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Abstract
As the cloud era begins and failures become com-

monplace, the fate and destiny of availability, reliabil-
ity and performance are in the hands of failure recov-
ery. Unfortunately, recovery problems still take place,
causing downtimes, data loss, and many other problems.
We propose a new testing framework for cloud recovery:
FATE (Failure Testing Service) and DESTINI (Declara-
tive Testing Specifications). With FATE, recovery is sys-
tematically tested in the face of multiple failures. With
DESTINI, correct recovery is specified clearly, concisely,
and precisely. We have deployed our framework in three
cloud systems (HDFS, ZooKeeper, and Cassandra), ex-
plored over 40,000 failure scenarios, wrote 74 specifica-
tions, found 16 new bugs, and reproduced 51 old bugs.

1 Introduction
Large-scale computing and data storage systems, includ-
ing clusters within Google [9], Amazon EC2 [1], and
elsewhere, are becoming a dominant platform for an
increasing variety of applications and services. These
“cloud” systems are comprised of thousands of low-end
machines (to take advantage of economies of scale [9,
15]) and thus require sophisticated and often complex
distributed software to mask the underlying (and perhaps
increasingly) poor reliability of commodity PCs, disks,
and memories [4, 9, 16, 17].
A critical factor in the availability, reliability, and per-

formance of cloud services is thus how they react to fail-
ure. Unfortunately, failure recovery has proven to be
challenging in these systems. For example, in 2009,
a large telecommunications provider reported a serious
data-loss incident [26], and a similar incident occurred
within a popular social-networking site [28]. Bug reposi-
tories of open-source cloud software hint at similar prob-
lems [2].
Practitioners continue to bemoan their inability to ad-

equately address these recovery problems. For exam-
ple, engineers at Google consider the current state of re-
covery testing to be behind the times [6], whereas oth-
ers believe that large-scale recovery remains underspec-
ified [4]. These deficiencies leave us with an important

question: How can we verify the correctness of cloud
systems in how they deal with the wide variety of possi-
ble failure modes?
To address this question, we present two advance-

ments in the current state-of-the-art of testing. First, we
introduce FATE (Failure Testing Service). Unlike exist-
ing frameworks where multiple failures are only exer-
cised randomly [6, 34, 37], FATE is designed to systemat-
ically push cloud systems into many possible failure sce-
narios. FATE achieves this by employing failure IDs as a
new abstraction for exploring failures. Using failure IDs,
FATE has exercised over 40,000 unique failure scenarios,
and uncovers a new challenge: the exponential explosion
of multiple failures. To the best of our knowledge, we
are the first to address this in a more systematic way than
random approaches. We do so by introducing novel pri-
oritization strategies that explore non-similar failure sce-
narios first. This approach allows developers to explore
distinct recovery behaviors an order of magnitude faster
compared to a brute-force approach.
Second, we introduce DESTINI (Declarative Testing

Specifications), which addresses the second half of the
challenge in recovery testing: specification of expected
behavior, to support proper testing of the recovery code
that is exercised by FATE. With existing approaches,
specifications are cumbersome and difficult to write, and
thus present a barrier to usage in practice [14, 23, 24, 31,
38]. To address this, DESTINI employs a relational logic
language that enables developers to write clear, concise,
and precise recovery specifications; we have written 74
checks, each of which is typically about 5 lines of code.
In addition, we present several design patterns to help de-
velopers specify recovery. For example, developers can
easily capture facts and build expectations, write spec-
ifications from different views (e.g., global, client, data
servers) and thus catch bugs closer to the source, express
different types of violations (e.g., data-loss, availability),
and incorporate different types of failures (e.g., crashes,
network partitions).
The rest of the paper is organized as follows. First,

we dissect recovery problems in more detail (§2). Next,
we define our concrete goals (§3), and present the design
and implementation of FATE (§4) and DESTINI (§5). We
then close with evaluations (§6) and conclusion (§7).
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Problems Count Definitions and Examples
Incorrect 68 Recovery exists but it is still incorrect (examples are given throughout the paper).
Absent 14 Unanticipated failures (e.g., corrupt metadata is not detected).
Coarse 7 A corrupt field causes a whole-machine shut down; A bad disk (out of many) shuts down a node.
Late 2 A failure not being detected/notified directly (e.g., because of missing interrupt or wrong design).
Implications Count Definitions and Examples
Data loss 13 Unrecoverable data loss (e.g., loss of metadata or blocks).
Unavailability 48 Inaccessible blocks/nodes, failed jobs/operations, prolonged timeouts/downtimes.
Corruption 19 Accessible data but the attributes/contents have been altered not as expected.
Unreliability 8 Reduced reliability (e.g., a corrupt replica is not replaced with the other good replicas).
Performance 3 Increased latency or reduced bandwidth (e.g., due to late recovery or under-replicated blocks)

Table 1: Bug/Issue Study of Recovery Problems and Implications.

2 Extended Motivation:
Recovery Problems

This section presents a study of recovery problems
through three different lenses. First, we recap accounts
of issues that cloud practitioners have shared in the lit-
erature (§2.1). Since these stories do not reflect details,
we study bug/issue reports of modern open-source cloud
systems (§2.2). Finally, to get more insights, we dissect
a failure recovery protocol (§2.3). We close this section
by reviewing the state-of-the-art of testing (§2.4).

2.1 Lens #1: Practitioners’ Experiences
As well-known practitioners and academics have stated:
“the future is a world of failures everywhere” [11]; “re-
liability has to come from the software” [9]; “recov-
ery must be a first-class operation” [8]. These are but
a glimpse of the urgency of the importance of failure
recovery as we enter the cloud era. Yet, practitioners
still observe recovery problems in the field. The en-
gineers of Google’s Chubby system, for example, re-
ported data loss on four occasions due to database recov-
ery errors [5]. In another paper, they reported another
imperfect recovery that brought down the whole sys-
tem [6]. After they tested Chubby with random multiple
failures, they found more problems. BigTable engineers
also stated that cloud systems see all kinds of failures
(e.g., crashes, bad disks, network partitions, corruptions,
etc.) [7], which other practitioners also agree with [6, 9].
They also emphasized that, as cloud services often de-
pend on each other, a recovery problem in one service
could permeate others, affecting overall availability and
reliability [7]. To conclude, cloud systems face frequent,
multiple and diverse failures [4, 6, 7, 9, 16]. Yet, recovery
implementations are rarely tested with complex failures
and are not rigorously specified [4, 6].

2.2 Lens #2: Study of Bug/Issue Reports
These anecdotes hint at the importance and complex-
ity of failure handling, but offer few specifics on how
to address the problem. Fortunately, many open-source

cloud projects (e.g., ZooKeeper [18], Cassandra [22],
HDFS [32]) publicly share in great detail real issues
encountered in the field. Therefore, we performed an
in-depth study of HDFS bug/issue reports [2]. There
are more than 1300 issues spanning 4 years of opera-
tion (April 2006 to July 2010). We scan all issues and
study the ones that pertain to recovery problems due to
hardware failures. In total, there are 91 issues. Table 1
presents the variety of recovery problems that we found,
including their significant implications.
Beyond these quantitative findings, we also made sev-

eral observations. First, most of the internal protocols
already anticipate failures. However, they do not cover
all possible failures, and thus exhibit problems in prac-
tice. Second, the number of reported issues due to multi-
ple failures is still small. In this regard, excluding our 5
submissions, the developers only had reported 3 issues,
which mostly arose in live deployments rather than sys-
tematic testing. Finally, recovery issues appear not only
in the early years of the development but also recently,
suggesting the lack of adoptable tools that can exercise
failures automatically. Reports from other cloud sys-
tems such as Cassandra and ZooKeeper also raise similar
problems, implications, and observations.

2.3 Lens #3: Write Recovery Protocol
Given so many recovery issues, one might wonder what
the inherent complexities are. To answer this, we dis-
sect the anatomy of HDFS write recovery. As a back-
ground, HDFS provides two write interfaces: write and
append. There is no overwrite. The write protocol essen-
tially looks simple, but when different failures come into
the picture, recovery complexity becomes evident. Fig-
ure 1 shows the write recovery protocol with three differ-
ent failure scenarios. Throughout the paper, we will use
HDFS terminology (blocks, datanodes/nodes, and na-
menode) [32] instead of GoogleFS terminology (chunks,
chunk servers, and master) [10].
• Data-Transfer Recovery: Figure 1a shows a client
contacting the namenode to get a list of datanodes to
store three replicas of a block (s0). The client then ini-
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Figure 1: HDFS Write Recovery Protocol. N , C ,
R1/2 , and numeric letters represent the namenode, client, rack
number, and datanodes respectively. The client always starts
the activity to the namenode first before to the datanodes.

tiates the setup stage by creating a pipeline containing
the nodes through which the setup message is sent (s1).
After the client receives setup acks from all the nodes, it
starts the data transfer stage and waits for transfer acks
from all the nodes (s2). However, within this stage,
the third node crashes (s2a). What Figure 1a shows is
the correct behavior of data-transfer recovery. That is,
the client recreates the pipeline by excluding the dead
node and continues transferring the bytes from the last
good offset (s2b); a background replication monitor will
regenerate the third replica in the future. The design
decision behind this “continue-on-surviving-nodes” ap-
proach (vs. creating a fresh 3-node pipeline) is that the
client cannot retransfer a big block (e.g., tens of MB)
through a fresh pipeline from the beginning because it
only has a sliding window cache (5 MB by default).
• Data-Transfer Recovery Bug: Figure 1b shows a
bug in the data-transfer recovery protocol; there is one
specific code segment that performs a bad error han-
dling of failed data transfer (s2a). This bug makes the
client wrongly exclude the good node (Node2) and in-
clude the dead node (Node3) in the next pipeline cre-
ation (s2b). Since Node3 is dead, the client recreates
the pipeline only with the first node (s2c). If the first
node also crashes at this point (a multiple-failure sce-
nario), no valid blocks are stored. This implementation
bug reduces availability (i.e., due to unmasked failures).
We also found data-loss bugs in the append protocol due
to multiple failures (§6.2.1).
• Setup-Stage Recovery: Finally, Figure 1c shows
how the setup-stage recovery is different than the data-
transfer recovery. Here, the client first creates a pipeline
from two nodes in Rack1 and one in Rack2 (s0a). How-
ever, due to the rack partitioning (s1), the client asks
the namenode again for a new fresh pipeline (s0b) (vs.

the continue-on-surviving-nodes approach). The reason
is that the client has not transferred any bytes, and thus
could start streaming from the beginning. After asking
the namenode in several retries (not shown), the pipeline
contains only nodes in Rack1 (s0b). At the end, all repli-
cas only reside in one rack, which is correct because only
one rack is reachable during write [32].
•ReplicationMonitor Bug: Although the previous case
is correct, it reveals a crucial design bug in the back-
ground replication monitor. This monitor unfortunately
only checks the number of replicas but not the locations.
Thus, even after the partitioning is lifted, the replicas are
not migrated to multiple racks. This design bug greatly
reduces the block availability if Rack1 is completely un-
reachable (more in §5.2.3).
To sum up, we have illustrated the complexity of re-

covery by showing how different failure scenarios lead
to different recovery behaviors. There are more problems
within this protocol and other protocols. Without an ap-
propriate testing framework, it is hard to verify recovery
correctness; in one discussion of a newly proposed re-
covery design, a developer raised a comment: “I don’t
see any proof of correctness. How do we know this will
not lead to the same or other problems? [2]”

2.4 Current State of the Art: Does It Help?
In the last three sections, we presented our motivation
for powerful testing frameworks for cloud systems. A
natural question to ask is whether existing frameworks
can help. We answer this question in two parts: failure
exploration and system specifications.

2.4.1 Failure Exploration
Developers are accustomed to easy-to-use unit-testing
frameworks. For fault-injection purposes, unit tests are
severely limited; a unit test often simulates a limited
number of scenarios. As a result, the code is bloated;
the HDFS unit test is over 20 KLOC (almost as big as
HDFS) but by no means covers the space of failure sce-
narios. In particular, it exercises very few scenarios with
multiple failures. When it comes to injecting multiple
variety of failures, one common practice is to inject a se-
quence of random failures as part of the unit test [6, 34].
To improve common practices, recent work has pro-

posed more exhaustive fault-injection frameworks. For
example, the authors of AFEX and LFI observe that the
number of possible failure scenarios is “infinite” [19, 27].
Thus, AFEX and LFI automatically prioritize “high-
impact targets” (e.g., unchecked system calls, tests likely
to fail). So far, they target non-distributed systems and
do not address multiple failures in detail.
Recent system model-checkers have also proposed the

addition of failures as part of the state exploration strate-
gies [20, 36, 37, 38]. Modist, for example, is capa-
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ble of exercising different combinations of failures (e.g.,
crashes, network failures) [37]. As we discuss later,
exploring multiple failures creates a combinatorial ex-
plosion problem. This problem has not been addressed
by the Modist authors, and thus they provide a ran-
dom mode for exploring multiple failures. Overall, we
found no work that attempts to systematically explore
multiple-failure scenarios, something that cloud systems
face more often than other distributed systems in the
past [4, 9, 16, 17].

2.4.2 System Specifications

Failure injection addresses only half of the challenge in
recovery testing: exercising recovery code. In addition,
proper tests require specifications of expected behavior
from those code paths. In the absence of such speci-
fications, the only behaviors that can be automatically
detected are those that interrupt testing (e.g. system fail-
ures). One easy way is to write extra checks as part of
a unit test. Developers often take this approach, but the
problem is there are many specifications to write, and if
they are written in imperative languages (e.g., Java) the
code is bloated. For these reasons, the number of written
specifications is usually small.
Some model checkers use existing consistency checks

such as fsck [38], a powerful tool that contains hun-
dreds of consistency checks. However, it has some draw-
backs. First, fsck is only powerful if the system is mature
enough; developers add more checks across years of de-
velopment. Second, fsck is also often written in imper-
ative languages, and thus its implementations are com-
plex and unsurprisingly buggy [14]. Finally, fsck can be
considered as “invariant-like” specifications (i.e., it only
checks the state of the file system, but not the events that
lead to the state). As we will see later, specifying recov-
ery requires “behavioral” specifications.
Another advanced checking approach is WiDS [23,

24, 37]. As the target system runs, WiDS interposes and
checks the system’s internal states. However, it employs
a scripting language that still requires a check to be writ-
ten in tens of lines of code [23, 24]. Furthermore, their
interposition mechanism might introduce another issue:
the checks are built by interposing specific implementa-
tion functions, and if these functions evolve, the checks
must be modified. The authors have acknowledged but
not addressed this issue [23].
Frameworks for declarative specifications exist (e.g.,

Pip [31], P2 Monitor [33]). P2 Monitor only works if the
target system is written in the same language [33]. Pip
facilitates declarative checks, but a check is still written
in over 40 lines on average [31]. Also, these systems
are not integrated with a failure service, and thus cannot
thoroughly test recovery.
Overall, we found no framework that enables devel-

opers to write clear and concise recovery specifications
for real-world implementations of today’s cloud systems.
Existing work use approaches that could result in big im-
plementations of the specifications. Managing hundreds
of them becomes complicated, and they must also evolve
as the system evolves. Thus, in practice, developers are
reluctant to invest in writing specifications [2] – hence
the number of written specifications is typically small
and does not scale to the complexity of the system.

3 Goals
To address the aforementioned challenges, we present
a new testing framework for cloud systems: FATE and
DESTINI. We first present our concrete goals here.
• Target systems and users: We primarily target cloud
systems as they experience a wide variety of failures at a
higher rate than any other systems in the past [13]. How-
ever, our framework is generic for other distributed sys-
tems. Our targets so far are HDFS [32], ZooKeeper [18]
and Cassandra [22]. We mainly use HDFS as our exam-
ple in the paper. In terms of users, we target experienced
system developers, with the goal of improving their abil-
ity to efficiently generate tests and specifications.
• Seamless integration: Our approach requires source
code availability. However, for adoptability, our frame-
work should not modify the code base significantly. This
is accomplished by leveraging mature interposition tech-
nology (e.g., AspectJ). Currently our framework can be
integrated to any distributed systems written in Java.
• Rapid and systematic exploration of failures: Our
framework should help cloud system developers explore
multiple-failure scenarios automatically and more sys-
tematically than random approaches. However, a com-
plete systematic exploration brings a new challenge: a
massive combinatorial explosion of failures, which takes
tens of hours to explore. Thus, our testing framework
must also be equipped with smart exploration strategies
(e.g., prioritizing non-similar failure scenarios first).
• Numerous detailed recovery specifications: Ideally,
developers should be able to write as many detailed spec-
ifications as possible. The more specifications written,
the finer bug reports produced, the less time needed for
debugging. To realize this, our frameworkmust meet two
requirements. First, the specificationsmust be developer-
friendly (i.e., concise, fast to write, yet easy to under-
stand). Otherwise, developers will be reluctant to invest
in writing specifications. Second, our framework must
facilitate “behavioral” specifications. We note that ex-
isting work often focuses on “invariant-like” specifica-
tions. This is not adequate because recovery behaves dif-
ferently under different failure scenarios, and while re-
covery is still ongoing, the system is likely to go through
transient states where some invariants are not satisfied.
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4 FATE: Failure Testing Service
Within a distributed execution, there are many points
in place and time where system components could fail.
Thus, our goal is to exercise failures more methodically
than random approaches. To achieve this, we present
three contributions: a failure abstraction for express-
ing failure scenarios (§4.1), a ready-to-use failure ser-
vice which can be integrated seamlessly to cloud sys-
tems (§4.2), and novel failure prioritization strategies that
speed up testing time by an order of magnitude (§4.3).

4.1 Failure IDs: Abstraction For Failures
FATE’s ultimate goal is to exercise as many combinations
of failures as possible. In a sense, this is similar to model
checking which explores different sequences of states.
One key technique employed in system model checkers
is to record the hashes of the explored states. Similarly
in our case, we introduce the concept of failure IDs, an
abstraction for failure scenarios which can be hashed and
recorded in history. A failure ID is composed of an I/O
ID and the injected failure (Table 2). Below we describe
these subcomponents in more detail.
• I/O points: To construct a failure ID, we choose I/O
points (i.e., system/library calls that perform disk or net-
work I/Os) as failure points, mainly for three reasons.
First, hardware failures manifest into failed I/Os. Sec-
ond, from the perspective of a node in distributed sys-
tems, I/O points are critical points that either change its
internal states or make a change to its outside world (e.g.,
disks, other nodes). Finally, I/O points are basic oper-
ations in distributed systems, and hence an abstraction
built on these points can be used for broader purposes.
• Static and dynamic information: For each I/O point,
I/O ID is generated from the static (e.g., system call,
source file) and dynamic information (e.g., stack trace,
node ID) available at the point. Dynamic information
are useful to increase failure coverage. For example, re-
covery might behave differently if a failure happens in
different nodes (e.g., first vs. last node in the pipeline).
• Domain-specific information: To increase failure
coverage further, an I/O ID carries domain-specific infor-
mation; a common I/O point could write to different file
types or send messages to different nodes. FATE’s inter-
position mechanism provides runtime information avail-
able at an I/O point such as the target I/O (e.g., file names,
IP addresses) and the I/O buffer (e.g., network packet,
file buffer). To convert these raw information into a more
meaningful context (e.g., “Setup Ack” in Table 2), FATE
provides an interface that developers can implement. If
the interface is empty, FATE can still run, but failure cov-
erage could be sacrificed.
• Possible failure modes: Given an I/O ID, FATE gen-
erates a list of possible failures that could happen before

I/O ID Fields Values
Static Func. call : OutputStream.flush()

Source File : BlockRecv.java (line 45)
Dynamic Stack trace : (the stack trace)

Node Id : Node2
Domain Source : Node2
specific Dest. : Node1

Net. Mesg. : Setup Ack
Failure ID = hash ( I/O ID + Crash ) = 2849067135

Table 2: A Failure ID. A failure ID comprises an I/O ID
plus the injected failure (e.g., crash). Hash is used to record a
failure ID. For space, some fields are not shown.

and after. For example, FATE could throw a bad-disk ex-
ception before a disk write, or crash a node after the node
receives a message. Currently, we support failures such
as crash, permanent disk failure, disk corruption, node-
level and rack-level network partitioning, and transient
failure. We leave I/O reordering for future work.

4.2 Architecture
We built FATE with an aim towards quick and seamless
integration to our target systems. Figure 2 depicts the
four components of FATE: workload driver, failure sur-
face, failure server, and filters.

4.2.1 Workload Driver, Failure Surface, and Server

We first instrument the target system (e.g., HDFS) by in-
serting a “failure surface”. There are many possible lay-
ers to insert a failure surface (e.g., inside a system library
or at the VMM layer). We do this between the target sys-
tem and the OS library (e.g., Java SDK), for two reasons.
First, at this layer, rich domain-specific information is
available. Second, by leveraging mature instrumentation
technology (e.g., AspectJ), adding the surface requires
no modification to the code base.
The failure surface has two important jobs. First, at

each I/O point, it builds the I/O ID. Second, it needs to
check if a persistent failure injected in the past affects this
I/O point (e.g., network partitioning). If so, the surface
returns an error to emulate the failure without the need
to talk to the server. Otherwise, it sends the I/O ID to the
server and receives a failure decision.
The workload driver is where the developer attaches

the workload to be tested (e.g., write, append, or some se-
quence of operations, including the pre- and post-setups)
and specifies the maximum number of failures injected
per run. As the workload runs, the failure server receives
I/O IDs from the failure surface, combines the I/O IDs
with possible failures into failure IDs, and makes fail-
ure decisions based on the failure history. The workload
driver terminates when the server does not inject a new
failure scenario.
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Figure 2: FATE Architecture.

4.2.2 Brute-Force Failure Exploration
By default, FATE runs in brute-forcemode. That is, FATE
systematically explores all possible combinations of ob-
served failure IDs. This is done via failure locking and
failure history. As an example, consider four failure IDs
A, B, C, and D, not known apriori. For two-failure scenar-
ios, FATE should exercise AB in one run, AC in another
run, and so on. With failure locking, after the first run,
the first failure is locked to A (lock[1] = A) such that
in the next run FATE only injects A for the first failure.
For the second failure, since the lock is empty (lock[2]
= Ø), the server will inject any new failure (e.g., C) as
long as the combination (e.g., AC) has not been exercised
(in general, for N-failure combinations, FATE only uses
lock[1..N-1]; lock[N] is always empty). If FATE
does not observe a new combination that starts with A,
the first failure is unlocked and A is recorded in history
(history[1]={A}) such that in the next run FATE can
exercise other combinations that do not start with A (e.g.,
BC). With this brute-forcemode, FATE has exercised over
more than 40,000 unique combinations of one, two and
three failure IDs (e.g., A, BC, and ACD).

4.2.3 Filters
FATE uses information carried in I/O and failure IDs to
implement filters at the server side. A filter can be used
to regenerate a particular failure scenario or to reduce
the failure space. For example, a developer could insert
a filter that allows crash-only failures, failures only on
some specific I/Os, or any failures only at datanodes.

4.3 Failure Exploration Strategy
Running FATE in brute-force mode is impractical and
time consuming. As an example, we have run the append
protocol with a filter that allows crash-only failures on
disk I/Os in datanodes. With this filter, injecting two fail-
ures per run gives 45 failure IDs to exercise, which leads
us to 1199 combinations that take more than 2 hours to
run. Without the filter (i.e., including network I/Os and
other types of failures) the number will further increase.
This introduces the problem of exponential explosion of
multiple failures, which has to be addressed given the
fact that we are dealing with large code base where an
experiment could take more than 5 seconds per run (e.g.,
due to pre- and post-setup overheads).

Among the 1199 experiments, 116 failed; if recovery
is perfect, all experiments should be successful. Debug-
ging all of them led us to 3 bugs as the root causes. Now,
we can concretely define the challenge: Can FATE ex-
ercise a much smaller number of combinations and find
distinct bugs faster? This section provides some answers
to this challenge. To the best of our knowledge, we are
the first to address this issue in the context of distributed
systems. Thus, we also hope that this challenge attracts
system researches to present other alternatives.
To address this challenge, we have studied the prop-

erties of multiple failures (for simplicity, we begin with
two-failure scenarios). A pair of two failures can be cate-
gorized into two types: pairwise dependent and pairwise
independent failures. Below, we describe each category
along with the prioritization strategies. Due to space con-
straints, we could not show the detailed pseudo-code, and
thus we only present the algorithms at a high-level. We
will evaluate the algorithms in Section 6.3. We also em-
phasize that our proposed strategies are built on top of
the information carried in failure IDs, and hence display
the power of failure IDs abstraction.

4.3.1 Pairwise Dependent Failures

A pair of failure IDs is dependent if the second ID is
observed only if the failure on the first ID is injected;
observing the occurrence of a failure ID does not neces-
sarily mean that the failure must be injected. The key
here is to use observed I/Os to capture path coverage
information (this is an acceptable assumption since we
are dealing with distributed systems where recovery es-
sentially manifests into I/Os). Figure 3a illustrates some
combinations of dependent failure IDs. For example, F
is dependent on C or D (i.e., F will never be observed un-
less C or D is injected). The brute-force algorithm will
inefficiently exercise all six possible combinations: AE,
BE, CE, DE, CF, and DF.
To prioritize dependent failure IDs, we introduce a

strategy that we call recovery-behavior clustering. The
goal is to prioritize “non-similar” failure scenarios first.
The intuition is that non-similar failure scenarios typi-
cally lead to different recovery behaviors, and recovery
behaviors can be represented as a sequence of failure
IDs. Thus, to perform the clustering, we first run a com-
plete set of experiments with only one failure per run,
and in each run we record the subsequent failure IDs.
We formally define subsequent failure IDs as all ob-

served IDs after the injected failure up to the point where
the system enters the stable state. That is, recording re-
covery only up to the end of the protocol (e.g., write)
is not enough. This is because a failed I/O could leave
some “garbage” that is only cleaned up by some back-
ground protocols. For example, a failed I/O could leave
a block with an old generation timestamp that should be
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Figure 3: Prioritization of Pairwise Dependent and Independent Failures.

cleaned up by the background replication monitor (out-
side the scope of the write protocol). Moreover, different
failures could leave different types of garbage, and thus
lead to different recovery behaviors of the background
protocols. By capturing subsequent failure IDs until the
stable state, we ensure more fine-grained clustering.
The exact definition of stable state might be different

across different systems. For HDFS, our definition of
stable state is: FATE reboots dead nodes if any, removes
transient failures (e.g., network partitioning), sends com-
mands to the datanodes to report their blocks to the na-
menode, and waits until all datanodes receive a null com-
mand (i.e., no background jobs to run).
Going back to Figure 3a, the created mappings be-

tween the first failures and their subsequent failure IDs
are: {A→ E}, {B→ E}, {C→ E, F}, and {D→ E, F}. The
recovery behaviors then are clustered into two: {E}, and
{E, F}. Finally, for each recovery cluster, we pick only
one failure ID on which the cluster is dependent. The fi-
nal prioritized combinations are marked with bold edges
in Figure 3a. That is, FATE only exercises: AE, CE, and
CF. Note that E is exercised as a second failure twice be-
cause it appears in different recovery clusters.

4.3.2 Pairwise Independent Failures

A pair of failure IDs is independent if the second ID is
observed even if the first ID is not injected. This case
is often observed when the same piece of code runs in
parallel, which is a common characteristic found in dis-
tributed systems (e.g., two phase commit, leader election,
HDFS write and append). Figure 3b illustrates a scenario
where the same I/O points A and B are executed concur-
rently in three nodes (i.e., A1, A2, A3, B1, B2, B3). Let’s
name these two I/O points A and B as static failure points,
or SFP in short (as they exclude node ID). With brute-
force exploration, FATE produces 24 combinations (the
12 bi-directional edges in Figure 3b). In more general,
there are SFP 2 ∗N(N−1) combinations, whereN and
SFP are the number of nodes and static failure points re-
spectively. To reduce this quadratic growth, we introduce
two levels of prioritization: one for reducing N(N − 1)
and the other for SFP 2.
To reduceN(N−1), we leverage the property of sym-

metric code (i.e., the same code that runs concurrently
in different nodes). Because of this property, if a pair
of failures has been exercised at two static failure points
of two specific nodes, it is not necessary to exercise the
same pair for other pairs of nodes. For example, if A1B2
has been exercised, it is not necessary to run A1B3, A2B1,
A2B3, and so on. As a result, we have reducedN(N−1)
(i.e., any combinations of two nodes) to just one (i.e., a
pair of two nodes); the N does not matter anymore.
Although the first level of reduction is significant,

FATE still hits the SFP 2 bottleneck as illustrated in Fig-
ure 3c. Here, instead of having two static failure points,
there are four, which leads to 16 combinations. To re-
duce SFP 2, we utilize the behavior clustering algorithm
used in the dependent case. Put simply, the goal is to re-
duce SFP to SFPclustered, which will reduce the input
to the quadratic explosion (e.g., from 4 to 2 resulting in 4
uni-directional edges as depicted in Figure 3d). In prac-
tice, we have seen a reduction from fifteen SFP to eight
SFPclustered.

4.4 Summary

We have introduced failure IDs as a new abstraction for
exploring failures, which we believe is general enough
to be used for other purposes (e.g., incorporated to other
testing frameworks such as model checkers, to build pri-
oritization policies, etc.). Second, we have built a ready-
to-use failure service. Deploying FATE is relatively easy;
a developer could quickly do that without the domain-
specific component. For example, we have ported FATE
to two other systems in just a few hours. To increase
failure coverage, one can incrementally add the domain-
specific fields of failure IDs. Finally, we are the first
to present prioritization strategies for exploring multiple
failures in distributed systems. Our approaches are not
sound; however by experience, all bugs foundwith brute-
force are also found with prioritization (more in §6.3). If
developers have the time and resource, they could fall
back to brute-force mode for more confidence. So far,
we have only explained our algorithms for two-failure
scenarios. We have generalized them to three-failure, but
cannot present them due to space constraint.

7



5 DESTINI: Declarative Testing
Specifications

After failures are injected, developers still need to ver-
ify system correctness. As described in the motivation
(§2.4), DESTINI attempts to improve the state-of-the-
art of writing system specifications. In the following
sections, we first describe the architecture (§5.1), then
present some examples (§5.2), and finally summarize the
advantages (§5.3). Currently, we target recovery bugs
that reduce availability (e.g., unmasked failures, fail-
stop) and reliability (e.g., data-loss, inconsistency). We
leave performance and scalability bugs for future work.

5.1 Architecture
At the heart of DESTINI is Datalog, a declarative rela-
tional logic language. We chose the Datalog style as it
has been successfully used for building distributed sys-
tems [3, 25] and for verifying some aspects of system
correctness (e.g., security [12, 30]). Unlike much of that
work, we are not using Datalog to implement system in-
ternals, but only to write correctness specifications that
are checked relatively rarely. Hence we are less depen-
dent on the efficiency of current Datalog engines, which
are still evolving [3].
In terms of the architecture, DESTINI is designed such

that developers can build specifications from minimal in-
formation. To support this, DESTINI comprises three fea-
tures as depicted in Figure 4. First, it interposes network
and disk protocols and translates the available informa-
tion into Datalog events (e.g., cnpEv ). Second, it records
failure scenarios by having FATE inform DESTINI about
failure events (e.g., fateEv ). This highlights that FATE
and DESTINI must work hand in hand, a valuable prop-
erty that is apparent throughout our examples. Finally,
based only on events, it records facts, deduces expecta-
tions of how the system should behave in the future, and
compares the two.

5.1.1 Rule Syntax
In DESTINI, specifications are formally written as Data-
log rules. A rule is essentially a logical relation:
errX(P1,P2,P3) :- cnpEv (P1), NOT-IN stateY(P1,P2,_),

P2 == img, P3 := Util.strLib(P2);

This Datalog rule consists of a head table (errX)
and predicate tables in the body (cnpEv and stateY).
The head is evaluated when the body is true. Tu-
ple variables begin with an upper-case letter (P1). A
don’t care variable is represented with an underscore
( ). A comma between predicates represents conjunc-
tion. “:=” is for assignments. We also provide some
helper libraries (Util.strLib() to manipulate strings).
Lower case variables (img) represent integer or string
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Figure 4: DESTINI Architecture.

constants. All upper case letters (NOT-IN) are Datalog
keywords. Events are in italic. To help readers track
where events originate from, an event name begins with
one of these labels: cnp , dnp , cdp , ddp , fs , which
stand for client-namenode, datanode-namenode, client-
datanode, datanode-datanode, and file system protocols
respectively (Figure 4). Non-event (non-italic) heads and
predicates are essentially database tables with primary
keys defined in some schemas (not shown). A table that
starts with err represents an error (i.e., if a specification
is broken, the error table is non-empty, implying the ex-
istence of one or more bugs).

5.2 DESTINI Examples
This section presents the powerful features of DESTINI
via four examples of HDFS recovery specifications. In
the first example, we present five important compo-
nents of recovery specifications (§5.2.1). To help com-
plex debugging process, the second example shows how
developers can incrementally add tighter specifications
(§5.2.2). The third example presents specifications that
incorporate a different type of failure than the first two
examples (§5.2.3). Finally, we illustrate how developers
can refine existing specifications (§5.2.4).

5.2.1 Specifying Data-Transfer Recovery
DESTINI facilitates five important elements of recovery
specifications: checks, expectations, facts, precise fail-
ure events, and check timings. Here, we present these
elements by specifying the data-transfer recovery proto-
col (Figure 1a); this recovery is correct if valid replicas
are stored in the surviving nodes of the pipeline.
• Checks: To catch violations of data-transfer recov-
ery, we start with a simple high-level check (a1), which
says “upon block completion, throw an error if there is
a node that is expected to store a valid replica, but actu-
ally does not.” This rule shows how a check is composed
of three elements: the expectation (expectedNodes), fact
(actualNodes), and check timing (cnpComplete ).
• Expectations: The expectation (expectedNodes) is de-
duced from protocol events (a2-a8). First, without any
failure, the expectation is to have the replicas in all the
nodes in the pipeline (a3); information about pipeline
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Section 5.2.1 Data-Transfer Recovery Specifications
a1 errDataRec (B, N) :- cnpComplete (B), expectedNodes (B, N), NOT-IN actualNodes (B, N);

a2 pipeNodes (B, Pos, N) :- cnpGetBlkPipe (UFile, B, Gs, Pos, N);

a3 expectedNodes (B, N) :- pipeNodes (B, Pos, N);

a4 DEL expectedNodes (B, N) :- fateCrashNode (N), pipeStage (B, Stg), Stg == 2,

expectedNodes (B, N);

a5 setupAcks (B, Pos, Ack) :- cdpSetupAck (B, Pos, Ack);

a6 goodAcksCnt (B, COUNT<Ack>) :- setupAcks (B, Pos, Ack), Ack == ’OK’;

a7 nodesCnt (B, COUNT<Node>) :- pipeNodes (B, , N, );

a8 pipeStage (B, Stg) :- nodesCnt (NCnt), goodAcksCnt (ACnt), NCnt == Acnt, Stg := 2;

a9 blkGenStamp (B, Gs) :- dnpNextGenStamp (B, Gs);

a10 blkGenStamp (B, Gs) :- cnpGetBlkPipe (UFile, B, Gs, , );

a11 diskFiles (N, File) :- fsCreate (N, File);

a12 diskFiles (N, Dst) :- fsRename (N, Src, Dst), diskFiles (N, Src, Type);

a13 DEL diskFiles (N, Src) :- fsRename (N, Src, Dst), diskFiles (N, Src, Type);

a14 fileTypes (N, File, Type) :- diskFiles(N, File), Type := Util.getType(File);

a15 blkMetas (N, B, Gs) :- fileTypes (N, File, Type), Type == metafile,

B := Util.getBlk(File), Gs := Util.getGs(File);

a16 actualNodes (B, N) :- blkMetas (N, B, Gs), blkGenStamp (B, Gs);

Section 5.2.2 Tighter Specifications for Data-Transfer Recovery
b1 errBadAck (Pos, N) :- cdpDataAck (Pos, ’Error’), pipeNodes (B, Pos, N), liveNodes (N);

b2 liveNodes (N) :- dnpRegistration (N);

b3 DEL liveNodes (N) :- fateCrashNode (N);

b4 errBadConnect (N, TgtN) :- ddpDataTransfer (N, TgtN, Status), liveNodes (TgtN),

Status == terminated;

Section 5.2.3 Rack-Aware Policy Specifications
c1 warnSingleRack (B) :- rackCnt (B, 1), actualRacks (B, R), connectedRacks (R, OtherR);

c2 actualRacks (B, R) :- actualNodes (B, N), nodeRackMap (N, R);

c3 rackCnt (B, COUNT<R>) :- actualRacks (B, R);

c4 DEL connectedRacks (R1, R2) :- fatePartitionRacks (R1, R2);

c5 err1RackOnCompletion (B) :- cnpComplete (B), warnSingleRack (B);

c6 err1RackOnStableState (B) :- fateStableState ( ), warnSingleRack (B);

Section 5.2.4 Refining Log-Recovery Specifications
d1 errLostUFile (UFile) :- expectedUFile (UFile), NOT-IN ufileInNameNode (UFile);

d2 ufileInNameNode (UFile) ∗∗ :- ufileInNnFile(F, NnFile), (NnFile == img || NnFile == log ||

NnFile == img2);

d3 ufileInNameNode (UFile) :- ufileInNnFile (F, img2), logRecStage (Stg), Stg == 4;

d4 ufileInNameNode (UFile) :- ufileInNnFile (F, img) , logRecStage (Stg), Stg != 4;

d5 ufileInNameNode (UFile) :- ufileInNnFile (F, log) , logRecStage (Stg), Stg != 4;

Table 3: Sample Specifications. The table lists all the rules we wrote to specify the problems in Section 5.2; Rules aX, bX,
cX, and dX are for Sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4 respectively. All logical relations are built only from events (in italic). The
shaded rows indicate checks that catch violations. A check always starts with err. Tuple variables B, Gs, N, Pos, R, Stg, NnFile,
and UFile are abbreviations for block, generation timestamp, node, position, rack, stage, namenode file, and user file respectively;
others should be self-explanatory. Each table has primary keys defined in a schema (not shown). (∗∗) Rule d2 is refined in d3 to
d5; these rules are described more in our short paper [13].
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nodes are accessible from the setup reply from the na-
menode to the client (a2). However, if there is a crash,
the expectation changes: the crashed node should be re-
moved from the expected nodes (a4). This implies that
an expectation is also based on failure events.
• Failure events: Failures in different stages result in
different recovery behaviors. Thus, we must know pre-
cisely when failures occur. For data-transfer recovery,
we need to capture the current stage of the write pro-
cess and only change the expectation if a crash occurs
within the data-transfer stage (fateCrashNode happens
at Stg==2 in rule a4). The data transfer stage is deduced
in rules a5-a8: the second stage begins after all acks from
the setup phase have been received.
Before moving on, we emphasize two important ob-

servations here. First, this example shows how FATE
and DESTINI must work hand in hand. That is, recovery
specifications require a failure service to exercise them,
and a failure service requires specifications of expected
failure handling. Second, with logic programming, de-
velopers can easily build expectations only from events.
• Facts: The fact (actualNodes) is also built from events
(a9-a16), more specifically, by tracking the locations of
valid replicas. A valid replica can be tracked with two
pieces of information: the block’s latest generation time
stamp, which DESTINI tracks by interposing two inter-
faces (a9 and a10), and meta/checksum files with the
latest generation timestamp, which are obtainable from
file operations (a11-a15). With this information, we can
build the runtime fact: the nodes that store the valid repli-
cas of the block (a16).
• Check timings: The final step is to compare the ex-
pectation and the fact. We underline that the timing of
the check is important because we are specifying recov-
ery behaviors, unlike invariants which must be true at
all time. Not paying attention to this will result in false
warnings (i.e., there is a period of time when recovery is
ongoing and specifications are not met). Thus, we need
precise events to signal check times. In this example, the
check time is at block completion (cnpComplete in a1).

5.2.2 Debugging with Tighter Specifications

The rules in the previous section capture the high-level
objective of HDFS data-transfer recovery. After we ran
FATE to cover the first crash scenario in Figure 1b (for
simplicity of explanation, we exclude the second crash),
rule a1 throws an error due to a bug that wrongly ex-
cludes the good second node (Figure 1b in §2.3). Al-
though, the check unearths the bug, it does not pinpoint
the bug (i.e., answer why the violation is thrown).
To help this debugging process, we added more de-

tailed specifications. In particular, from the events that
DESTINI logs, we observed that the client excludes the
second node in the next pipeline, which is possible if the

Time, Events, and Errors
t1: Client asks the namenode for a block ID and the nodes.

cnpGetBlkPipe (usrFile, blk x, gs1, 1, N1);

cnpGetBlkPipe (usrFile, blk x, gs1, 2, N2);

cnpGetBlkPipe (usrFile, blk x, gs1, 3, N3);

t2: Setup stage begins (pipeline nodes setup the files). ∗
fsCreate (N1, tmp/blk x gs1.meta);

fsCreate (N2, tmp/blk x gs1.meta);

fsCreate (N3, tmp/blk x gs1.meta);

t3: Client receives setup acks. Data transfer begins.
cdpSetupAck (blk x, 1, OK);

cdpSetupAck (blk x, 2, OK);

cdpSetupAck (blk x, 3, OK);

t4: FATE crashes N3. Got error (b4).
fateCrashNode (N3);

errBadConnect (N1, N2); // should be good

t5: Client receives an errorneous ack. Got error (b1).
cdpDataAck (2, Error);

errBadAck (2, N2); // should be good

t6: Recovery begins. Get new generation time stamp.
dnpNextGenStamp (blk x, gs2);

t7: Only N1 continues and finalizes the files.
fsCreate (N1, tmp/blk x gs2.meta);

fsRename (N1, tmp/blk x gs2.meta,

current/blk x gs2.meta);

t8: Client marks completion. Got error (a1).
cnpComplete (blk x);

errDataRec (blk x, N2); // should exist

Table 4: A Timeline of DESTINI Execution. The
table shows the timeline of runtime events (italic) and errors
(shaded). Tighter specifications capture the bug earlier in
time. The tuples (strings/integers) are real entries (not variable
names). For space, we do not show block-file creations (but
only meta files∗) nor how the rules in Table 3 are populated.

client receives a bad ack. Thus, we wrote another check
(b1) which says “throw an error if the client receives a
bad ack for a live node” (b1’s predicates are specified
in b2 and b3). Note that this check is written from the
client’s view, while rule a1 from the global view.
The new check catches the bug closer to the source,

but also raises a new question: Why does the client re-
ceive a bad ack for the second node? One logical ex-
planation is because the first node cannot communicate
to the second node. Thus, we easily added many checks
that catch unexpected bad connections such as b4, which
finally pinpoints the bug: the second node, upon seeing
a failed connection to the crashed third node, incorrectly
closes the streams connected to the first node; note that
this check is written from the datanode’s view.
In summary, more detailed specifications prove to be

valuable for assisting developers with complex debug-
ging process. This is unlikely to happen if a check im-
plementation is long. But with DESTINI, a check can
be expressed naturally in a small number of logical re-
lations. Moreover, checks can be written from different
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views (e.g., global, client and datanode as shown in a1,
b1, b4 respectively). Table 4 shows a timeline of when
these checks are violated. As shown, tighter specifica-
tions essentially fill the “explanation gaps” between the
injected failure and the wrong final state of the system.

5.2.3 Specifying Rack-Aware Replication Policy
In this example, we write specifications for HDFS rack-
aware replication policy, an important policy for high
availability [10, 32]. Unlike previous examples, this ex-
ample incorporates network partitioning failure mode.
According to the HDFS architects [32], the write pro-

tocol should ensure that block replicas are spread across
a minimum of two available racks. But, if only one rack
is reachable, it is acceptable to use one rack temporar-
ily. To express this, rule c1 throws a warning if a block’s
rack could reach another rack, but the block’s rack count
is one (rules c2-c4 provide topology information, which
is initialized when the cluster starts and updated when
FATE creates a rack partition). This warning becomes a
hard error only if it is true upon block completion (c5) or
stable state (c6). Note again how these timings are im-
portant to prevent false errors; while recovery is ongoing,
replicas are still being re-shuffled into multiple racks.
With these checks, DESTINI found the bug in Fig-

ure 1c (§2.3), a critical bug that could greatly reduce
availability: all replicas of a block are stored in a sin-
gle rack. More specifically, the bug does not violate the
completion rule (because the racks are still partitioned).
But, it does violate the stable state rule because even af-
ter the network partitioning is removed, the replication
monitor does not re-shuffle the replicas.

5.2.4 Refining Specifications
In the second example (§5.2.2), we demonstrated how
developers can incrementally add detailed specifications.
In this section, we briefly show how developers can refine
existing specifications (an extensive description can be
found in our short paper [13]).
Here, we specify the HDFS log-recovery process in

order to catch data-loss bugs in this protocol. The high-
level check (d1) is fairly simple: “a user file is lost if it
does not exist at the namenode.” To capture the facts, we
wrote rule d2 which says “at any time, user files should
exist in the union of all the three namenode files used in
log recovery.” With these rules, we found a data-loss bug
that accidentally deletes the metadata of user files. But,
the error is only thrown at the end of the log recovery
process (i.e., the rules are not detailed enough to pinpoint
the bug). We then refined rule d2 to reflect in detail the
four stages of the process (d3 to d5). That is, depending
on the stage, user files are expected to be in a different
subset of the three files. With these refined specifications,
the data-loss bug was captured in between stage 3 and 4.

5.3 Summary of Advantages
Throughout the examples, we have shown the advantages
of DESTINI: it facilitates checks, expectations, facts,
failure events, and precise timings; specifications can be
written from different views (e.g., global, client, datan-
ode); different types of violations can be specified (e.g.,
availability, data-loss); different types of failures can be
incorporated (e.g., crashes, partitioning); and specifica-
tions can be incrementally added or refined. Overall,
the resulting specifications are clear, concise, and pre-
cise, which potentially attracts developers to write many
specifications to ease complex debugging process, for
both present and future related bugs. All of these are
feasible due to three important properties of DESTINI:
the interposition mechanism that translates disk and net-
work events; the use of relational logic language which
enables us to deduce complex states only from events;
and the inclusion of failure events from the collaboration
with FATE.

6 Evaluation
We evaluate FATE and DESTINI in several aspects: the
general usability for cloud systems (§6.1), the ability to
catch multiple-failure bugs (§6.2), the efficiency of our
prioritization strategies (§6.3), the number of specifica-
tions we have written and their reusability (§6.4), the
number of new bugs we have found and old bugs repro-
duced (§6.5), and the implementation complexity (§6.6).

6.1 Target Systems and Protocols
We have integrated FATE and DESTINI to three cloud
systems: HDFS v0.20.0 and v0.20.2+320 (the latter is
released in Feb. 2010 and used by Cloudera and Face-
book), ZooKeeper v3.2.2 (Dec. 2009), and Cassandra
v0.6.1 (Apr. 2010). We have run our framework on four
HDFS workloads (log recovery, write, append, and repli-
cation monitor), one ZooKeeper workload (leader elec-
tion), and one Cassandra workload (key-value insert).

6.2 Multiple-Failure Bugs
The uniqueness of our framework is the ability to explore
multiple failures systematically, and thus catch corner-
case multiple-failure bugs. Here, we describe two out of
five multiple-failure bugs that we found.

6.2.1 Append Bugs

We begin with a multiple-failure bug in the HDFS ap-
pend protocol. Unlike write, append is more complex
because it must atomically mutate block replicas [35].
HDFS developers implement append with a custom pro-
tocol; their latest append design was written in a 19-page
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document of prose specifications [21]. Append was fi-
nally supported after being a top user demand for three
years [35]. As a note, Google FS also supports append,
but its authors did not share their internal design [10].
The experiment setup was that a block has three repli-

cas in three nodes, and thus should survive two failures.
On append, the three nodes form a pipeline. N1 starts a
thread that streams the new bytes to N2 and then N1 ap-
pends the bytes to its block. N2 crashes at this point, and
N1 sends a bad ack to the client, but does not stop the
thread. Before the client continues streaming via a new
pipeline, all surviving nodes (N1 and N3) must agree on
the same block offset (the syncOffset process). In this
process, each node stops the writing thread, verifies that
the block’s in-memory and on-disk lengths are the same,
broadcasts the offset, and picks the smallest offset. How-
ever, N1 might have not updated the block’s in-memory
length, and thus throws an exception resulting in the new
pipeline containing only N3. Then, N3 crashes, and the
pipeline is empty. The append fails, but worse, the block
in N1 (still alive) becomes “trapped” (i.e., inaccessible).
After FATE ran all the background protocols (e.g., lease
recovery), the block is still trapped and permanently in-
accessible. We have submitted a fix for this bug [2].

6.2.2 Combinations of Different Failures
We have also found a new data-loss bug due to a se-
quence of different failure modes, more specifically, tran-
sient disk failure (#1), crash (#2), and disk corruption
(#3) at the namenode. The experiment setup was that the
namenode has three replicas of metadata files on three
disks, and one disk is flaky (exhibits transient failures
and corruptions). When users store new files, the na-
menode logs them to all the disks. If a disk (e.g., Disk1)
returns a transient write error (#1), the namenodewill ex-
clude this disk; future writes will be logged to the other
two disks (i.e., Disk1 will contain stale data). Then, the
namenode crashes after several updates (#2). When the
namenode reboots, it will load metadata from the disk
that has the latest update time. Unfortunately, the file that
carries this information is not protected by a checksum.
Thus, if this file is corrupted (#3) such that the update
time of Disk1 becomes more recent than the other two,
then the namenode will load stale data, and flush the stale
data to the other two disks, wiping out all recent updates.
One could argue that this case is rare, but cloud-scale de-
ployments cause rare bugs to surface; a similar case of
corruption did occur in practice [2]. Moreover, data-loss
bugs are serious ones [26, 28, 29].

6.3 Prioritization Efficiency
When FATE was first deployed without prioritization,
we exercised over 40,000 unique combinations of fail-
ures, which combine into 80-hour of testing time. Thou-

Workload #F STR #EXP FAIL BUGS
Append 2 BF 1199 116 3

PR 112 17 3
Append 3 BF 7720 ∗∗3693 ∗3

PR 618 72 ∗3
Write 2 BF 524 120 2

PR 49 27 2
Write 3 BF 3221 911 ∗2

PR 333 82 ∗2

Table 5: PrioritizationEfficiency. The columns from left
to right are the number of injected failures per run (F), explo-
ration strategy (STR), combinations/experiments (EXP), failed
experiments (FAIL), and bugs found (BUGS). BF and PR stands
for brute-force and prioritization respectively. Note that the
bug counts are only due to two and three failures and depend
on the filter (i.e., there are more bugs than shown). (∗) Bugs in
three-failure experiments are the same as in two-failure ones.
(∗∗) This high number is due to a design bug; we used triaging
to help us classify the bugs (not shown).

sands of experiments failed (probably only due to tens of
bugs). This was an overwhelming situation which fortu-
nately unfolded into a good outcome: new strategies for
multiple-failure prioritization.
To evaluate our strategies, we first focused only on two

protocols (write and append) because we need to com-
pare the brute-force with the prioritization results. More
specifically, for each method, we count the number of
combinations and the number of distinct bugs. Our hope
is that the latter is the same for brute-force and prior-
itization. Table 5 shows the result of running the two
workloads with two and three failures per run, and with
a lightweight filter (crash-only failures on disk I/Os in
datanodes); without this filter, the number of brute-force
experiments is too large to debug. In short, the table
shows that our prioritization strategies reduce the total
number of experiments by an order of magnitude, and
from our experience no bugs are missing. Again, we can-
not prove that our approach is sound; developers could
fall back to brute-force for more confidence.

6.4 Specifications
In the last six months, we have written 74 checks on top
of 174 rules for a total of 351 lines (65 checks for HDFS,
2 for ZooKeeper, and 7 for Cassandra). We want to em-
phasize that rules

checks
ratio displays how DESTINI empow-

ers specification reuse (i.e., building more checks on top
of existing rules). As a comparison, the ratio for our first
check (§5.2.1 in Table 3) is 16:1, but the ratio now is 3:1.
Table 6 compares DESTINI with other related work.

The table highlights that DESTINI allows a large number
of checks to be written in smaller lines of code. We want
to note that the number of specifications we have writ-
ten so far only represents six recovery protocols; there
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Type Framework #Chks Lines/Chk
S/I D3S [23] 10 53
D/I Pip [31] 44 43
S/I WiDS [24] 15 22
D/D P2 Monitor [33] 11 12
D/I DESTINI 74 5

Table 6: DESTINI vs. Related Work. The table com-
pares DESTINI with related work. D, S, and I represent declar-
ative, scripting, and imperative languages respectively. X/Y im-
plies specifications in X language for systems in Y language.
We divide existing work into three classes (S/I, D/D, D/I).

are more that can be specified. As time progresses, we
believe the simplicity offered by DESTINI will open the
possibility of having hundreds of specifications along
with more recovery specification patterns.
To show how our style of writing specifications is ap-

plicable to other systems, we present in more detail some
specifications we wrote for ZooKeeper and Cassandra.

6.4.1 ZooKeeper

We have integrated our framework to ZooKeeper [18].
We picked two reported bugs in the version we analyzed.
Let’s say three nodes N1, N2, and N3, participate in a
leader election, and id(N1) < id(N2) < id(N3). If N3
crashes at any point in this process, the expected behavior
is to have N1 and N2 form a 2-quorum. However, there is
a bug that does not anticipate N3 crashing at a particular
point, which causes N1 and N2 to continue nominating
N3 in ever-increasing rounds. As a result, the election
process never terminates and the cluster never becomes
available. To catch this bug, we wrote an invariant vio-
lation “a node chooses a winner of a round without en-
suring that the chosen leader has in itself voted in the
round.” The other bug involves multiple failures and can
be caught with an addition of just one check; we reuse
rules from the first bug. So far, we have written 12 rules
for ZooKeeper.

6.4.2 Cassandra

We have also done the same for Cassandra [22], and
picked three reported bugs in the version we analyzed. In
Cassandra, the key-value insert protocol allows users to
specify a consistency level such as one, quorum, or all,
which ensures that the client waits until the key-value
has been flushed on at least one, N/2 + 1, or all N nodes
respectively. These are simple specifications, but again,
due to complex implementation, bugs exist and break the
rules. For example, at level all, Cassandra could incor-
rectly return a success even when only one replica has
been completed. FATE is able to reproduce the failure
scenarios and DESTINI is equipped with 7 checks (in 12
rules) to catch consistency-level related bugs.

6.5 New Bugs and Old Bugs Reproduced
We have tested HDFS for over eight months and submit-
ted 16 new bugs, out of which, 7 led to design bugs (i.e.,
require protocol modifications) and 9 led to implemen-
tation bugs. All have been confirmed by the developers.
For Cassandra and ZooKeeper, we just began integrat-
ing our framework to these systems roughly two months
ago. Recently, we observed some failed experiments, but
since we do not have the chance to debug all of them, we
have no new bugs to report.
To further show the power of our framework, we ad-

dress two challenges: Can FATE reproduce all the fail-
ure scenarios of old bugs? Can DESTINI facilitate spec-
ifications that catch the bugs? The idea is that before
proposing our framework for catching unknown bugs,
we wanted to feel confident that it is expressive enough
to capture known bugs. We went through the 91 HDFS
recovery issues (§2.2) and selected 74 that relate to our
target workloads (§6.1). FATE is able to reproduce all of
them; as a proof, we have created 22 filters (155 lines
in Java) to reproduce all the scenarios. Furthermore, we
have written checks that could catch 46 old bugs; since
some of the old bugs have been fixed in the version we
analyzed, we introduced artificial bugs to test our speci-
fications. For ZooKeeper and Cassandra, we have repro-
duced a total of five bugs.

6.6 FATE and DESTINI Complexity
FATE comprises generic (workload driver, failure server,
failure surface) and domain-specific parts (workload
driver, I/O IDs). The generic part is written in 3166 lines
in Java. The domain-specific parts are 422, 253, and
357 lines for HDFS, ZooKeeper and Cassandra respec-
tively; the part for HDFS is bigger because HDFS was
our first target. DESTINI’s implementation cost comes
from the translation mechanism (§5.1). The generic part
is 506 lines. The domain-specific parts are 732 (more
complete), 23, and 35 lines for HDFS, ZooKeeper, and
Cassandra respectively. FATE and DESTINI interpose the
target systems with AspectJ (no modification to the code
base). However, it was necessary to slightly modify the
systems (less than 100 lines) for two purposes: defer-
ring background tasks while the workload is running and
sending stable-state commands.

7 Conclusion and Future Work
The scale of cloud systems – in terms of both infrastruc-
ture and workload – makes failure handling an urgent
challenge for system developers. To assist developers in
addressing this challenge, we have presented FATE and
DESTINI as a new framework for cloud recovery testing.
We believe that developers need both FATE and DESTINI
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as a unified framework: recovery specifications require
a failure service to exercise them, and a failure service
requires specifications of expected failure handling.
Overall, we have presented five specific contributions:
• A ready-to-use testing framework that exercises
multiple failures systematically via the use of a new
failure abstraction (failure IDs).

• The first prioritization strategies for exploring mul-
tiple failures in distributed systems, which explore
distinct recovery behaviors an order of magnitude
faster than a brute-force approach.

• A framework for writing specifications in a rela-
tional logic language, which enables developers to
write clear and concise recovery specifications.

• Design patterns for writing recovery specifications
(e.g., how to capture facts, build expectations, spec-
ify check timings, express different types of viola-
tions, incorporate different types of failures, etc.).

• The results of applying our framework to three
widely-used cloud systems (HDFS, ZooKeeper, and
Cassandra).

Beyond finding problems in existing systems, we be-
lieve such testing is also useful in helping to generate
new ideas on how to build robust, recoverable systems.
For example, one new approach we are currently inves-
tigating is the increased use of pessimism to avoid prob-
lems during recovery. For example, HDFS lease recov-
ery would have been more robust had it not trusted as-
pects of the append protocol to function correctly (§6.2).
Many other examples exist; only through further care-
ful testing and analysis will the next generation of cloud
systems meet their demands.
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