits have been largely

overlooked in central DP settings with effort put into calculating DP

quantiles. We advocate it as a good option for the federated setting

since the (privacy) cost of finding quantile splits is not repaid in

practice. We introduced the Iterative Hessian (IH) approach based

on refining candidates over a number of rounds which helps when

features are particularly skewed.

(A1) Feature Interactions: The idea of (maximum) feature interac-

tions generalizes the Explainable Boosting Machines (EBM) method

which considers a single feature per tree [49].

(A2) Batched Updates: The idea of batching updates has not been
studied in the private and federated setting. It can be viewed as

boosting individual RFs which is sometimes done in non-private

settings. Our focus here is on reducing communication rounds

while still maintaining accuracy.

5.3.2 Instantiating Related Work. In Table 2 we outline how SOTA

DP-GBDT models can be expressed in our framework. These act

as the primary baselines in our experiments. We note that many

of these methods were originally proposed to use pure 𝜖-DP in the

central setting and often rely on basic composition results. We have

re-implemented all methods to use tighter RDP accounting and

guarantee (𝜖, 𝛿)-DP so they are not disadvantaged. To summarise:

• DP-EBM [49] is a DP variant of the EBMmodel. It uses Gaussian

Differential Privacy (GDP) but as this is known to under-report

𝜖 values [28], we use RDP in our experiments. DP-EBM uses TR

splits with gradient updates, where each tree only considers a sin-

gle feature. The split candidate method is a central DP histogram

that attempts to uniformly distribute observations among bins.

We replace this with uniform split candidates in our experiments.

• DP-RF [24] is a central DP method that builds a RF via TR splits.

The method was originally proposed for categorical features and

4
Ignoring the constant number of rounds required for secure aggregation. See Appendix

B for more details



Federated Boosted Decision Trees with Differential Privacy CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 2: Related works under our framework

DP-EBM [49] FEVERLESS [63] DP-RF [23]

C1: Split Method TR Hist TR

C2: Weight Update Gradient Newton Averaging

C3: Split Candidate Uniform (DP Hist) Quantile Sketch N/A

A1: Feature Interactions Cyclical (𝑘 = 1) 𝑚-way 𝑚-way

A2: Batched Updates 𝐵 = 1 𝐵 = 1 𝐵 = 𝑇

^𝑐 + ^𝑠 + ^𝑤 0 + 0 +𝑇𝑚 0 +𝑇𝑚𝑑 + 0 0 + 0 +𝑇

later extended to continuous features [25]. The Laplace mecha-

nism is used to perturb leaf weights we re-implement this using

the Gaussian mechanism under RDP accounting. In our federated

framework, DP-RF corresponds to using TR splits, the averaging

weight update, and uniform split candidates (with 𝑘 =𝑚, 𝐵 = 𝑇 ).

• FEVERLESS [63] corresponds to a Hist split method with New-

ton weight updates. FEVERLESS uses a quantile sketch which is

non-private in our horizontally partitioned setting; we replace

this with uniform splits to make FEVERLESS fully private.

In our final comparisons in Section 6.6 we compare to an LDP

baseline. This baseline has each user add Gaussian noise before

releasing their gradient information. Such noise only needs to be

scaled by the number of trees (𝑇 ) since each user can release noised

gradients at the root node, and the server can use this to construct

the tree. While LDP does not strictly fall into our framework, it is a

useful benchmark to compare against distributed DP counterparts.

5.3.3 Instantiating Other Methods. We end Section 6 with an end-

to-end comparison of the baselines against new combinations ex-

pressed under our framework. These methods are:

• DP-EBM Newton, the DP-EBM method with Newton updates

instead of Gradient updates. We also do not train 𝑇𝑚 trees but

only 𝑇 . The total privacy cost here is ^𝑐 + ^𝑠 + ^𝑤 = 0 + 0 +𝑇
• DP-TR Newton, the TR spit method, uniform split candidate

and Newton updates. The privacy cost is the same as DP-EBM.

• DP-TR Newton IH EBM, a DP-TR Newton with EBM feature

interactions (i.e., cyclical 𝑘 = 1). The privacy cost is ^𝑐 +^𝑠 +^𝑤 =

0 + 0 +𝑇 + 𝑠𝑚 where 𝑠 is the number of rounds IH is performed.

• DP-TR Batch Newton IH EBM (𝑝 = 0.25, 𝑝 = 1), i.e., DP-TR
Newton IH EBM with batched updates with 𝑝 = 0.25 or 𝑝 = 1,

the privacy cost is the same as DP-TR Newton IH EBM.

6 EMPIRICAL EVALUATION
Sections 4 and 5 introduced our framework for the private and

federated training of GBDT models. In this section we perform a

thorough experimental evaluation of the components in our frame-

work. Our main goal is to answer the following questions:

1. In terms of model performance, what are the best options for

each component under our framework?

2. Under privacy, does batching updates improve performance?

3. Can a combination of choices in our framework result in methods

that improve over the SOTA baselines discussed in Section 5.3.2?

Figure 1 shows a snapshot of our findings.We display for a subset

of datasets and methods, the average test AUC while fixing the

privacy budget 𝜖 = 0.5. Full results across all datasets are discussed

in Section 6.6. We represent baseline methods plotted as circles and
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DP-GBM
DP-RF
DP-TR Batch Newton IH EBM (p=0.25)

DP-TR Newton IH EBM
FEVERLESS (uniform)
XGBoost (Non-private)

Figure 1: Snapshot of results representative of
datasets and methods analysed in Section 6.6.
Each point corresponds to varying amethodwith
𝑇 ∈ [25, 300], 𝜖 = 0.5, 𝑑 = 4.

new combinations within our framework as triangles. Each point

is formed from varying 𝑇 ∈ [25, 300] in increments of 25 and is the

average test AUC
5
over 5 runs. We observe that on most datasets

we significantly improve over existing methods. In some cases we

match the nearest competitor, but often with additional benefits

such as reducing the number of rounds of communication.

These experimental results, along with others in this section,

show that it is possible to train accurate, private and lightweight

federated GBDT models with only a small gap behind their non-

private counterparts. This conclusion is reached by answering our

questions as follows:

1. In Sections 6.2—6.4 we evaluate the choices within each compo-

nent. We find that the totally-random strategy provides a significant

reduction in privacy cost and outperforms all other choices. For

weight updates we find that utilising Hessian information usually

gives better performance with no additional cost, which is similar

to the non-private setting. Finally, for split candidates, we find our

IH method achieves performance that matches that of (non-private)

quantiles with little extra privacy cost.

2. In Section 6.5 we study batching updates to help reduce the

number of communication rounds. We find this is not the only

benefit of batching and in fact, for very high-privacy regimes (𝜖 <

0.5), batching updates often gives better model performance than

performing boosting for the full 𝑇 rounds.

3. In Section 6.6 we combine the best individual components and

compare against our SOTA baselines. We find combining the best

options found in each component also results in the best model

overall. Specifically, combining batched updates, the IH split candi-

date method, TR splits and Newton updates often achieves better

performance than the most competitive baseline (DP-EBM) and in

fewer rounds of communication.

5
Due to class imbalance, measures such as accuracy are not useful to test performance.
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Figure 2: Split Methods on Credit 1

Table 3: Weight update methods across the datasets fixing 𝜖 = 0.5, 𝑑 = 4

Bank Credit 1 Credit 2 Adult Nomao

Hist (𝑇 = 25) Gradient 0.6282 +- 0.0688 0.5748 +- 0.0852 0.6288 +- 0.0569 0.6749 +- 0.0524 0.8483 +- 0.0138

Averaging 0.7249 +- 0.0274 0.6769 +- 0.058 0.6751 +- 0.0246 0.6373 +- 0.0457 0.8885 +- 0.0038
Newton 0.7562 +- 0.0337 0.7522 +- 0.0162 0.6575 +- 0.0486 0.8013 +- 0.0225 0.8758 +- 0.0075

PR (𝑇 = 25) Gradient 0.676 +- 0.0376 0.7094 +- 0.0312 0.6239 +- 0.0486 0.7688 +- 0.0253 0.8766 +- 0.0072

Averaging 0.7803 +- 0.0309 0.7165 +- 0.0337 0.6864 +- 0.0249 0.8281 +- 0.0183 0.8904 +- 0.0055
Newton 0.7998 +- 0.0203 0.7676 +- 0.0196 0.6882 +- 0.0207 0.8416 +- 0.0108 0.88 +- 0.0072

TR (𝑇 = 300) Gradient 0.8508 +- 0.0061 0.7847 +- 0.0097 0.7392 +- 0.008 0.8737 +- 0.0056 0.8965 +- 0.0047
Averaging 0.8382 +- 0.0116 0.7846 +- 0.0106 0.7285 +- 0.0109 0.8666 +- 0.0043 0.8875 +- 0.0055

Newton 0.8486 +- 0.0075 0.7983 +- 0.0062 0.7344 +- 0.0088 0.8718 +- 0.0049 0.8883 +- 0.007

6.1 Experimental Setup
In our experiments, we use a range of real-world datasets from

Kaggle [32, 33] and the UCI repository [18]. All datasets are dis-

played in Table 8 in the appendix detailing the number of records

(𝑛), number of features (𝑚), and proportion of the positive class

(𝑝). The Higgs dataset has been subsampled to 𝑛 = 200, 000 for

computational reasons. All experiments are repeated 3 times over

5 different 70-30 train-test splits resulting in 15 iterations. We mea-

sure model performance by the AUC-ROC on the test-set. For all

boosting experiments we fix the learning rate and regularization

parameters 𝛽 = 2, [ = 0.3, 𝛼 = 0 which generally performed well

across all chosen datasets, and do not tune these any further. We

take 𝑄 = 32 split candidates unless otherwise stated. The effect

of the number of split candidates is explored in Section 6.4. In all

experiments we use RDP to satisfy (𝜖, 𝛿)-DP fixing 𝛿 = 1/𝑛. Tests
were run with an AMD Ryzen 5 3600 3.6GHz CPU and 16GB of

RAM. Code for our framework and experiments is open-sourced
6
.

6.2 Split Methods
We begin by exploring the initial trade-off between the main split-

methods: Histogram-Based (Hist), Partially Random (PR), and To-

tally Random (TR).We study these split methods as we vary parame-

ters that have the largest effect on the AUC of DP-GBDT algorithms:

𝑇 , 𝑑 , and 𝜖 . For now we fix our weight update method to Newton

6
Anonymised for submission: https://anonymous.4open.science/r/FDP-GBDT-48DE/

and fix the split candidate method to uniform. We consider the

effects of these components separately in Sections 6.3 and 6.4.

Figure 2a shows the effect of varying the number of trees𝑇 while

fixing 𝜖 = 1, 𝑑 = 4 on the Credit 1 dataset, and visualises the key

differences between the main split methods. Other datasets using

the same parameter setup are considered in Appendix A.1. Recall

that histogram-based and PR are methods that compute split-scores

under DP. Because they compute split-scores they often “converge”

to their best test AUC before TR methods in the non-private setting.

We can observe that a similar effect occurs in the private setting.

We see that PR and Hist peak around 𝑇 = 25 − 50 whereas it takes
TR 𝑇 = 300 trees to achieve its best test AUC.

In the non-private setting this peak is typically caused by overfit-

ting as𝑇 gets larger. For the private setting this is not quite the case

as we can observe little difference in train and test AUC. Instead,

for large 𝑇 the privacy cost of training a histogram-based GBDT

model requires a large amount of noise to be added at each step

and this severely impacts performance.

Recall that both Hist and PR split methods require 𝑇𝑑𝑚 queries

to train the full model compared to just 𝑇 for TR. The advantage of

TR’s minimal privacy cost can be clearly seen from Figure 2a as it

achieves higher AUC than the other two methods.

In Figure 2b we fix 𝜖 = 1 and set 𝑇 = 25 for Hist/PR and 𝑇 = 300

for TR as we vary the maximum depth 𝑑 ∈ {2, 3, 4, 5, 6} on Credit 1.

We observe only a small difference in AUC across Hist method and

only a minor decrease in performance across TR and PRmethods for

https://anonymous.4open.science/r/FDP-GBDT-48DE/
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Figure 3: Split Candidate Methods on Credit 1

larger depths. For PR and Hist the depth 𝑑 does increase the privacy

cost of each tree but for TR the privacy cost is independent of the

depth. We observe a small decrease in AUC for TR as 𝑑 increases

and this is likely because training very deep trees can lead to nodes

with only a few observations. This results in gradient information

with magnitude smaller than the noise being added, and hence any

meaningful information is lost.

In Figure 2c we vary 𝜖 ∈ {0.1, 0.25, 0.5, 0.75, 1} while fixing 𝑑 =

3. We set 𝑇 = 300 for TR and 𝑇 = 25 for Hist and PR. We can

immediately make two observations. First, there is still a clear gap

in performance between TR and Hist/PR. Second, for large 𝜖 , PR

outperforms the Hist method but for small 𝜖 the picture is less clear.

This is likely due to the additional random variation due to the PR

method picking random split candidates.

Summary.We recommend using TR splits as it clearly outperforms

methods that calculate split scores. This usually results in larger

ensembles which can be prohibitive in federated settings. In Section

6.5, we discuss how we can batch updates to get around this.

6.3 Weight Update Methods
We start this section by asking whether boosted decision trees

under DP provide any additional model performance over DP-RFs.

Table 3 shows the test AUC across all datasets varying the weight-

update method (Gradient, Averaging and Newton) for each split

method. In these experiments we fix 𝜖 = 1, 𝑑 = 4 and use𝑇 = 25 for

PR/Hist and 𝑇 = 300 for TR methods. The highest AUC for each

split method is highlighted in bold.

We can observe that boosting does provide an advantage over

the traditional averaging method on these datasets, although it is

not completely clear cut. Focusing first on the Hist methods we can

see that Newton updates perform the best across three of the five

datasets – although results on Credit 2 and Nomao show averaging

performs the best. However, Newton updates certainly show clearer

advantages on Credit 1, Adult, and Bank over both gradient and

averaging updates. This pattern is also present for PR methods

with Newton updates performing better than averaging except for

Nomao where averaging performs the best. For TR methods we

observe Gradient updates achieve higher AUC on 4 out of 5 of the

datasets, although is within random variation of Newton for all

Table 4: Split candidate methods 𝑇 = 100, 𝑑 = 4, 𝑄 = 32, 𝜖 = 1

IH (s=5) Quantiles Log Uniform

Bank 0.8749
(0.0066)

0.8695

(0.0087)

0.8698

(0.0087)

0.8734

(0.0074)

Credit 1 0.8462
(0.0035)

0.8367

(0.0045)

0.8339

(0.0058)

0.7822

(0.0247)

Credit 2 0.7377

(0.0084)

0.738

(0.0083)

0.7495
(0.008)

0.7461

(0.0092)

Adult 0.8888
(0.0035)

0.8823

(0.0047)

0.8848

(0.0054)

0.8862

(0.0034)

Higgs 0.7211

(0.0181)

0.7352
(0.0082)

0.688

(0.0141)

0.6449

(0.0293)

Nomao 0.9026
(0.0041)

0.8987

(0.0052)

0.9003

(0.0061)

0.9021

(0.005)

datasets except Credit 1, where Newton performs best. We also

note that the gap in performance between TR and Hist/PR observed

in Section 6.2 also holds across all the datasets we are considering.

The impact in performance between Newton and the other weight

update methods for TR splits is also less marked than its impact with

Hist/PR splits, since the performance of TR with Newton differs by

at most 0.014 AUC when compared with gradient or averaging.

Summary. We recommend using Newton updates as it exceeds

or performs very similarly to Gradient updates and in most cases

beats averaging across the split methods. We note that averaging

methods are certainly still competitive and discuss this further in

Section 6.5 when we study batched updates.

6.4 Split Candidate Methods
In this section we explore the split candidate methods introduced

in Section 4.5. We are interested in comparing the Iterative Hessian

(IH) method against the private baseline of uniform splitting and the

non-private method of quantiles. We mentioned in Section 4.5 that

Log splits are a viable alternative if we know the skew of features.

We will assume that we have prior knowledge about skew and thus

Log splits have no extra privacy cost. We will show IH can achieve

similar or better results than Log splits with the additional benefit

that this prior knowledge is not required.
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6.4.1 Varying 𝑠 . One disadvantage of IH splitting when using a

TR ensemble is that we must specify the number of split candidate

rounds 𝑠 where budget is spent to produce a Hessian histogram.

Figure 3a shows the effect of 𝑠 ∈ {5, 10, 20, 30, 100} on the Credit 1

dataset with 𝑇 = 100 trees while varying 𝜖 ∈ [0.1, 1] with DP-TR

Newton. For higher values of 𝜖 there is not so much difference

between calculating a Hessian histogram for each round (𝑠 = 100)

compared to calculating a Hessian histogram for only 𝑠 = 5 rounds.

Although there is a clear trend that on Credit 1 only∼ 5 rounds of IH

are needed. As 𝜖 decreases this difference becomes more apparent.

When 𝜖 = 0.5 we see a 0.04 difference in AUC between 𝑠 = 5 and

𝑠 = 100. At 𝜖 = 0.1 spreading the already thin privacy budget to

compute Hessian information at each tree results in drastically

worse performance with 𝑠 = 100. Hence when 𝜖 is small, spending

more of it on the Hessian histogram results in similar models to

using uniform split candidates and we lose the benefits of more

informed split candidates.

6.4.2 Comparison of methods. In Figure 3b we fix 𝑠 = 5 for IH

and compare the performance on Credit 1 against the other split

candidate methods: Uniform, Log, and Quantiles. We vary 𝑇 ∈
{100, 200, 300} and fix 𝜖 = 1. Consistently across the different pa-

rameter settings the Log splits perform well. This is because Credit

1 contains many skewed features. However, IH with 𝑠 = 5 (our pri-

vate variant) can indeed match and in some cases exceed Log splits.

This indicates that proposing and refining split candidates around

(noisy) Hessian histograms is a useful method when datasets have

skewed features. We also note that uniform split candidates perform

the worst out of all split candidate methods on Credit 1. We also

observe here that quantiles (the common choice for non-private

boosting methods such as XGBoost) do not lead to the best AUC

under DP. In particular, there is a large gap for 𝑇 = 200, 300. Yet for

𝑇 = 100, quantiles perform similarly to Log and IH candidates.

In Appendix A.4 we detail an additional experiment varying 𝜖

with the split candidate methods. We observe that even if 𝜖 is small,

IH still outperforms the other methods.

In Table 4 we compare the split candidate methods across all the

datasets using the same parameter setting. Our IH method shows a

clear advantage over uniform on Credit 1 and Higgs where features

are particularly skewed. On Credit 2 our IH method achieves the

worst performance. However, it does match quantiles in perfor-

mance. This suggests that quantiles do not produce the best split

candidates for Credit 2. It is also likely that because Credit 2 has

a large number of categorical features that the repeated splitting

in IH serves no additional benefit and could be detrimental to per-

formance. On other datasets none of the features have any notable

skew and all split candidate methods perform equally well.

6.4.3 Varying 𝑄 . The advantage of the IH method is its more in-

formed split candidates for very skewed features. One may think

that we can circumvent the issues of uniform splitting by increasing

the number of split candidates, thus considering more fine-grained

candidates. In Figure 3c, we fix 𝑇 = 100, 𝑑 = 4, 𝜖 = 1 and vary

𝑄 ∈ {2, 4, 8, 16, 32, 64, 128} on Credit 1. The same experiment is

detailed on other datasets in Appendix A.5. We can immediately

observe further issues with uniform split candidates when com-

bined with TR splits. While proposing more candidates results in

fine-grained split choices, the variance from choosing such splits
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Figure 4: Batched updates, 𝑇 = 200, 𝑑 = 4

Table 5: Batched updates fixing 𝑇 = 200, 𝜖 = 0.1, 𝑑 = 4.

Bank Credit 1 Credit 2 Adult Nomao

Batch (B=10) 0.7876

(0.0233)

0.7585

(0.0147)

0.719

(0.0156)

0.8438

(0.0086)

0.8859

(0.0056)

Batch (B=20) 0.819
(0.0108)

0.7591

(0.0194)

0.7199
(0.0164)

0.86
(0.0057)

0.8929
(0.0055)

Batch (B=50) 0.8048

(0.0177)

0.7683

(0.0199)

0.7152

(0.0161)

0.8566

(0.0048)

0.8903

(0.0057)

Batch (B=100) 0.7865

(0.0167)

0.7684

(0.0165)

0.7192

(0.0141)

0.8493

(0.0073)

0.8871

(0.0061)

Batch (B=200) 0.7752

(0.0143)

0.7578

(0.0194)

0.71

(0.0146)

0.8443

(0.0065)

0.8858

(0.0061)

DP-RF (B=200) 0.7663

(0.0127)

0.7441

(0.0196)

0.7106

(0.0106)

0.8382

(0.0105)

0.8852

(0.0058)

Newton (B=1) 0.7866

(0.0224)

0.7693
(0.016)

0.695

(0.0134)

0.8371

(0.0148)

0.8669

(0.0088)
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Figure 5: Comparison ofDP-GBDTmethods and LDP baseline
on Credit 1, 𝑑 = 4, 𝜖 = 1; Left (all methods), Right (zoomed)

completely at random results in very variable performance when

using > 32 split candidates. The experiment supports our choice of

𝑄 = 32 in other experiments, and also shows that the IH method is

relatively robust to the initial number of split candidates.

Summary: We recommend using the IH method to iteratively

refine split candidates over a small number of rounds, finding that

𝑠 = 5 usually works the best. Other private split methods like

Uniform and Log are competitive depending on the dataset.
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Table 6: Average rank of methods across datasets—rank 1 for
highest AUC. (∗) indicates new methods in our framework

𝜖

Methods 0.1 0.5 1.0

DP-EBM 5.83 4.5 3.5

DP-EBM Newton (∗) 4.0 3.33 3.17

DP-GBM 9.0 9.0 9.0

DP-RF 4.5 6.67 7.0

DP-TR Batch Newton IH EBM (p=0.25) (∗) 1.17 2.33 3.33

DP-TR Batch Newton IH EBM (p=1) (∗) 2.0 3.5 4.67

DP-TR Newton IH (∗) 5.33 4.5 3.83

DP-TR Newton IH EBM (∗) 5.17 3.17 2.67
FEVERLESS (uniform) 8.0 8.0 7.83

6.5 Batched Updates
In Section 5.2 we discussed that boosting is an inherently sequential

process and so can take a large number of communication rounds

in distributed settings. This is exacerbated by the TR method that

often requires a large number of trees (rounds) to achieve good

performance. We proposed the idea of batching updates by aver-

aging weights across multiple trees before performing a boosting

round. In Figure 4 we vary 𝜖 = 0.1, 0.5 and fix 𝑇 = 200, 𝑑 = 4 on

the Credit 1 dataset. The same experiment on other datasets is pre-

sented in Appendix A.6. We compare the Newton method which

takes 𝑇 = 200 rounds and the averaging method which only takes

1 round. We then consider batched updates, varying the size of the

batch as 𝐵 = 𝑝 ·𝑇 for 𝑝 ∈ {0.05, 0.1, 0.25, 0.5, 1}.
Focusing first when 𝜖 = 1 we observe that the Newton model

achieves the best performance. This is followed by batched updates

that perform some amount of boosting (i.e, 𝐵 < 200). As an example

taking 𝐵 = 100 results in only 2 rounds of boosting. A surprising

observation is that limiting to 2 rounds of communication achieves a

very similar performance to the full Newtonmodel that requires 200

rounds of boosting. When 𝜖 = 0.1 Newton boosting still performs

the best but we observe batched updates with 𝐵 = 20, 50 and thus

only a small number of boosting rounds perform very similarly.

To study this more closely, we present a similar experiment in

Table 5, fixing 𝜖 = 0.1We vary the batch size and compare to averag-

ing and Newton boosting across all the datasets. In all settings, we

consider TR trees, uniform split candidates, and 𝑇 = 200, 𝑑 = 4. We

still observe that batched updates is a surprisingly competitive alter-

native to the full boosting procedure across all datasets. We note as

in Figure 4 that all methods on Credit 1 are roughly within random

variation of one another. The difference in methods is more striking

on other datasets with batched updates of size 𝐵 = 20 performing

better than Newton. This suggests that under a setting where more

noise is added to the training process, boosting is a more unreliable

method as it attempts to correct mistakes from previous rounds

and can lead to overcompensating for noise. By batching updates

we help to average out noise and boost a smoothed update. We

also observe performance gaps between batched update methods

with different batch sizes. Generally, batched methods with 𝐵 = 20

or 𝐵 = 50 achieve the best performance with 10 and 5 rounds of

boosting respectively. But in most cases performing batched up-

dates with 𝐵 = 200 resulting in a single round of communication

(and no actual boosting) only loses at most 0.04 AUC compared to

other batched update methods.

Summary. We recommend batching Newton updates to reduce

communication rounds and have shown it loses little in perfor-

mance. Under high privacy, small batches (𝑝 = 0.25 − 0.5) seem to

give the best performance and even beat private Newton boosting.

6.6 End-to-end Comparisons
We concludewith comparisons between baselinemethods and those

formed from selecting the best options found in previous sections.

6.6.1 Summary across datasets. In Table 6 we display the average

rank of a method across each of the 6 datasets when ranked in terms

of their mean test AUC, where a rank of 1 indicates the highest

AUC. We fix 𝑇 = 100 and vary 𝜖 ∈ {0.1, 0.5, 1}. We observe that

most baseline methods underperform and rank consistently in the

lower half. The closest competitor DP-EBM performs well when

𝜖 = 1 but is beaten by DP-TR Newton IH EBM which consistently

ranks higher across datasets. When 𝜖 is small, our batch boosting

variant consistently ranks the best across all datasets.

6.6.2 Discussion on Credit 1. To investigate further, we fix 𝜖 =

1, 𝑑 = 4 and vary𝑇 on Credit 1 in Figure 5. We present similar com-

parisons on other datasets in Appendix A.7. These results are best

broken down into four main observations which reflect conclusions

from previous sections. The first observation is the performance of

histogram-based methods. DP-GBM performs the worst followed

by FEVERLESS. This shows (as in Section 6.3) that Newton updates

when combined with histogram-based methods do increase model

performance over normal gradient updates, but in either case, train-

ing a large tree with many features entails adding a large amount

of noise into the training process and generally poor models. The

second remark concerns the performance of the totally random (TR)

methods. We can see a clear performance gap between the DP-RF

method and DP-TR Newton methods which indicates that boosting

does enhance performance when compared to the baseline DP-RF

method. This was confirmed in Section 6.3 where we observed

Newton updates under DP generally provided better performance

than gradient and averaging methods.

Thirdly, while DP-EBM is very competitive, we can achieve

similar AUC by using Newton updates and not training for the full

𝑇𝑚 rounds as proposed in [49]. In Figure 5 the DP-EBM method

trains 𝑇𝑚 trees, corresponding to 10𝑇 on Credit 1. Instead our DP-

EBM Newton variant uses Newton updates and only trains 𝑇 trees.

This shows that we can get the same performance as DP-EBM with

far fewer trees when using Newton updates, while reducing the

number of communication rounds.

Finally, we note the performance of batched methods when com-

bined with EBM and IH split candidates. We see batched methods

with 𝑝 = 0.25, 1.0 essentially match the performance of DP-TR

Newton IH and achieve similar performance to the top methods

on this dataset. When compared to the full 200 rounds needed for

DP-TR Newton IH there is a negligible loss in performance (< 0.01

AUC) but a dramatic reduction in communication rounds.

Summary. By combining the best options in each component (TR,

Newton updates, IH, EBM, and batches with 𝑝 = 0.25) we achieve

competitive performance that often outperforms our baselines.
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7 CONCLUSION
In this workwe have proposed a framework for the differentially pri-

vate training of GBDT models in a horizontal federated setting. We

have broken the GBDT algorithm into five components and shown

we can federate each one under privacy by securely-aggregating

gradient information with noise. By empirically evaluating different

options at each stage of our framework we have found a dominant

approach based on using random splits, Newton updates, cyclical

training and our iterative Hessian (IH) method for split candidates.

We have shown our approach often outperforms SOTA methods

on a range of datasets and results in models close in performance

to their non-private counterparts. Furthermore, when combined

with batching weight updates one can train models in only a small

number of communication rounds for little loss in performance,

which is particularly advantageous in federated settings. Such mod-

els even perform well in high-privacy regimes and could be easily

adopted as privacy-friendly lightweight baseline models.
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Table 7: Notation

Notation Meaning

𝐷 Dataset

T ,𝑇 , 𝑑 Forest T of 𝑇 trees, each of max depth 𝑑

𝑖 ∈ [𝑛] Observation 𝑖 in the full dataset of 𝑛 records

𝑗 ∈ [𝑚] Feature index,𝑚 features

𝑘 Maximum number of feature interactions

𝑙 ∈ [𝐿] Number of leaf nodes

𝑞 ∈ [𝑄] 𝑄 is the number of split candidates and 𝑞 is

the index

𝑆 𝑗 = {𝑠 𝑗
1
, . . . 𝑠

𝑗

𝑄
} 𝑠

𝑗
𝑞 is 𝑞-th split candidate for feature 𝑗

𝑔
(𝑡 )
𝑖

, ℎ
(𝑡 )
𝑖

Gradient and hessian of observation 𝑖 at the
start of step 𝑡

[, 𝛽,𝛾 Regularisation parameters

ℓ (𝑦𝑖 , 𝑦𝑖 ) Loss function

Table 8: Datasets

Dataset n m p

Credit 1 [33] 120,269 10 0.07

Credit 2 [32] 30,000 23 0.22

Adult [60] 32,651 14 0.24

Nomao [61] 34,465 10 0.28

Bank Marketing [48] 45,211 16 0.11

Higgs [62] 200,000 28 0.47
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Figure 6: Split Methods on Credit 2
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Figure 7: Split Methods on Adult
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Figure 8: Split Methods on Bank
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Figure 9: Split Methods on Nomao
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Algorithm 2 Iterative Hessian Splitting

Input: 𝑄 - target number of candidates, 𝐻
(𝑡 )
𝑗

- Hessian histogram

for each feature calculated at the previous tree

1: for each feature 𝑗 ∈ [𝑚] do
2: 𝑆

(𝑡+1)
𝑗

= ∅,∀𝑗 = 1, . . . ,𝑚

3: Compute the target per-bin Hessian \ =

∑
𝑞∈[𝑄 ] 𝐻

(𝑡 )
𝑗𝑞

𝑄

4: for each bin 𝑞 ∈ 𝐻 (𝑡 )
𝑗

do

5: if 𝐻 (𝑡 )
𝑗,𝑞

< \ then

6: Merge bin 𝑞 with bin 𝑞+1 via𝐻 (𝑡 )
𝑗,𝑞+1 = 𝐻

(𝑡 )
𝑗,𝑞
+𝐻 (𝑡 )

𝑗,𝑞+1
7: else
8: Calculate the bin midpoint 𝑠∗ = (𝑠 𝑗

𝑞−1 + 𝑠
𝑗
𝑞)/2

9: Add 𝑠
𝑗

𝑞−1, 𝑠
𝑗
𝑞, 𝑠
∗
to 𝑆
(𝑡+1)
𝑗

10: Calculate the number of empty bins 𝑏 = 𝑄/|𝑆 (𝑡+1)
𝑗
|

11: for each 𝑖 ∈ 𝑆 (𝑡+1)
𝑗

do

12: Add 𝑏 splits to 𝑆
(𝑡+1)
𝑗

uniformly over [𝑠 𝑗
𝑞−1, 𝑠

𝑗
𝑞]

13: return new split candidates {𝑆 (𝑡+1)
1

, . . . , 𝑆
(𝑡+1)
𝑚 }

A FURTHER EXPERIMENTS
In this appendix we detail additional experiments that were omitted

from the main text. In Section 6 we presented experiments for each

component in our framework. To do so, we often showed results

on the Credit 1 dataset before varying methods across all of the

datasets. This appendix contains plots in the same style of Section

6 but on datasets other than Credit 1. We present the full details of

all datasets used in our experiments in Table 8.

A.1 Split Methods: Other Datasets
In Section 6.2 we presented Figure 2 which looked at split methods

while varying 𝑇 , 𝑑 and 𝜖 on Credit 1. Here we present the same

setup but for the Credit 2, Adult, Bank and Nomao datasets. These

are presented in Figures 6—9. To summarise, the main conclusions

from Section 6.2 also hold across the other datasets. We still ob-

serve the same differences when varying 𝑇 with totally random

(TR) splits obtaining the best performance followed by partially

random (PR) and then histogram-based (Hist). The gap in AUC per-

formance between Hist and TR is also consistent across the datasets.

Furthermore, Hist and PR tend to achieve their best results when

𝑇 is small (i.e 𝑇 ∈ [10, 50]) which further justifies our choice of

𝑇 = 25 for Hist/PR in Table 3.

When varying themaximum depth (𝑑) we again find a consistent
pattern across the datasets with a performance decrease as we

increase the maximum depth. As in Section 6.2 this is likely due

to the fact that deeper trees result in leaf nodes with a smaller

number of observations and adding noise to this can destroy the

weight update information. For some datasets (Adult, Bank and

Nomao) there is some evidence of overfitting as 𝑑 increases which

also explains the decrease in performance. Finally, when varying

𝜖 the trend is again consistent with Section 6.2 and across other

datasets. One observation of interest is that for very small 𝜖 on the

Nomao dataset all three split methods perform very similarly.
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Table 9: Weight update methods across the datasets fixing 𝜖 = 0.1

Bank Credit 1 Credit 2 adult nomao

Hist Gradient 0.607 +- 0.0698 0.5415 +- 0.1124 0.5444 +- 0.089 0.6385 +- 0.0892 0.8382 +- 0.0312

Averaging 0.6002 +- 0.0554 0.7018 +- 0.0498 0.5383 +- 0.0596 0.6518 +- 0.0984 0.8731 +- 0.0141
Newton 0.6032 +- 0.0805 0.5879 +- 0.0949 0.5729 +- 0.0808 0.6842 +- 0.0572 0.8525 +- 0.0264

PR Gradient 0.5993 +- 0.052 0.5678 +- 0.0909 0.5922 +- 0.074 0.6512 +- 0.0517 0.8504 +- 0.0121

Averaging 0.6597 +- 0.0506 0.6351 +- 0.0618 0.6457 +- 0.0438 0.7036 +- 0.066 0.8828 +- 0.0065
Newton 0.6413 +- 0.056 0.6264 +- 0.0486 0.5869 +- 0.049 0.7207 +- 0.0413 0.86 +- 0.0146

TR Gradient 0.7413 +- 0.0257 0.7404 +- 0.0296 0.6917 +- 0.017 0.8173 +- 0.0167 0.8743 +- 0.0056

Averaging 0.78 +- 0.0181 0.7669 +- 0.0139 0.7133 +- 0.0112 0.8471 +- 0.0086 0.8862 +- 0.0052
Newton 0.7742 +- 0.0223 0.7694 +- 0.015 0.6921 +- 0.0156 0.8385 +- 0.008 0.8665 +- 0.011

Table 10: Weight update methods across the datasets fixing 𝜖 = 0.25

Bank Credit 1 Credit 2 adult nomao

Hist Gradient 0.6505 +- 0.0427 0.5959 +- 0.0695 0.5879 +- 0.0453 0.6927 +- 0.0522 0.8308 +- 0.0319

Averaging 0.7078 +- 0.0418 0.6917 +- 0.0539 0.6383 +- 0.0343 0.6631 +- 0.0626 0.8858 +- 0.0043
Newton 0.6878 +- 0.0381 0.6935 +- 0.0501 0.6331 +- 0.0476 0.7547 +- 0.0384 0.8696 +- 0.0155

PR Gradient 0.6207 +- 0.0396 0.6273 +- 0.0598 0.6127 +- 0.0562 0.7094 +- 0.0266 0.8645 +- 0.0087

Averaging 0.7128 +- 0.045 0.6735 +- 0.0551 0.6811 +- 0.0235 0.7699 +- 0.0494 0.8883 +- 0.0055
Newton 0.7436 +- 0.0158 0.7356 +- 0.0322 0.6594 +- 0.0273 0.8103 +- 0.0183 0.8706 +- 0.009

TR Gradient 0.8175 +- 0.0128 0.7698 +- 0.0186 0.7226 +- 0.0077 0.8551 +- 0.0085 0.8917 +- 0.0077
Averaging 0.8268 +- 0.0167 0.7742 +- 0.0183 0.7206 +- 0.0132 0.8608 +- 0.0036 0.8871 +- 0.0055

Newton 0.8322 +- 0.0095 0.7836 +- 0.0109 0.7212 +- 0.0096 0.8619 +- 0.0067 0.8838 +- 0.0056

Table 11: Weight update methods across the datasets fixing 𝜖 = 0.75

Bank Credit 1 Credit 2 adult nomao

Hist Gradient 0.6386 +- 0.0502 0.5547 +- 0.0535 0.6242 +- 0.0387 0.6913 +- 0.0252 0.8499 +- 0.0117

Averaging 0.732 +- 0.0182 0.6398 +- 0.0576 0.6827 +- 0.0219 0.6421 +- 0.0265 0.8869 +- 0.0075
Newton 0.7789 +- 0.0349 0.7616 +- 0.0137 0.6813 +- 0.0232 0.8264 +- 0.0164 0.8798 +- 0.0084

PR Gradient 0.7112 +- 0.0311 0.6921 +- 0.057 0.6381 +- 0.0477 0.7874 +- 0.0233 0.8806 +- 0.006

Averaging 0.8168 +- 0.0155 0.7583 +- 0.0335 0.6968 +- 0.0262 0.8419 +- 0.0117 0.8908 +- 0.006
Newton 0.8192 +- 0.0121 0.7764 +- 0.016 0.7062 +- 0.018 0.8558 +- 0.0097 0.8865 +- 0.0056

TR Gradient 0.8649 +- 0.0103 0.7871 +- 0.0103 0.7446 +- 0.0108 0.88 +- 0.0049 0.9008 +- 0.0047
Averaging 0.8506 +- 0.0103 0.776 +- 0.0156 0.7311 +- 0.0111 0.8701 +- 0.0031 0.888 +- 0.0052

Newton 0.8711 +- 0.0071 0.7993 +- 0.0113 0.7459 +- 0.0062 0.8845 +- 0.0046 0.8999 +- 0.005

Table 12: Weight update methods across the datasets fixing 𝜖 = 1

Bank Credit 1 Credit 2 adult nomao

Hist Gradient 0.6407 +- 0.0538 0.542 +- 0.0525 0.6288 +- 0.0506 0.6803 +- 0.0288 0.8492 +- 0.016

Averaging 0.7219 +- 0.0275 0.6132 +- 0.0543 0.6831 +- 0.0191 0.6597 +- 0.0294 0.8881 +- 0.0053
Newton 0.8024 +- 0.0158 0.7647 +- 0.0124 0.6837 +- 0.0217 0.8332 +- 0.0204 0.8812 +- 0.0079

PR Gradient 0.7459 +- 0.0295 0.7301 +- 0.0379 0.6426 +- 0.037 0.8196 +- 0.008 0.885 +- 0.0056

Averaging 0.8247 +- 0.0151 0.7508 +- 0.0521 0.69 +- 0.0218 0.8546 +- 0.0065 0.8923 +- 0.0059
Newton 0.8362 +- 0.0155 0.7855 +- 0.017 0.7098 +- 0.0146 0.8631 +- 0.0076 0.8918 +- 0.0055

TR Gradient 0.8676 +- 0.008 0.7835 +- 0.0141 0.7445 +- 0.0088 0.8855 +- 0.0031 0.9019 +- 0.0043
Averaging 0.8508 +- 0.0116 0.7757 +- 0.0178 0.7296 +- 0.0127 0.869 +- 0.0057 0.8884 +- 0.0054

Newton 0.878 +- 0.0047 0.8048 +- 0.0065 0.7539 +- 0.0076 0.8893 +- 0.0033 0.901 +- 0.0055
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A.2 Weight Updates: Varying 𝜖
In Section 6.3 we presented Table 3 which varied the choice of

weight updates across the datasets fixing 𝑑 = 4, 𝜖 = 0.5. In this

appendix we also present similar tables but varying the epsilon

values 𝜖 ∈ {0.1, 0.25, 0.75, 1}. These are shown in Tables 9—12.

In Section 6.3 (Table 3) we observed that, for 𝜖 = 0.5, Newton

updates generally performed the best across the split methods al-

thoughwere occasionally beaten by gradient and averaging updates.

We make two further observations here. The first is that when we

have a larger privacy budget (𝜖 = 0.75, 𝜖 = 1) and thus less noise

the Newton updates more clearly outperform averaging and gradi-

ent updates. The second is to observe that under a higher-privacy

setting (𝜖 = 0.1, 𝜖 = 0.25) averaging updates start to outperform

both gradient and Newton updates. This implies that under a set-

ting with more noise, averaging the weights across trees is more

effective than boosting. This also provides more evidence for our

results with batched boosting in Section 6.5 and in Appendix A.6

where we observe a similar effect in high-privacy regimes.

A.3 Feature Interactions
Wementioned in Section 5.1 that cyclical𝑘 = 1 (i.e, EBM) performed

the best and thus we use this setting in our experimental study. In

this section we study the value of 𝑘 and its effect on performance.

In Figure 10 we vary 𝑇 with the TR Newton method, fixing 𝜖 = 1

and study the cyclical training method with 𝑘 ∈ {1, 2, 3, 4, 5,𝑚}. We

note that varying 𝑘 has no effect on the privacy budget being spent

for TR methods. We observe a clear pattern when 𝑇 is small, that

methods which split only on a small subset of features per tree ob-

tain the highest AUC. When 𝑘 = 1, the cyclical method corresponds

exactly to the EBM training method. When 𝑇 gets large there is

little difference between the feature interaction methods as all es-

sentially converge to the highest test AUC they can obtain under

DP with totally random (TR) splits. We also observed a very similar

pattern when studying the random feature interaction method that

takes 𝑘 random features per tree, but omit this plot.

We next look at the effect that cyclical training with 𝑘 = 1 (i.e.,

EBM) has on model performance when compared to the standard

(𝑘 =𝑚) method which is free to split on any feature when building

a tree. Figure 11 shows the result of an experiment fixing 𝜖 = 1.

There is a clear gap between cyclical and non-cyclical methods in

AUC performance and a gap between Newton and Gradient up-

dates, but this gap is lessened when using cyclical training. We also

observe that cyclical models seem to achieve the highest test AUC

in a smaller number of trees than their non-cyclical counterparts. It

remains the case that Newton updates provide slightly better perfor-

mance than GBM updates (as noted for Credit 1 in Section 6.3 and

other datasets in Appendix A.2) but this gap narrows considerably

when using cyclical training.

A.4 Split Candidates: Varying 𝜖 on Credit 1
In Section 6.4 we studied the different split candidate methods when

using DP-TR Newton. In Figure 12 we present the same methods

while varying 𝜖 ∈ {0.1, 0.25, 0.5, 0.75, 1} and fixing 𝑇 = 100. As

mentioned in the main text we still observe that the IH method

performs well across the different choices of 𝜖 and provides a clear

advantage on Credit 1 over uniform and even quantiles for small 𝜖 .

A.5 Split Candidates: Other Datasets
In Section 6.4 we presented Figure 3c which varied the number

of split candidates 𝑄 on the Credit 1 dataset. We present similar

figures here for Higgs, Credit 2, Adult, Nomao and Bank in Figure 13.

These results provide further justification for our choice of 𝑄 = 32

in ourmain experiments, since it performs reasonablywell across all

datasets. Note however, that𝑄 = 32 is not the optimal value for each

dataset, but does not hinder performance significantly compared

to optimal values of 𝑄 . See also Appendix C which further shows

robustness to the choice of 𝑄 .

Figure 13 also provide further evidence of our conclusions in

Section 6.4 (more specifically Table 4). For the Higgs dataset we can

see clearly the advantage of the IH split candidate method and that

as 𝑄 increases we approach the (best) accuracy of using quantiles.

Recall that the Higgs dataset has a large number of highly skewed

features and this is where IH excels. For Nomao, Bank and Adult we

observe that the split candidate methods all perform very similarly.

As noted in Section 6.4, IH performed poorly on the Credit 2 dataset

and we can observe here that as we increase 𝑄 it approaches the

AUC of quantiles. Hence IH is still capturing the distribution of

features well via split candidates, but that quantiles is not optimal

for Credit 2.

A.6 Batched Updates: Other Datasets
In Section 6.5 we presented Figure 4 on the Credit 1 dataset when

studying the effect of batching updates. Here we present similar

figures but for other datasets: Adult, Bank, Credit 2 and Nomao.

This is displayed in Figure 14.

In general, we can draw the same conclusions as in Section 6.5.

In particular, batching updates are certainly competitive when com-

pared to DP-TR Newton and that it is a useful way to reduce the

number of communication rounds needed to train the model. Two

new observations are present when we perform this experiment on

these other datasets, specifically for 𝜖 = 0.1. We find DP-RF to be

more competitive with DP-TR Newton and also find that batching

updates can sometimes perform better than DP-TR Newton. This

shows in general that under higher privacy some form of averaging

across trees in the ensemble can help with the larger amount of

noise that is being added. This again corroborates our insights from

Section 6.5 and Appendix A.2.

A.7 Comparisons: Other Datasets
In Section 6.6 we presented an end-to-end comparison of methods

in our framework against existing baselines. Figure 5 details these

results on the Credit 1 dataset. We present similar experiments here

but for other datasets: Higgs, Credit 2, Adult, Bank and Nomao.

These are shown in Figures 15—19.

The four main observations detailed in Section 6.6 on the Credit 1

dataset also largely still hold across the different datasets. These can

be summarised by noting that the histogram-based methods DP-

GBM and FEVERLESS perform the worst with FEVERLESS usually

outperforming DP-GBM. This is followed by DP-RF and then DP-

TR Newton with IH. This is common across most of the datasets

(including Credit 1 as noted in Section 6.6).

What differs slightly across datasets is the best performing meth-

ods. For some datasets (like Higgs) DP-TR Newton with IH and
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Figure 12: Varying 𝜖 and split candidate
methods on Credit 1 with TR Newton

batched updates clearly perform the best and outperform our base-

line methods. On datasets like Credit 2 and Adult where IH split

candidates give less of a benefit, the DP-EBMbaseline and its variant

DP-EBM Newton remain very competitive. The results discussed

here are summarised in the rankings presented in Table 6.

B COMPUTATION AND COMMUNICATION
B.1 Communication rounds
The total number of communication rounds depends on the choice

of split-method as follows:

• Histogram-based (Hist). At every level in the tree, clients

must aggregate the required gradient histograms in order to

make split decisions for the next level. Hence, the number

of communication rounds are of order 𝑂 (𝑇𝑑), and the size

of each message is 𝑂 (𝑄𝑘) where 𝑘 ≤ 𝑚 is the maximum

number of features being considered in a tree.

• Totally random (TR). For totally random methods, the

random trees can be pre-computed by the server and clients

are required to aggregate gradient information for leaf nodes

of a tree. Thus, the total number of communication rounds is

of order 𝑂 (𝑇 ), and the size of each message is 𝑂 (2𝑑 ). When

using the IH method number of communication rounds is

increased to 𝑂 (𝑇 + 𝑠) where the message size of each round

of IH is 𝑂 (𝑄𝑘).
• Batched updates. For batched updates with TR, the number

of communication rounds is of the order 𝑂 (𝑇 /𝐵), but the
messages are 𝐵 times larger,𝑂 (𝐵2𝑑 ). If using IH, the number

of rounds becomes 𝑂 (𝑇 /𝐵 + 𝑠).
In the main text, when we refer to batched boosting reducing

rounds of communication, this is without considering any secure-

aggregation overhead. In practical implementation such as [6], the

overhead of secure-aggregation typically requires 3 rounds of com-

munication under an honest-but-curious threat model. Hence, meth-

ods like batched boosting are advantageous since reducing a single

round of communication results in a 3x reduction under secure-

aggregation.

B.2 Communication Cost
The per-round communication cost of methods will vary depending

on how the tree is built. We will assume that the server builds a

tree a level at a time, which means that gradient information is

batched. For example, histogram-based methods at level 𝑖 will send

𝑂 (2𝑖𝑄𝑘) gradient information corresponding to all gradient his-

tograms at each node in level 𝑖 . Depending on the federated setting

(i.e., availability of devices, communication bandwidth), the server

could instead build the tree a node at a time incurring an increase

in the number of rounds but a smaller per-round communication

cost.

In Figure 20a we present an experiment on synthetic data. This

plot is illustrative in the sense that real-world communication costs

will be somewhat higher (due to omitting the overheads of secure-

aggregation and communication packets). However, the experiment

is run on real GBDT models and reveals that the communication

cost is often less than the worst-case presented above. For example,

many methods that calculate gradient histograms can utilise Hes-

sian information to stop growing the tree early which reduces the

overall communication cost.

The experiment in Figure 20a varied over 𝑇 ∈ [25, 300], 𝑚 ∈
{10, 20, 30, 40}, 𝑑 ∈ 3, 4, 5 and 𝑄 ∈ {4, 8, 16, 32, 64, 128} as these
are the main parameters that effect communication cost. While

Figure 20a only displays the total communication cost that needs

to be sent over the full training of 𝑇 trees, the overall per-round

communication cost is often much smaller. Even for FEVERLESS

while training 𝑇 = 1000 trees results in ≈ 100MB communication

overall, the per-round communication would be of order≈ 0.025MB

which is reasonable for federated clients (i.e., mobile devices) which

may choose to not participate in all rounds. Meanwhile, themethods

we advocate incur a total communication cost of under 1MB to build

the full model for a client participating in every round.

We note that the total size of data received from the aggregat-

ing sever is the same across all methods except for those that use

IH, since there is an additional (but small) cost in receiving split

candidates over 𝑠 rounds.

B.3 Computation Cost
Since participating devices in the federated setting are often lim-

ited in computation, one may wonder how intensive private GBDT

protocols are. In Figures 20c and 20d we provide approximate bench-

marks for the client and server costs of methods studied in Section

6.6. These experiments are run without secure-aggregation over-

heads. We assume a setup where clients have 10, 000 samples in

their local datasets and we vary parameters 𝑇 ∈ [75, 150], 𝑑 ∈
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{3, 4, 5},𝑚 ∈ {10, 20, 30, 40, 50}, 𝑄 ∈ [16, 32, 64] as these all affect
the total computation time for the full protocol.

In general, all private GBDT methods are lightweight for both

clients and servers. For all methods, clients must compute gradient

and Hessian information of their samples. For some methods like

FEVERLESS or those that use IH they must also form aggregated

gradient histograms. The computation scales linearly in the size

of a client’s local dataset. For methods that use histograms, clients

must also partition their data into 𝑄 bins before aggregating.

In practice, the computation overhead of using secure-aggregation

would not be large but would dominate most of the local compu-

tation costs of the GBDT algorithm. For example, in [6], Bell et al.

benchmark client computation costs for 𝑛 = 10
5, 𝑙 = 10

5
where 𝑙

is the dimension of the quantity the server is aggregating. Their

secure-aggregation algorithm takes≈ 0.35 seconds for clients. In the

worst-case their parameter settings match ours and the per-round

computation overhead for clients when using secure-aggregation

will be no more than a second under our honest-but-curious threat

model.

C VARYING THE NUMBER OF CLIENTS
Onemay ask whether the private GBDT protocols in our framework

are sensitive to the number of participating clients. Every method

in our framework relies on aggregating gradient information of

the form 𝑞(𝐼 ) = (∑𝑖∈𝐼 𝑔𝑖 ,
∑
𝑖∈𝐼 ℎ𝑖 ) from a number of clients, where

𝐼 is the set of samples at a (leaf or internal) node. Thus, the total

number of clients is somewhat unimportant to the overall utility of

the algorithm. Instead, the most important factor is the total number

of data samples. In our experiments in Section 6 we assumed that

one client holds one data item, and hence varying the number

of clients is equivalent to varying the number of samples. But in

scenarios where each client may hold more than one data item,

the number of participating clients is only important if they are

providing more data to the algorithm. In practice, we would hope

that there is enough participating data to ensure that the aggregated

gradient information will still be meaningful under noise.

The number of samples at a given node affects both the construc-

tion of the tree (internal splits and leaf weights) and our IH split

candidate method as it depends on Hessian histograms. Thus we are

interested in analysing two effects: First, how sensitive our methods

are to the number of participating clients (when compared to non-

private XGBoost) and secondly, the sensitivity of the number of

split candidates 𝑄 . In particular, we are interested in how sensitive

the IH method is to the value of 𝑄 since it relies on refining split

candidates around Hessian information, which is itself dependent

on the total number of participating samples.

To understand how this affects utility we run an experiment,

shown in Figure 20b on synthetic data generated with 𝑚 = 30

and the number of clients (equivalently, the number of samples)

𝑛 ∈ [70, 200000]7. We choose to use a synthetic dataset which is

“easy” to classify in the sense that in the non-private setting we

only need 𝑛 ≈ 1000 samples to get almost perfect (> 0.95) AUC.

This allows us to see more clearly the effect that DP noise has

when varying the number of clients. We compare our two most

7
See https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_

classification.html

competitive methods DP-TR Newton with uniform splits and DP-

TR Newton with IH splits while varying 𝑛 and the number of split

candidates 𝑄 . We fix 𝑑 = 4, 𝜖 = 1.

We observe that when 𝑛 < 2000 the results of our DP methods

are poor and the performance gap between non-private XGBoost

and our private DP-GBDT methods is large. We find that when

𝑛 ≥ 10, 000 the DP methods stabilise and achieve a reasonable

AUC of around 0.95. This is suitable for the federated setting where

𝑛 ≥ 10, 000 is expected.

For the number of split candidates𝑄 , we first note that this is not

a particularly sensitive parameter in the non-private setting where

the only significant gap in performance occurs when 𝑄 = 2. For

the DP methods, the value of 𝑄 is understandably more sensitive.

We remark that DP-TR Newton (uniform) and DP-TR Newton IH

perform very similarly when 𝑛 ≤ 10, 000 and when 𝑛 ≥ 10, 000

there is a large gap in performance as long as 𝑄 is not too small.

This is expected, as when 𝑛 is small, the Hessian histograms will

likely have more noise than signal and thus the split candidates

formed from IH are likely to be very similar to uniform. When 𝑛 is

larger, the IH method has more accurate Hessian histograms and

so more refined split candidates and thus better performance.

We find in this experiment that values of 𝑄 = 2, 4, 8 usually

result in the lowest AUC (by at most 0.05) and that values between

𝑄 = 32 − 512 perform very similarly. The general conclusion here

is that the choice of 𝑄 is robust as long as you do not choose it too

small. This also agrees with our conclusions from Section 6.4 and

Appendix A.5.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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Figure 13: Split Candidate Methods: Varying 𝑄 ∈ {2, 4, , 16, 32, 64, 128}
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Figure 14: Batched updates across the datasets (𝑇 = 200, 𝑑 = 4)
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Figure 15: Comparison of methods: Higgs (𝑑 = 4, 𝜖 = 1)
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Figure 16: Comparison of methods: Credit 2 (𝑑 = 4, 𝜖 = 1)
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Figure 17: Comparison of methods: Adult (𝑑 = 4, 𝜖 = 1)
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Figure 18: Comparison of methods: Bank (𝑑 = 4, 𝜖 = 1)
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Figure 19: Comparison of methods: Nomao (𝑑 = 4, 𝜖 = 1)
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(a) Communication - 𝑑 ∈ [3, 4, 5],𝑚 ∈
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