Self-Supervised Apparent **Emotional Reaction Recognition** from Viceo

Marija Jegorova, Stavros Petridis, Maja Pantic

Meta Al Imperial College London London

07/01/2023

Why apparent emotional reaction recognition?

Potential applications include:

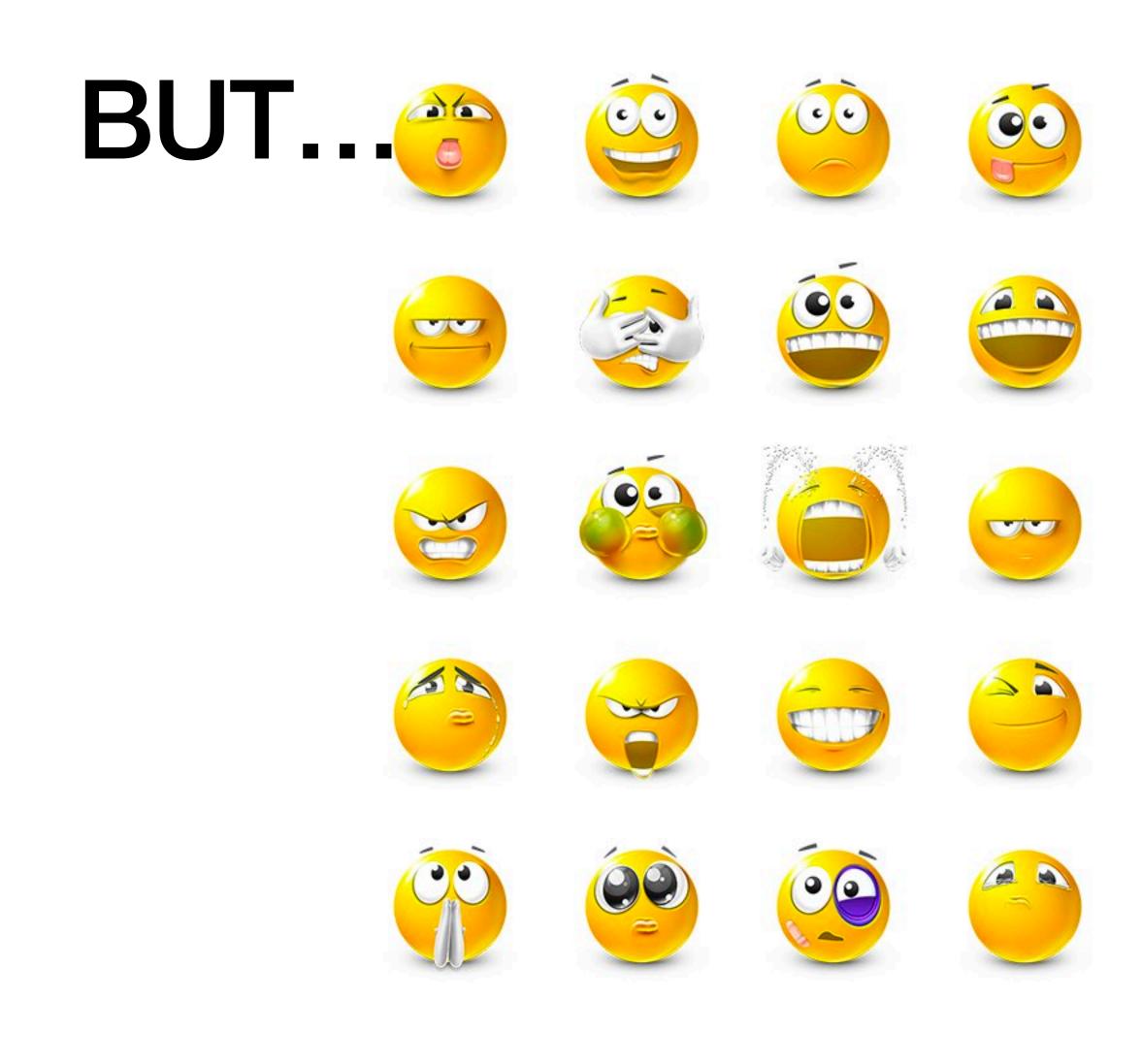
- More precise customer feedback
- Better recommendation systems
- Empathic autonomous personal assistant
- Identifying happy occasions
- Identifying accidents

Why video-only?

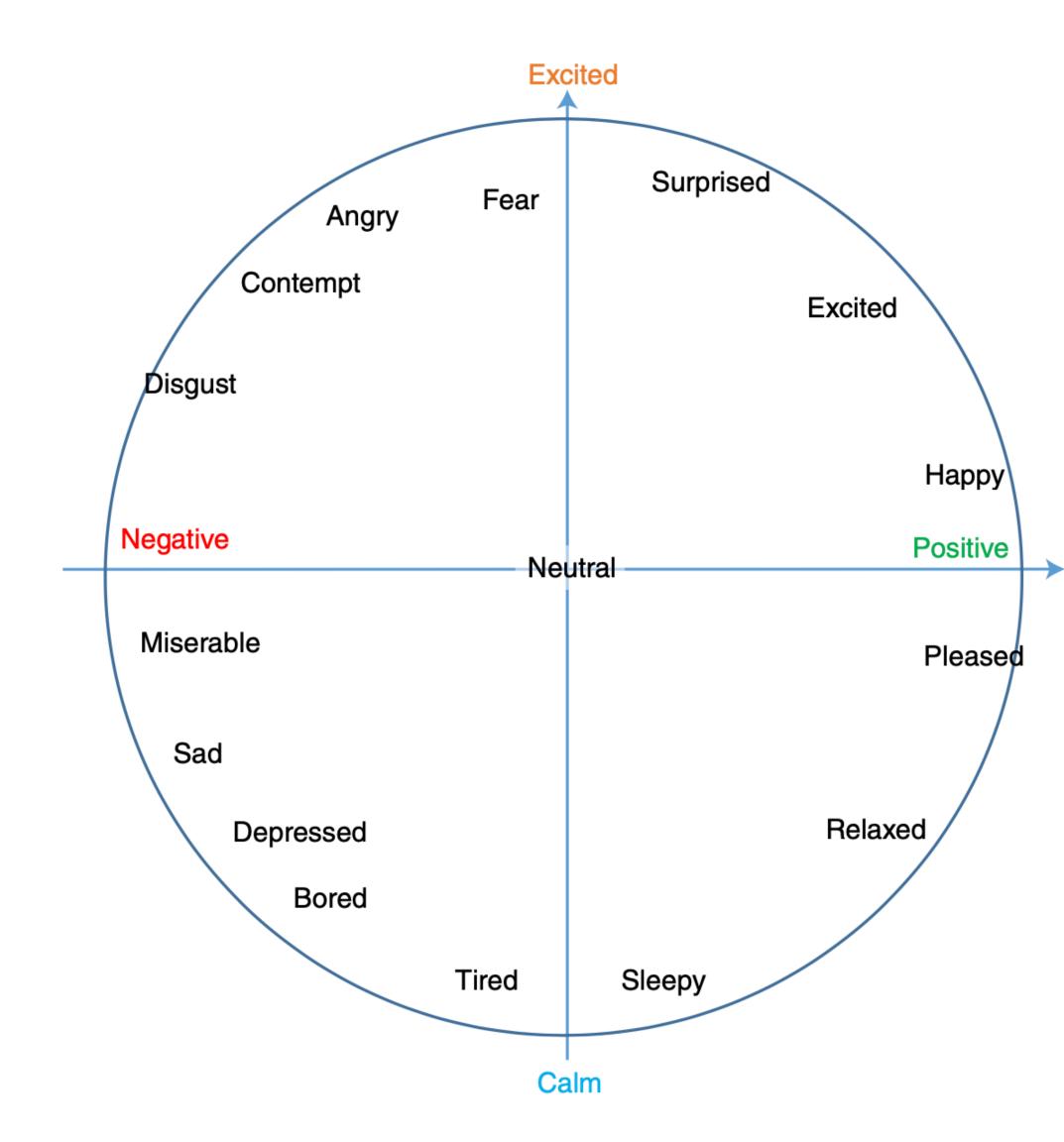
- Sometimes sound is not available with the video
- Noisy environments can be a challenge when relying on audio signal
- Even when the sound is available in multiple speaker setting speaker detection is a problem in its own right

How humans perceive emotions of others?

- Most humans are relatively good at classifying apparent emotional reactions
- Typically we think categorical: Happy
 Sad
 Angry
 Surprised
 Disgusted
 Neutral
 etc



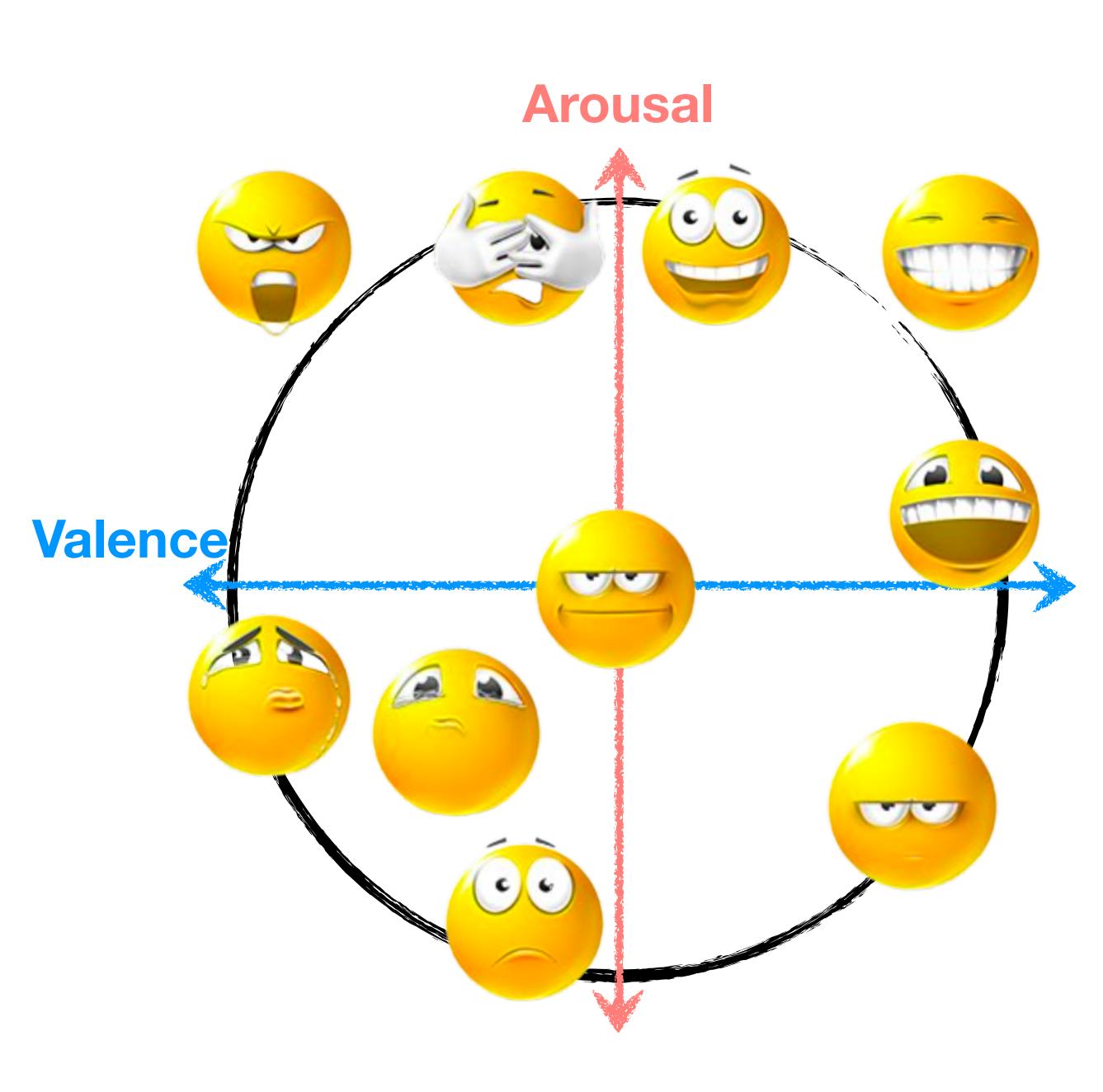
- How many are there, exactly?
- Categories fail to account for
 - more subtle cues
 - mixtures of emotional reactions
- So we use continuous metrics for apparent emotional reactions arousal and valence



Valence ~ positivity / negativity

Arousal ~ level of excitation

Antoine Toisoul, Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. 2021. Estimation of continuous valence and arousal levels from faces in naturalistic conditions. Nat. Mach. Intell. 3, 1 (2021), 42–50



Valence ~ positivity / negativity

Arousal ~ level of excitation

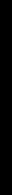
Data & Pre-processing

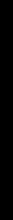
* SEWA dataset has been collected across the residents of 6 countries: the UK, Germany, Hungary, Serbia, Greece, and China. RECOLA is a database of multidomain data recordings of native French-speaking participants completing a collaborative task in pairs during a video conference call, collected in France.

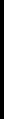
Pre-text data: LRS3 **Downstream data:** SEWA and RECOLA

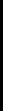
Pre-processing:

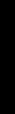
- Gray-scale 0
- Align & Crop based on landmarks (RetinaNet and FAN)

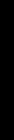


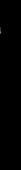


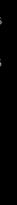


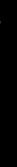


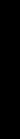


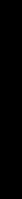


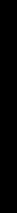


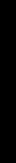


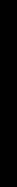


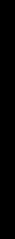


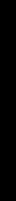


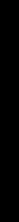


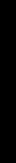


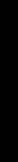


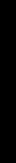


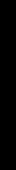


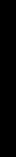


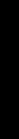


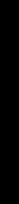


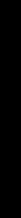


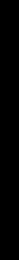


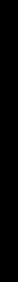


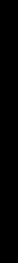


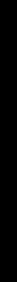


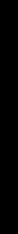


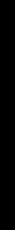


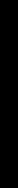


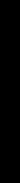


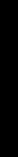


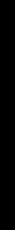


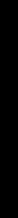


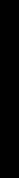


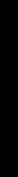


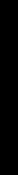


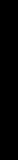


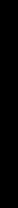


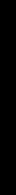


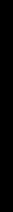


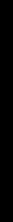


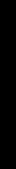


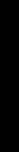


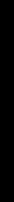


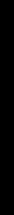


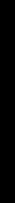


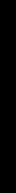


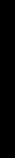


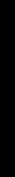


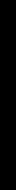


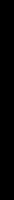


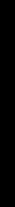


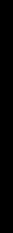


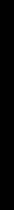


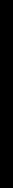


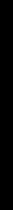


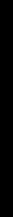


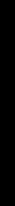


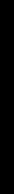


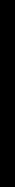


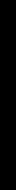


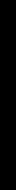


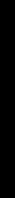


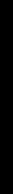


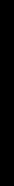


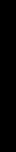


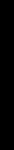


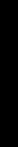


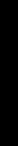


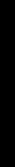


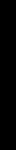


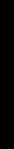


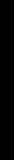


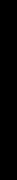


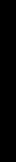






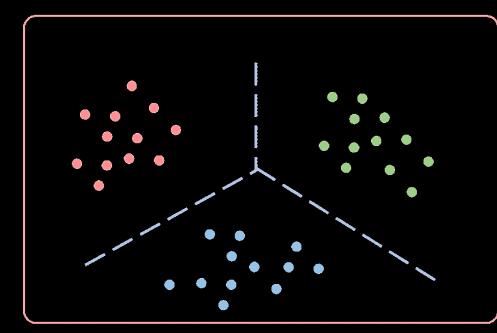




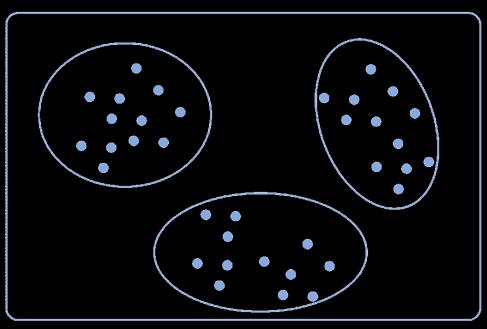


Why Self-Supervised Learning?

Supervised Learning



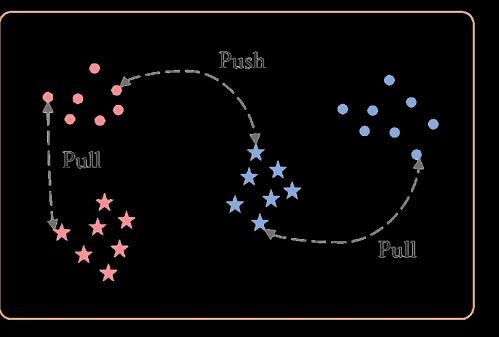
Unsupervised Learning



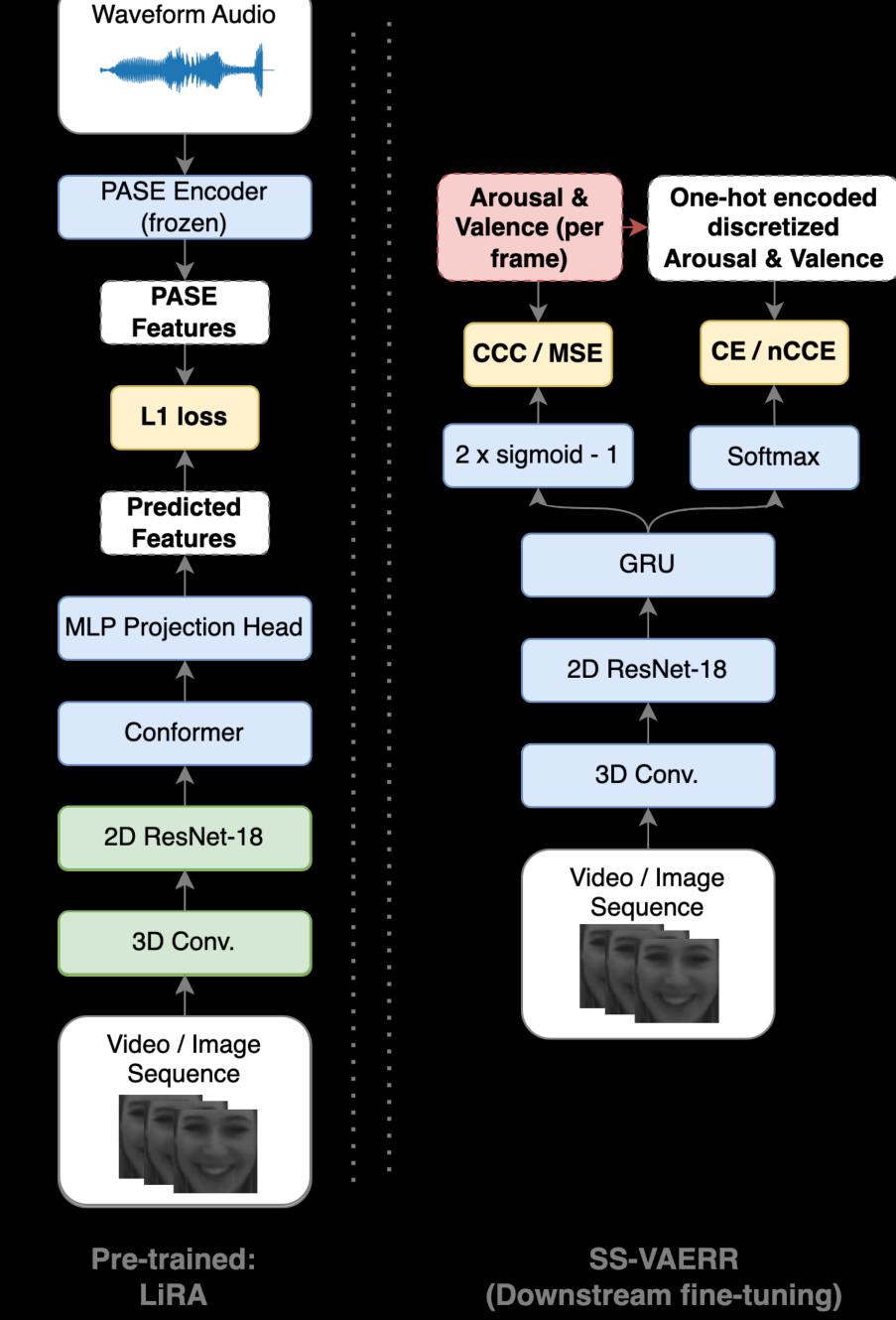
Self-supervised learning

- Doesn't require explicit annotations
- Can utilise databases that are not labelled for the task at hand
- Utilises potentially useful features learnt by otherwise purposed models

Self-Supervised Learning



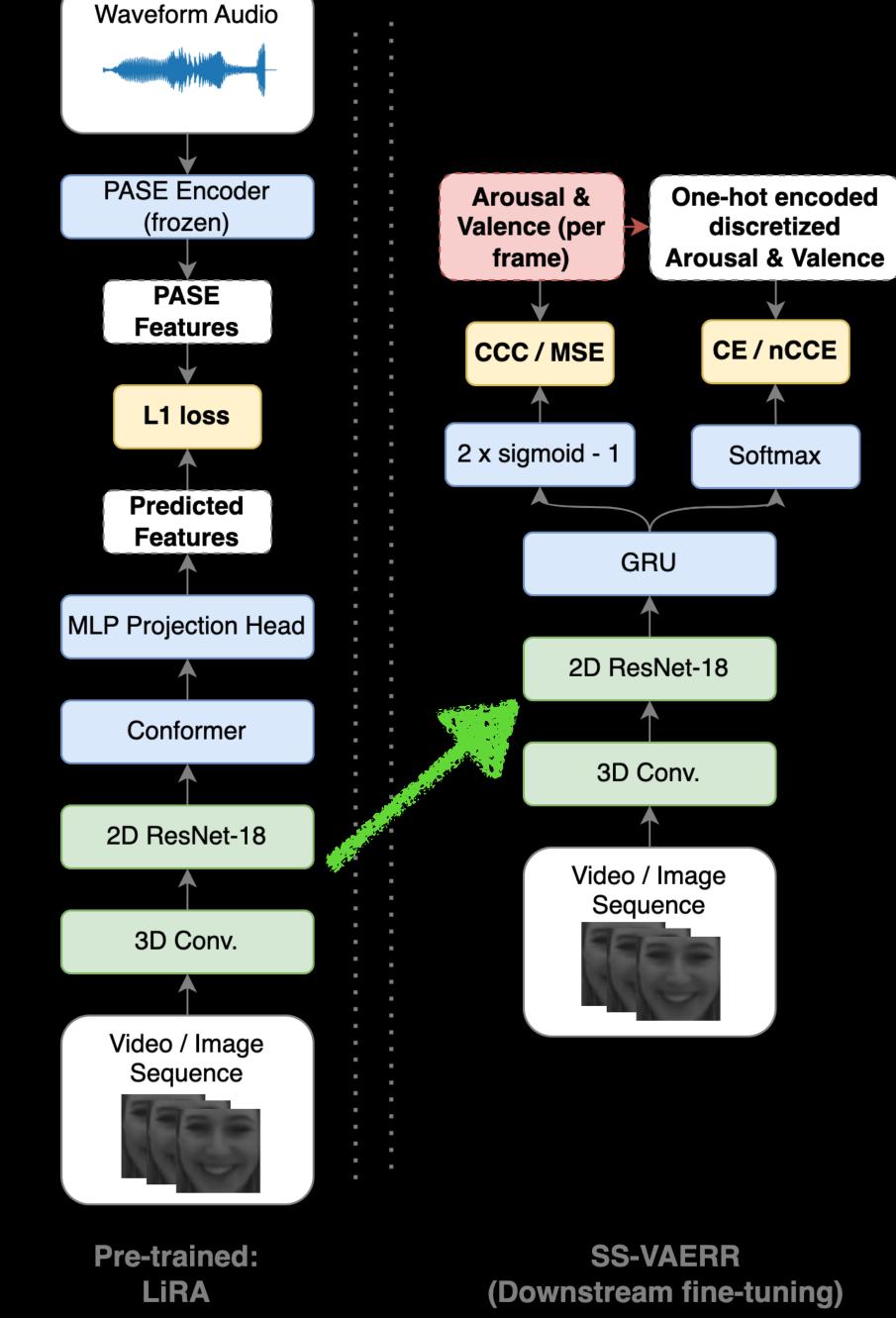
Fraining



LIRA: Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, and Maja Pantic. 2021. LiRA: Learning Visual Speech Representations from Audio through Self-supervision.

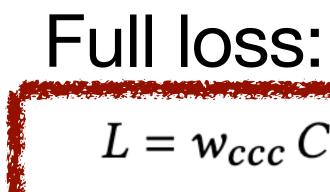
- 1. Pretrain model (LiRA)
- 2. Initialise our SS-VAERR model with its weights
- 3. Fine-tune on a relevantly labelled dataset
- 4. Profit!

Fraining



LIRA: Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, and Maja Pantic. 2021. LiRA: Learning Visual Speech Representations from Audio through Self-supervision.

- 1. Pretrain model (LiRA)
- 2. Initialise our SS-VAERR model with its weights
- 3. Fine-tune on a relevantly labelled dataset
- 4. Profit!



Losses & Metrics

CCC(Y,MSE: Cross-E Cost-Se

Duc Le, Zakaria Aldeneh, and Emily Mower Provost. 2017. Discretized Continuous Speech Emotion Recognition with Multi-Task Deep Recurrent NeuralNetwork. In Interspeech 2017

$L = w_{ccc} CCC + w_{mse} MSE + w_{ce} CE + w_{ncce} nCCE$

Concordance Coefficient:

$$\hat{Y}) = 2 \frac{\mathbb{E}(Y - \mu_Y)(\hat{Y} - \mu_{\hat{Y}})}{\sigma_{\hat{Y}} + \sigma_Y + (\mu_{\hat{Y}} + \mu_Y)^2}$$

$$MSE(\hat{Y}, Y) = \mathbb{E}((Y - \hat{Y})^2)$$

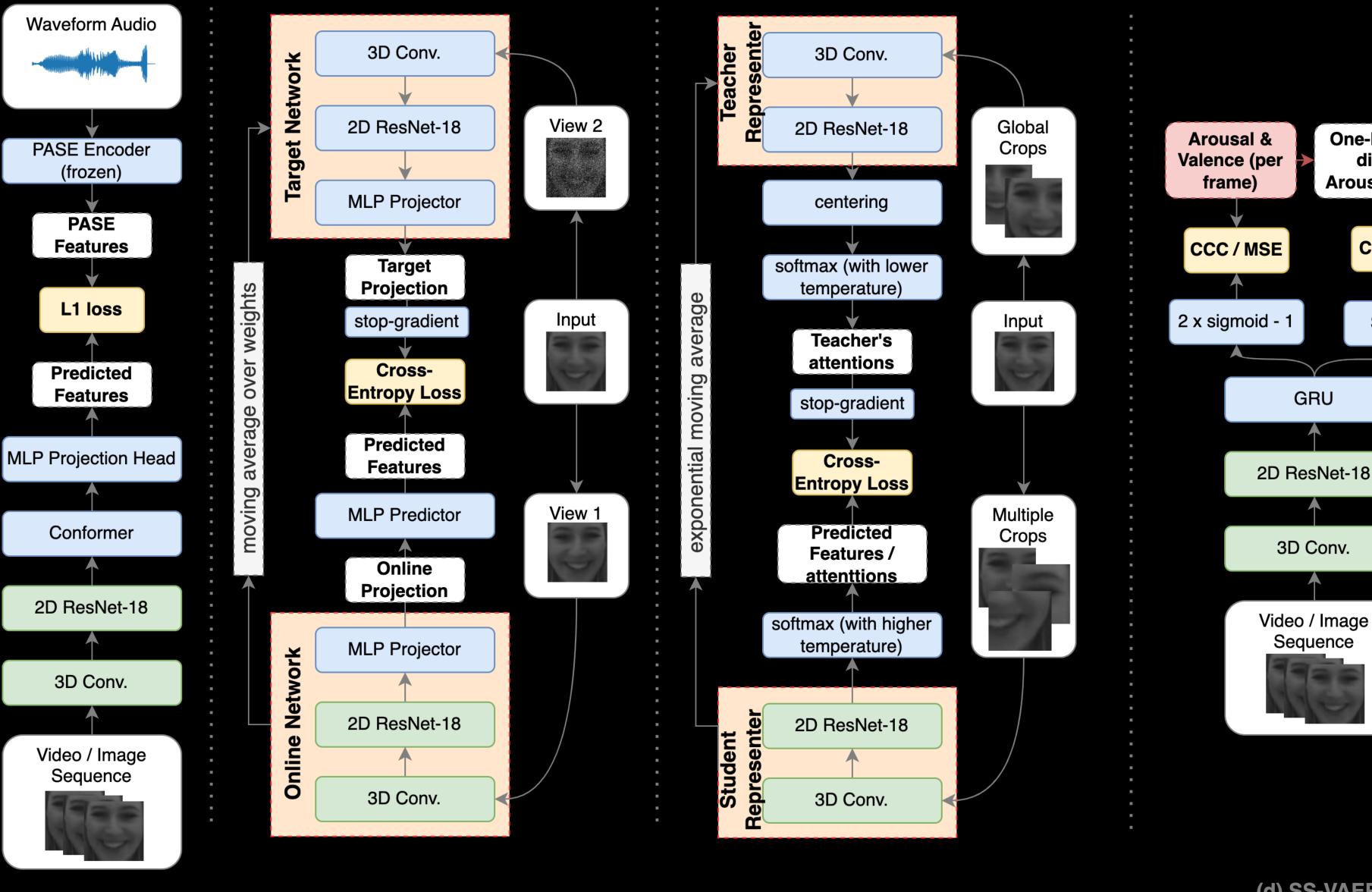
Entropy:
$$CE(Y, \hat{Y}) = -\sum_{l=1}^{\infty} Y_l log(\hat{Y}_l)$$

ensitive Cross-Entropy:

$$nCCE(Y, \hat{Y}) = \frac{1}{F} \sum_{f=1}^{F} C_{norm}(Y_f, \hat{Y}_f) \sum_{l=1}^{L} Y_f^{(l)} \cdot log \hat{Y}_f^{(l)}$$

$$C_{norm}(Y_f, \hat{Y}_f) = 1 + \left\| \sum_{l=1}^{L} K^{(l)} (Y_f^{(l)} - \hat{Y}_f^{(l)}) \right\|_2$$

Other Pre-train



(b) BYOL

LIRA: Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, and Maja Pantic. 2021. LiRA: Learning Visual Speech Representations from Audio through Self-supervision. **BYOL:** Jean-Bastien Grill et al. Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning. In NeurIPS 2020 DINO: Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. 2021. Emerging Properties in Self-Supervised Vision Transforr

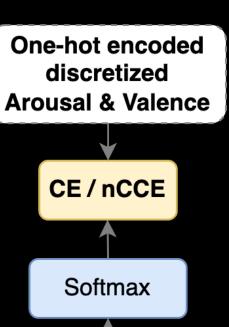
(c) DINO

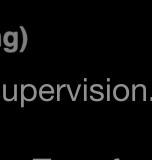
(d) SS-VAERR (Downstream fine-tuning)

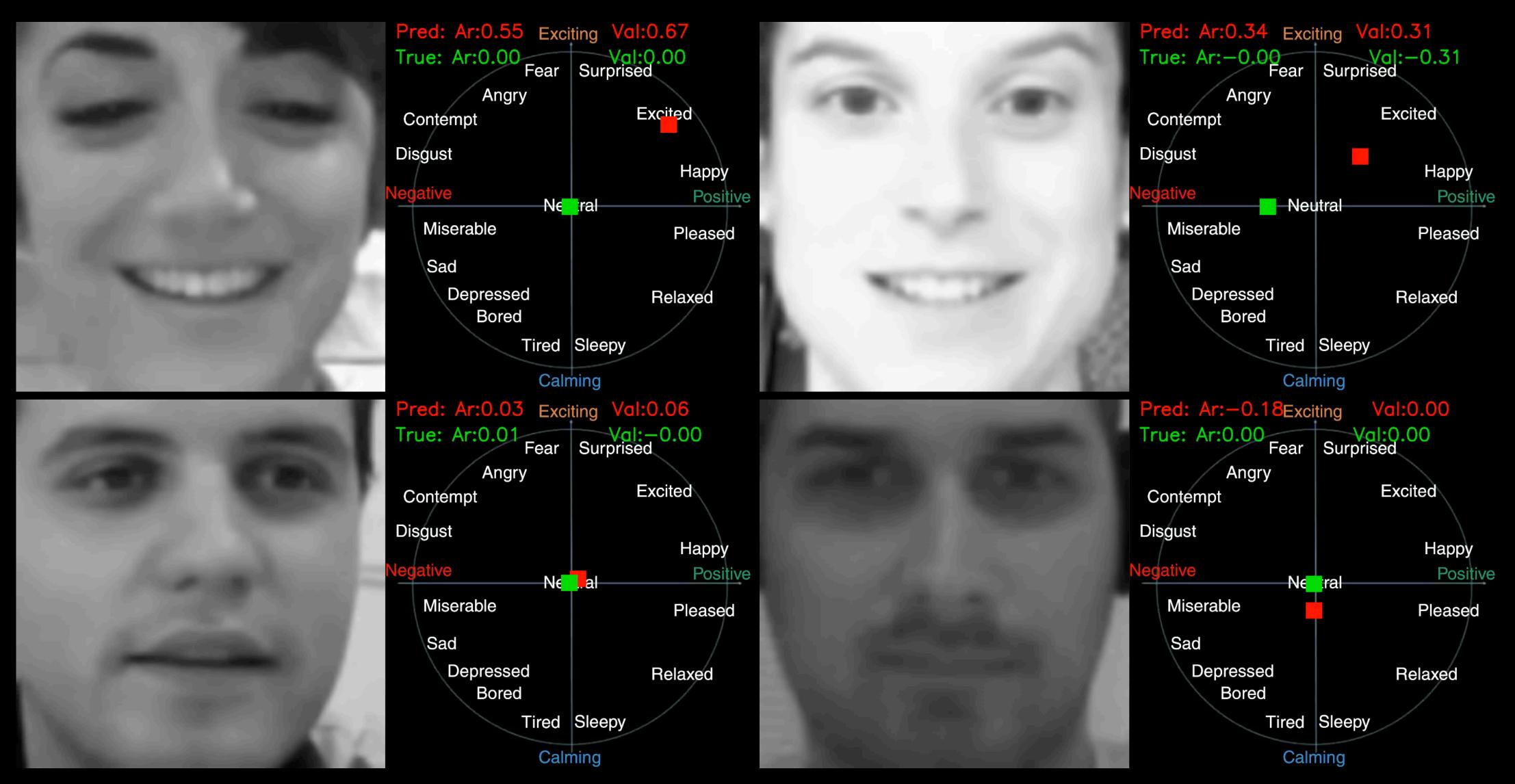
GRU

3D Conv.

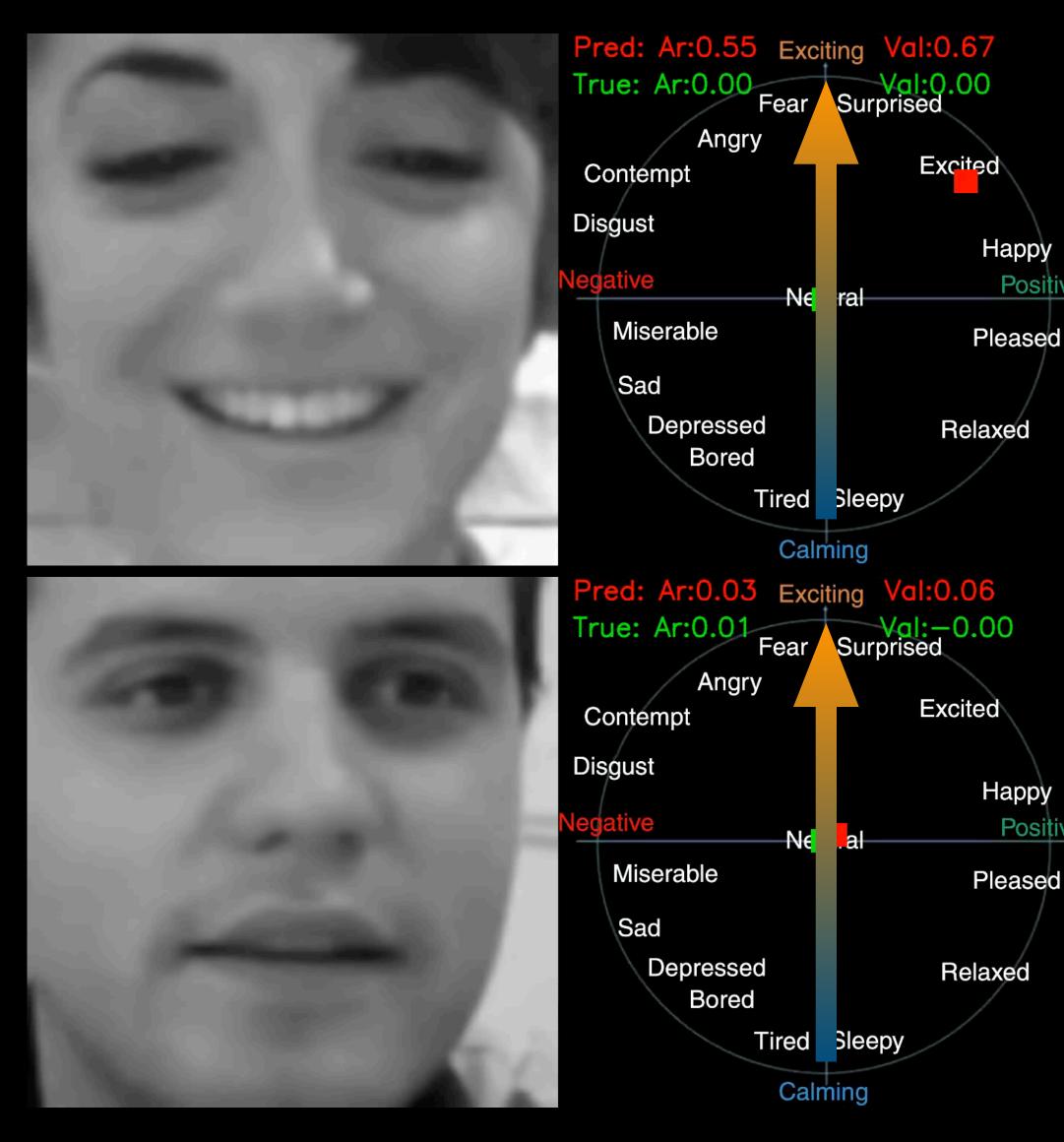
Sequence







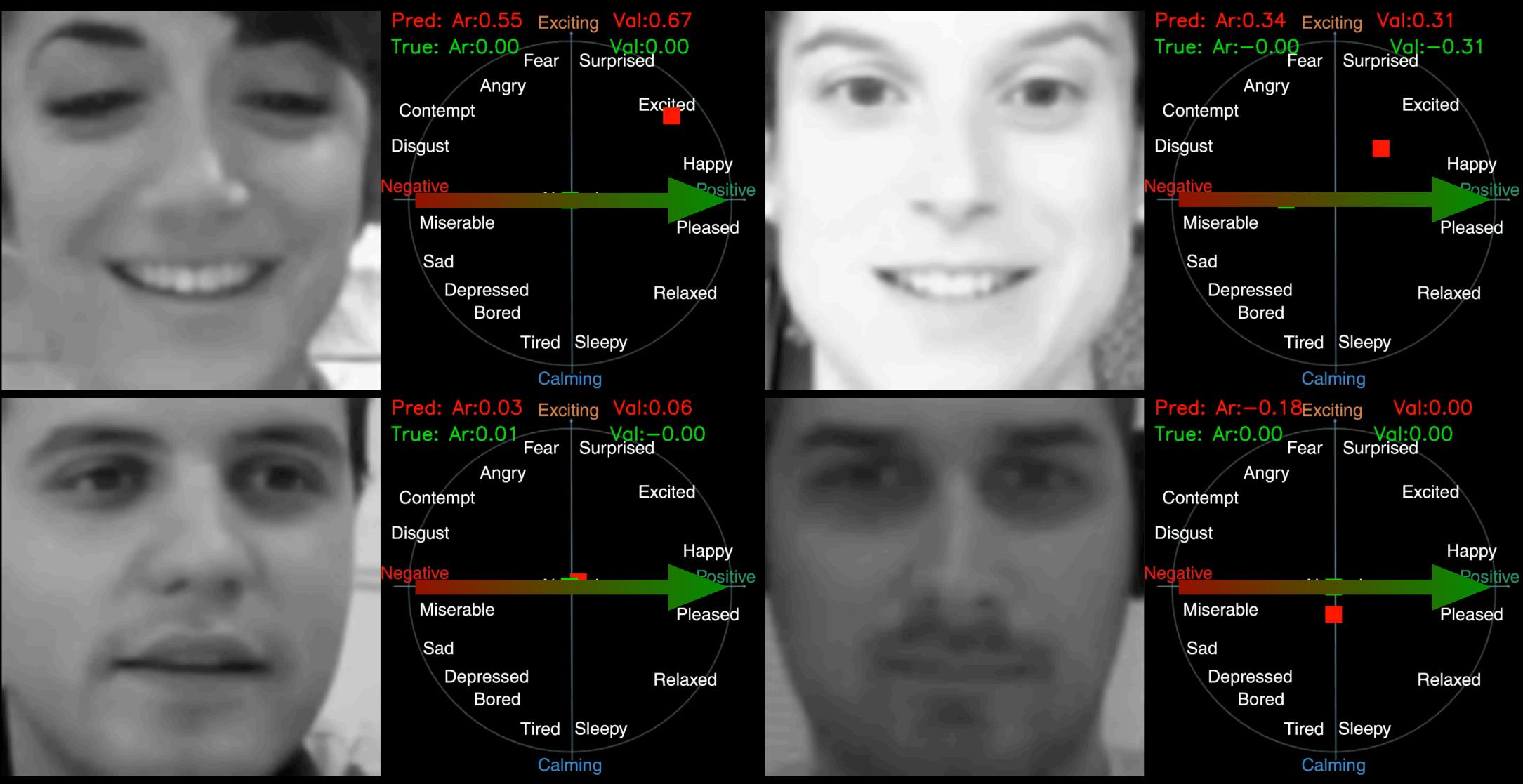
Our model isRED DOTAnnotations areGREEN DOT



Our model is **RED DOT** Annotations are **GREEN DOT**

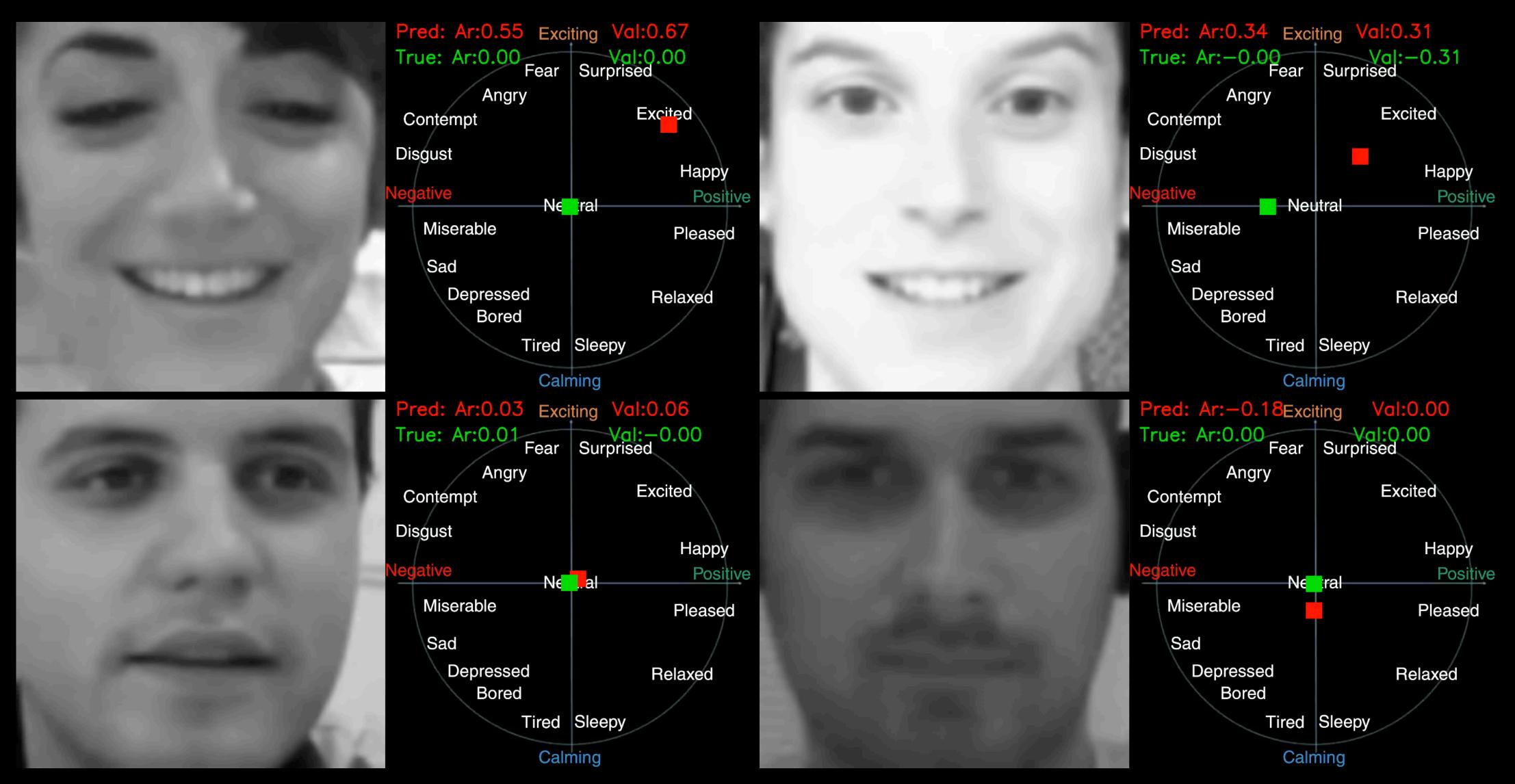
Pred: Ar:0.34 Exciting Val:0.31 True: Ar:-0.00 Fear Surprised Angry Excited Contempt Disgust Happy Positive Positive Ne ral Miserable Pleased Sad Depressed Relaxed Bored Tired Sleepy Calming Pred: Ar:-0.18Exciting Val:0.00 Val:0.00 Surprised True: Ar:0.00 Fear Angry Excited Contempt Disgust Happy Positive Positive Ne ral Miserable Pleased Sad Depressed Relaxed Bored Tired Sleepy Calming

Arousal ~ Level of Excitation



Valence ~ negativity/positivity of the reaction

Our model is **RED DOT** Annotations are **GREEN DOT**



Our model isRED DOTAnnotations areGREEN DOT

Self-Supervised Video-only Apparent Emotional Reaction Recognition

OUR PROPOSED MODEL VS STATE-OF-THE-ART. RECOLA: RESULTS ARE PRESENTED ON DEVELOPMENT SET AS THE TEST SET IS NOT PUBLIC. FOR [2] (AP+DET.+ATT.) STANDS FOR AFFECTIVE PROCESSES WITH COMBINED LATENT AND DETERMINISTIC LAYERS WITH SELF-ATTENTION.

Methods	SEWA		RECOLA		
	Arous.	Val.	Arous.	Val.	
HO-CPConv [5]	0.520	0.750			
Affective Processes (AP+Det.+Att.) [2]	0.662	0.672			
Affective Processes Best [2]	0.640	0.750			
End-to-End Visual ResNet-50 [7]			0.371	0.637	
TS-SATCN [3]			0.659	0.690	
Baseline: 3Dconv+ResNet18+GRU From Scratch	0.588	0.609	0.344	0.538	
Our SS-VAERR backbone	0,678	0.737	0.630	0.607	
Our SS-VAERR (+ augmentations + composite loss)	0.713	0.771	0.675	0.626	

TABLE I

Self-Supervised Video-only Apparent Emotional Reaction Recognition

COMPARISON OF THE PRETEXT TECHNIQUES ACROSS VARIOUS DATASETS FOR VIDEO-ONLY AERR.

		SEV	WA	RECOLA		
		Arous.	Val.	Arous.	Val.	
	+ LIRA frozen	0.652	0.722	0.602	0.532	
	+ LIRA fine-tuned	0.678	0.737	0.630	0.607	
PRETEXT	+ Video-BYOL trozen	0.593	0.726	0.224	0.344	
TECHNIQUES	+ Video-BYOL fine-tuned	0.604	0.757	0.307	0.446	
	+ DINO-ResNet frozen	0.607	0.638	0.269	0.545	
	+ DINO-ResNet fine-tuned	0.648	0.667	0.420	0.520	

COMPARISON OF THE VARIOUS LOSSES FOR THE DOWNSTREAM TASKS WITH LIRA PRE-TRAINING. ONLY NON-ZERO LOSS-WEIGHTS ARE PRESENTED. 'AROUS.' AND 'VAL.' SUPERSCRIPTS SPECIFY THE LOSS APPLIED SPECIFICALLY TO EITHER AROUSAL OR VALENCE PREDICTIONS.

		SEWA				RECOLA			
		Fine-Tuned		Frozen		Fine-Tuned		Frozen	
		Arous.	Val.	Arous.	Val.	Arous.	Val.	Arous.	Val.
REGRESSION	$w_{ccc} = 1$	0.678	0.737	0.652	0.722	0.630	0.607	0.560	0.603
LOSSES	$w_{mse}=1$	0.664	0.726	0.648	0.710	0.399	0.596	0.394	0.596
	$w_{ccc} = 0.5, w_{ce} = 0.5$	0.671	0.735	0.650	0.747	0.454	0.625	0.513	0.606
	$w_{ccc} = 0.5, w_{ce} = 0.25, w_{mse} = 0.25$	0.716	0.731	0.699	0.747	0.473	0.611	0.469	0.610
COMPOSITE	$w_{ccc}^{Val.} = 1, w_{ccc}^{Arous.} = 0.66, w_{ce}^{Arous.} = 0.34$	0.631	0.663	0.659	0.709	0.675	0.626	0.640	0.668
LOSSES	$w_{ccc}^{Val.} = 1, w_{ccc}^{Arous.} = 0.66, w_{ce}^{Arous.}, w_{mse}^{Arous.} = 0.17$	0.638	0.716	0.658	0.69 1	0.664	0.644	0.655	0.605
	$w_{ccc}=0.5, w_{ncce}=0.5$	0.633	0.667	0.701	0.741	0.669	0.655	0.614	0.661
	$w_{ccc} = 0.5, w_{ncce}^{''} = 0.25, w_{mse} = 0.25$	0.669	0.716	0.633	0.733	0.606	0.669	0.626	0.623

TABLE II

TABLE III

Future Research Directions

- Expand to complementary categorical labels
 - More socially familiar
 - Occasionally easier for conditional responses
- Sharing parameters of temporal component (e.g. GRU) from the pretext task
 - (Currently pretext tasks use different architecture to downstream above ResNet)
 - Is likely to further improve the performance
- Generative models for de-biasing the training data

Thank you for listening.

