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Abstract
Hate speech detection is complex; it relies on
commonsense reasoning, knowledge of stereo-
types, and an understanding of social nuance
that differs from one culture to the next. It
is also difficult to collect a large-scale hate
speech annotated dataset. In this work, we
frame this problem as a few-shot learning task,
and show significant gains with decomposing
the task into its "constituent" parts. In addi-
tion, we see that infusing knowledge from rea-
soning datasets (e.g. ATOMIC20

20 ) improves
the performance even further. Moreover, we
observe that the trained models generalize to
out-of-distribution datasets, showing the supe-
riority of task decomposition and knowledge
infusion compared to previously used methods.
Concretely, our method outperforms the base-
line by 17.83% absolute gain in the 16-shot
case.

1 Introduction

Disclaimer: Due to the nature of this work, some
examples contain offensive text and hate speech.
This does not reflect authors’ values, however our
aim is to help detect and prevent the spread of such
harmful content.

The task of automatically detecting Hate Speech
(HS) is becoming increasingly important given the
rapid growth of social media platforms, and the
severe social harms associated with the spread of
hateful content. However, building good systems
for automated HS detection is challenging due to
the complex nature of the task. It requires the sys-
tem to understand social nuance, such as which
groups are being targeted by the hateful content.
Prior work has shown that even humans cannot
achieve a high agreement on whether or not a social
media post constitutes HS (Rahman et al., 2021).

In this work, we explore whether decompos-
ing HS detection into subtasks that correspond
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Figure 1: Hate Speech decomposed into several sub-
tasks leading to better results.

to the definitional criteria of what constitutes HS
(i.e. the offensiveness of a post and whether it tar-
gets a group or an individual) (Davidson et al.,
2017; Mollas et al., 2020a) would lead to sys-
tems that are more accurate and robust. In par-
ticular, we show that task decomposition leads to
more sample-efficient systems for HS detection, by
showing improved results in the few-shot setting.
Moreover, we demonstrate that infusing common-
sense knowledge by fine-tuning on the ATOMIC20

20

(Hwang et al., 2021) and StereoSet (Nadeem et al.,
2021) datasets improve performance even further.
Specifically, we observe an absolute improvement
of 17.83% in the 16-shot case over the baseline
model (§5.2). Further, we show that the resulting
models are more robust, and are able to achieve
better performance than baseline methods in out-
of-distribution settings (§5.3).

Explainability is an important aspect for being
able to identify and fix failure modes of HS systems
(Attanasio et al., 2022). To that end, we show that
task decomposition of HS detection moves us a
step closer towards explainable systems, allowing
us to identify the problematic subtasks that may be



the bottleneck for improving overall performance
for HS detection. We then show that explicitly
targeting to improve the problematic subtask leads
to improved overall performance (§5.1.1).

The remainder of the paper is structured along
four axes. We first present the importance of (1)
Task Decomposition and (2) Knowledge Infu-
sion for training better few-shot HS detection mod-
els. Specifically, we compare our method against
a baseline that only outputs a binary prediction for
HS. Thus showing the significance of decompos-
ing the prediction into several subtasks and pre-
finetuning the model on two different reasoning
datasets that instill in the model a degree of com-
monsense reasoning and knowledge of stereotypes.
We evaluate our experiments across 10 seeds each
of which uses a different sampled dataset with sizes
ranging from 16 to 1024 samples. Our method,
TOKEN, show significant improvements1 over the
baseline. The trained models can also (3) General-
ize better to three out-of-distribution datasets, and
are more (4) Robust to training data and hyperpa-
rameters. We demonstrate this by measuring the
variance across different seeds, data partitions and
hyperparameters and show that it is significantly
smaller for the TOKEN models compared to the
baseline.

2 Few-Shot Hate Speech Detection

Collecting a high quality large-scale dataset for HS
is difficult since it is a relatively rare phenomenon,
which makes it hard to sample social media posts
containing HS without relying on keywords that
may be indicative of it (Rahman et al., 2021). How-
ever, despite being rare, its effects are of significant
harm. Further, since HS is a complex phenomenon,
relying on keywords may result in datasets with low
coverage that are not effective in capturing more
subtle forms of HS (ElSherief et al., 2021). This
further results in building models that are less gen-
eralizable and can exhibit racial biases (Davidson
et al., 2019; Sap et al., 2019).

Motivated by these, we frame HS detection as a
few-shot learning task, where the model is given a
limited number of examples to learn what consti-
tutes HS, and explore whether we can build robust
HS detection models that can generalize well in
cases where we do not have a lot of training data. In
particular, we show that our trained TOKEN models

1We use Welch’s t-test on all experiments that were re-
peated 10 times, and consider p < 0.05 as significant.

are more generalizable by measuring the perfor-
mance on out-of-distribution HS datasets, and are
more robust by measuring the variance in perfor-
mance of HS detection across different randomly
sampled few-shot datasets and hyperparameters.

3 Datasets

SBIC (Sap et al., 2020). We use the Social Bias
Inference Corpus (SBIC) to construct few-shot
training and validation sets. This corpus includes
posts from several online social media platforms,
such as Reddit, Twitter, etc., along with the annota-
tions for the offensiveness, targeted group as well
as the implications to further explain what stereo-
type is being implied by the post. While the dataset
does not have explicit labels for whether or not a
post is HS, we derive it using the annotations for
offensiveness and group detection, i.e. a post is
considered HS if it contains offensive/derogatory
language that is expressed towards a targeted group
(see Figure 2). This is consistent with the definition
of HS used by prior work (Davidson et al., 2017;
Mollas et al., 2020a).

To construct few-shot training sets, we perform
a stratified sampling of data from the SBIC corpus,
up to a target size n. We sample n

4 examples con-
taining inoffensive posts, n

4 examples containing
offensive, but non-HS posts. The remaining bud-
get of n

2 samples is used for posts containing HS,
spread evenly across different targeted groups to en-
sure diversity. We create datasets of varying sizes
from 16 samples up to 1024, ensuring each smaller
dataset is a proper subset of the larger datasets. We
sample 10 different datasets for each target size n
using 10 different random seeds.

3.1 Reasoning Datasets
ATOMIC20

20 (Hwang et al., 2021) This is a com-
monsense knowledge graph containing 1.33M
inferential knowledge tuples in textual format
that are not readily available in pretrained LMs.
ATOMIC20

20 encodes different social and physical
aspects of the everyday experience of human life.
In this work, we find that training on human read-
able templates in-place of each tuple vastly im-
proves the downstream SBIC few-shot HS perfor-
mance. Examples of such templates are shown in
the Appendix (§A.1).

StereoSet (Nadeem et al., 2021) This dataset
was developed to measure stereotype bias in LMs.
Specifically, it contains 17k sentences that measure



Figure 2: Examples from the SBIC dataset. The post is classified as HS if it is Offensive and a Group is referenced
as the target of the offensive speech.

biases across four different domains: gender, pro-
fession, race and religion. In this work, we only
finetune task-decomposed models on a subset of
StereoSet. In particular we only use stereotypes
that belong to the intersentence task since we found
that it results in better HS detection models. More
details on the StereoSet training can be found in
the Appendix (§A.2).

3.2 Out-of-Distribution Datasets

In addition, to test the generalizability of our mod-
els, we use the following three corpora to evaluate
out-of-distribution performance:

HateXplain (Mathew et al., 2021). This corpus
includes posts from Twitter and Gab along with
the HS labels (i.e. hate, offensive or normal), tar-
get community (i.e. victim of the HS or offensive
speech) and the rationales (i.e. spans from the posts
that affected the annotator’s decision). In our work,
we convert the HS labels into a binary HS/non-HS
label, to measure performance for HS detection.

HS18 (de Gibert et al., 2018). This corpus con-
sists of sentences from posts on Stormfront, a white
supremacist forum, along with labels for HS.

Ethos (Mollas et al., 2020b). This corpus (com-
piled by researchers at the Aristotle University of
Thessaloniki) consists of comments from social
media platforms (YouTube and Reddit) with binary
labels for HS, as well as a finer-grained categoriza-
tion of the type of HS. We use the binary labels
in our work to measure the performance for HS
detection. Number of examples in test set of each
evaluation dataset is shown in Table 1.

Dataset # Examples
HateXplain 1,924
HS18 9,916
Ethos 998

Table 1: Evaluation dataset statistics.

4 Experimental Setup

4.1 Task Decomposition
HS detection is a complex and subjective task, and
prior work has shown that it is hard to get high
agreements between humans about whether or not
a post constitutes HS (Sanguinetti et al., 2018; Assi-
makopoulos et al., 2020b). Therefore recent efforts
on hate speech annotation have turned to more fine-
grained, hierarchical annotation schemes that break
HS detection into subtasks that correspond to the
definitional criteria of what constitutes HS, leading
to higher agreement scores than reported by prior
work (Assimakopoulos et al., 2020b; Mathew et al.,
2021; Sap et al., 2020; Rahman et al., 2021).

Motivated by these findings, we treat HS detec-
tion as a conditional generation task, since that
allows us to represent classification and genera-
tion subtasks in a unified framework. The model
is given the set of tokens in a post as input and
is tasked with generating the inferences related
to the HS subtasks. Table 2 shows the lineariza-
tion scheme that we use to train our models. The
baseline model is tasked with generating a binary
prediction for HS, whereas the task-decomposed
model has to generate the predictions for the sub-
tasks, in order, before making the prediction for
HS. Specifically, the model predicts first if the post
is offensive, then whether it is targeting a group
or an individual or neither, and following that it



Input Output

Baseline Post: {POST} Hate speech? {HS}
TOKEN Post: {POST} Offensive? {OFF} Target implication? {GD} Targeted minori-

ties? {GI1, ..., GIN} Hate speech? {HS}

Table 2: Linearization scheme for the Baseline and the TOKEN models. Given the post, the Baseline predicts
whether it is HS or not; whereas the task-decomposed model does the prediction for Offensiveness, Group Detec-
tion and Group Identification before predicting the HS label. HS and OFF are binary labels (i.e. either Yes or
No ). GD can be one of { Group , Individual , None }. Finally, GII is a group identity (e.g. Women ).

predicts the identities of the targeted groups (e.g.
disabled people). This forces the task decomposed
model to reason about the subtasks before decid-
ing whether or not a post constitutes HS. For all
sets of experiments, we finetune the pre-trained
BARTLARGE model (Lewis et al., 2020) provided
by the HuggingFace library (Wolf et al., 2019) for
the task of HS detection. The results are shown in
Table 3.

4.2 Knowledge Infusion

In the following set of experiments we ask whether
incorporating commonsense knowledge and stereo-
types into the model show significant improve-
ments on the few-shot HS detection task.

ATOMIC20
20 To answer this question, we first

finetune BART on the ATOMIC20
20 dataset, where

each tuple is converted into a natural language state-
ment using human readable templates (see §A.1).
The resulting model achieves similar performance
on the held-out ATOMIC20

20 test set as the one re-
ported in Hwang et al. (2021). Following that, we
further finetune the resulting model on both the
baseline and the task decomposed data from SBIC
as described in §4.1. Results are shown in Table 4.

StereoSet Here, we finetune both BART and our
model finetuned on ATOMIC20

20 on stereotypical
sentences from the StereoSet dataset. Specifically,
we similarly treat it as a conditional generation task,
where we predict the context based on the sentence,
bias type and target group (see Appendix §A.2).

5 Results

In this section, we report the mean binary F1-scores
on the testing set across 10 different seeds for each
dataset size for the HS detection task. Specifically,
we compare the Baseline model, which directly
predicts a binary label of whether the post is HS or
not, with the TOKEN model that employ task de-

composition and knowledge infusion as described
in the previous section.

5.1 Task Decomposition

Table 3 shows the effect of task decomposition on
the HS detection task. In particular, we compare
the baseline model with a model that uses only
the Offensiveness and Group Detection tasks as it’s
subtasks before predicting the HS label. This is
referred to as the Minimal Decomposition model
since it uses the minimal constituents that we used
to derive the HS label. Following that, we add
the Group Identification to the subtasks and ob-
serve significant improvements over the Baseline
in the few-shot setting. However, as the dataset
size increases beyond 512 samples, the observed
differences in the mean are no longer significant
(see Figure 3c).

5.1.1 Fine-Grained Error Analysis
Task decomposition allows us to perform finer
grained error analysis to identify failure modes of
the HS model. Specifically, we analyze whether
Offensiveness classification or Group Detection is
more challenging for the model to learn. Figure 3a
shows the performance of the model for the Offen-
siveness subtask, while Figure 3b shows the perfor-
mance for Group Detection subtask with varying
number of training samples.

We observe that the overall performance for
Group Detection subtask consistently lags behind
Offensiveness prediction, especially when we have
fewer examples in the training data. We note that
the model is able to achieve a reasonable perfor-
mance (∼ 68%) for Offensiveness prediction even
in the few-shot regime. This suggests that Group
Detection subtask is the bottleneck in improving
the performance for HS classification, and in order
to improve further we need our model to be more
accurate for this subtask.

Given these findings, we further explore whether



Model 16 32 64 128 256 512 1024

Baseline 45.31 53.23 56.41 60.12 64.37 70.29 73.95
Minimal Decomposition 50.79 56.12 56.46 59.78 64.94 67.83 69.95
+ Group Identification 58.89 61.77 68.03 70.25 70.28 70.65 72.76

Table 3: Results of the Task Decomposed Model on the Hate Speech detection task (Binary F1-score). Baseline
predicts only whether the input post is HS or not. Minimal Decomposition additionally predicts whether the post
is offensive or not and the group detection. + Group Identification additionally predicts the minority groups the
post is targeting if any.

(a) Offensiveness Performance (b) Group Detection Performance (c) Hate Speech Performance

Figure 3: (a) The validation F1-score of the Offensiveness subtask for the minimal decomposition and task-
decomposed models. (b) Similarly, this is the validation F1-score for the Group Detection subtask. It can be
seen that adding the Group Identification subtask improves the performance dramatically. (c) Testing Performance
of Baseline vs the Task Decomposed model. Random performance plotted for reference.

adding more fine-grained information related to
groups would help improve the Group Detection
subtask. In particular, we additionally require the
task-decomposed model to generate the group that
is being targeted by the offensive content in the post.
Figure 3b shows the performance of the model in
predicting Group Detection when we require the
subtask model to identify the groups that are being
targeted. We see that incorporating this subtask
significantly improves the performance for Group
Detection in the few-shot setting. Figure 3c shows
that this further translates to improved HS detection
in the same regime.

5.2 Knowledge Infusion

Table 4 show the binary F1-scores across 10 seeds
on the SBIC testing-set for the HS detection task us-
ing different knowledge infused models for both the
baseline and task-decomposed datasets (referred as
Subtasks). The first row show the BART model
without any knowledge infusion (same as the one
reported in Table 3). The following row show the
results when we finetune the pre-trained BART on
StereoSet. It can be seen that this result is the best
performance in the 32-shot regime. In the third
row we finetune BART on the natural language

version of the ATOMIC20
20 dataset. This increases

performance most noticeably in the 16-shot regime.
The final row shows the results when we further
finetune the model finetuned on ATOMIC20

20 on
StereoSet, it consistently improves the performance
even further from the 64-shot setting to the 512-
shot setting. In all models, the difference between
the baseline and subtasks model is significant in
most cases until we reach 512 training examples. It
can be seen that knowledge infusion alone does not
seem to consistently improve performance over the
BART baseline model, however when combined
with subtask decomposition, it leads to the best re-
sults overall. This would imply that the reasoning
knowledge helps the model to better understand
relationships among subtasks.

5.3 Generalizability

Figure 4 compares the OOD performance of the
baseline model with subtasks models that were
trained with different degrees of knowledge infu-
sion. Note that all models were trained on the SBIC
data and evaluated for each of the three datasets in
a zero-shot manner, i.e. we do not perform any fur-
ther dataset specific finetuning. Similar to above,
each point represents the mean F1 scores across



Model 16 32 64 128 256 512 1024

BART Baseline 45.31 53.23 56.41 60.12 64.37 70.29 73.95
Subtasks 58.89 61.77 68.03 70.25 70.28 70.65 72.76

+ StereoSet Baseline 53.30 54.68 54.17 61.41 67.69 71.25 73.68
Subtasks 42.86 66.17 69.01 70.06 70.14 72.14 72.64

+ ATOMIC20
20

Baseline 44.76 49.60 64.89 69.38 70.09 72.32 73.97
Subtasks 63.14 62.01 67.96 70.94 70.16 72.29 72.96

+ StereoSet Baseline 44.75 47.47 56.18 62.88 66.38 69.77 71.50
Subtasks 59.74 63.28 70.08 70.99 70.57 72.36 73.80

Table 4: Knowledge Infusion Results Here we report binary F1-score on the SBIC testing set for the HS detection
task using models with different degrees of knowledge infusion. In each row we compare the corresponding
baseline and subtasks models. Results in bold show the best overall model in each few-shot setting. See Section
5.2 for more details.

10 different runs for the given dataset size. We
see that for all three datasets, the TOKEN models
consistently outperforms the baseline, and shows
significantly better zero-shot generalizability in the
few-shot setting. However, we note though that
HateXplain has a slight distribution shift (since it’s
also built based on Twitter as SBIC), and interest-
ingly it can be seen that only the results from Ethos
and HS18 (in Figure 4) are significantly different
from the binary (baseline) prediction model. This
implies that our model is indeed better at generaliz-
ing to out-of-distribution data.

5.4 Robustness

Here, we show that the TOKEN models are less sen-
sitive to changes in hyperparameters and training
dataset selection. Specifically, Table 5 show the
average standard deviation across different hyper-
parameters on the validation set as a function of the
number of training samples. It can be seen that the
subtasks model is significantly more robust than
the baseline model.

6 Analysis

In this section, we explore whether the order of the
subtasks matter or not, the scale of the model and
if adding an additional subtask that requires the
model to generate natural language explanations
as to why the post is considered HS helps improve
the overall HS performance. The results reported
here were done across only 5 seeds. In addition,
we show a few examples that the baseline model
was not able to capture but the TOKEN model got
correctly.

# of Samples Baseline TOKEN

16 15.75 2.44
32 14.15 0.55
64 13.71 0.87

128 16.44 1.66
256 21.20 2.69
512 17.29 3.36
1024 15.72 3.20

Table 5: Robustness Results Here we report the aver-
age standard deviation across the 10 runs for a given
training set size across the different hyperparameters
used in our experiments. It can be seen that the task-
decomposed model is more robust to training configu-
ration.

6.1 Does Order Matter?

Table 6 shows the importance of the order of the
HS label in the sequence of subtasks. It can be seen
that placing HS at the end gets the best result when
the number of training samples are 64 or less.

6.2 Do Implications Matter?

Here, we add an additional subtask with the goal
of generating an implied stereotype in natural lan-
guage for a HS post or ‘None’ otherwise. For
example, given the following post: “How do
you make a Muslim’s phone explode? Set it to
airplane mode.” The implied stereotype would
be: Muslims are terrorists. Therefore,
the model is tasked with generating such a sentence
before predicting the HS label. Table 7 shows the
HS detection performance before and after adding
the implications subtask in comparison with the
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Figure 4: OOD Results Performance of Baseline versus TOKEN models that employ different degrees of knowl-
edge infusion on OOD datasets HS18, Ethos, Hatexplain.

Order 16 32 64 128 256 512 1024

OFF GD GI HS 55.60 62.31 68.47 69.22 69.64 70.49 71.69
OFF GD HS GI 54.67 60.36 68.02 67.65 68.66 70.13 70.92
OFF HS GD GI 54.53 56.14 67.02 68.59 71.37 72.47 72.39
HS OFF GD GI 51.64 62.04 64.48 69.45 70.33 71.33 72.20

GD GI OFF HS 38.28 27.11 31.32 53.98 52.12 60.69 67.20

Table 6: The validation performance of the best model on the HS detection task as a function of the position of the
HS label in the sequence of subtasks across different number of training samples.

# of Samples Baseline TOKEN +Impl

16 52.67 58.21 57.02
32 52.71 64.47 59.98
64 57.60 70.93 65.50
128 60.01 71.25 67.89
256 66.81 71.62 69.22
512 69.41 72.59 70.12

1024 74.72 74.09 71.45

Table 7: Implications Results The HS detection per-
formance of the Baseline in comparison with the Sub-
tasks models before and after adding the implication to
the subtasks across 5 runs for a given training set size.

baseline across 5 seeds for a given training set size.
It can be seen that although adding the implied
stereotype to the list of subtasks pushes the model
to performing better than the baseline when the
number of samples is less than 512, it still falls
short to the TOKEN model without the implication.
The reason behind this might be because the im-
plications were noisy and sometimes too generic,
which is why it might have resulted in performance
degradation. Further, we believe that scaling up the
model to be an order or two magnitude larger will
enable a better utilization of the implications.

6.3 Does Scale Matter?

We train BARTBASE using the same task decom-
position and knowledge infusion methods reported
earlier. We find that the results do not fully trans-
fer to smaller models. Specifically, the results are
only better when the training examples are 16 to 64,
otherwise the baseline model surpasses the TOKEN

model. Showing that scale does matter. The results
are shown in Table 9 in the Appendix (§A.3).

6.4 Error Analysis

Figure 5 shows the percentage of false positives
(FPs) and false negatives (FNs) across 10 runs on
the testing set for the 16 to 128-shot case. It can
be seen that the difference in performance between
both models is largely due to a considerable de-
crease in the percentage of FPs for the TOKEN

model as we increase the number of samples, while
the percentage of FNs stay almost constant. How-
ever, the percentage of FNs are always less than the
FPs, which is a desirable property for HS models as
FPs can be more tolerated (i.e. over enforcement)
than FNs (i.e. under enforcement), since the latter
will lead to more propagation of hateful content.
As discussed in Section 5.1.1, predicting the group
identity in the TOKEN model enables the model
to correctly detect whether the post is targeting a



Figure 5: The percentage of False Positives and False Negatives across 10 runs on the testing set.

group or an individual, and we can see that clearly
in posts where the baseline model got a FN and the
TOKEN model got the correct result. For example,
the baseline model wasn’t able to predict this post
as HS: “Your approval is so worthless you should
pay people to take it @user Call me sexist but I do
not approve of female football presenters”, while
the subtasks model identified correctly that it tar-
gets Women leading to a correct prediction. On
the other hand, this is an example that the baseline
predicted correctly while the TOKEN model did
not: “What do you get when an epileptic falls into
a garden? A seizure salad.” The reason for this is
the TOKEN model predicted that this post targets
an Individual and not a Group .

7 Related Work

Social media provides a platform for users to con-
nect with people all over the world and engage
in ways that were not previously possible. Re-
cent surveys show that 41% of internet users ex-
perienced some form of harassment online, with a
third of these cases being identity-related (i.e. race,
gender, sexual orientation, etc.) (Vogels, 2021;
League, 2020). The sheer scale of content shared
on social media platforms makes manual modera-
tion untenable and necessitates automated methods
for detecting hateful content (Halevy et al., 2022).
This has led to an increased interest in automated
hate speech detection, both in terms of collecting
corpora (Poletto et al., 2021) as well as improved
methods for hate speech detection (Schmidt and
Wiegand, 2017; Fortuna and Nunes, 2018).

Early work in hate speech detection has treated
the problem as a binary classification task, requir-
ing annotators to simply indicate whether or not
a given post constitutes hate speech (Waseem and
Hovy, 2016; Davidson et al., 2017; Founta et al.,
2018). However, recent work has shown that elicit-
ing binary judgments for hate speech is unreliable

and leads to poor inter-annotator agreement (San-
guinetti et al., 2018; Assimakopoulos et al., 2020a).
This has lead to increased work in collecting hate
speech annotation with more complex annotation
schemas. Zampieri et al. (2019) propose a three-
level annotation schema that identifies both the type
and target of offensiveness in social media posts.
Another line of work proposes a hierarchical anno-
tation schema where the task of determining hate
speech is broken down into subtasks, in an effort to
eliminate some of the subjectivity (Assimakopou-
los et al., 2020a; Sap et al., 2020). Rahman et al.
(2021) combine established information retrieval
techniques with task decomposition and annota-
tor rationale, in order to create a higher quality
dataset for hate speech detection. While the afore-
mentioned studies explore the idea of task decom-
position in improving annotation consistency, our
work instead looks at the role of task decomposi-
tion in building more robust, generalizable models
for few-shot hate speech detection.

The focus of the limited prior work on few-shot
hate speech detection has been to explore zero-
shot/few-shot crosslingual transfer from a source
language (such as English) with sufficient hate
speech data to a target language with limited data
(Stappen et al., 2020; Nozza, 2021). In contrast,
our work explores how task decomposition and
knowledge infusion can help even when there is
not sufficient hate speech data in English.

8 Conclusion

In this work, we propose TOKEN , a method to train
language models for detecting HS in the few-shot
setting. We show that it significantly outperforms
comparable baseline models that predicts the HS
label directly instead of decomposing it into its con-
stituent parts. We further show that task decompo-
sition not only improves the performance, but also
allows for fine-grained inspection of the model’s



behavior. Since HS is a complex phenomenon that
requires a set of reasoning skills not readily avail-
able in such pre-trained models, we pre-finetune the
BARTLARGE on both the ATOMIC20

20 and StereoSet
datasets to equip the model with commonsense rea-
soning and knowledge of stereotypes that we show
leads to further improvement in HS detection per-
formance. We show that the TOKEN models gener-
alize better to three out-of-distribution datasets in
the few-shot setting as well as being significantly
more robust to training setups. We further analyze
the model’s behavior in terms of the order in which
the HS labels appears, the scale of the model and
the performance when adding an additional subtask
that explains the implied stereotype of the post.

In future work, we plan on investigating the role
of task decomposition, knowledge infusion and the
additional subtask of explaining the implication
behind the post in large language models as well
as explore the TOKEN method in low-resource lan-
guages, where it is expected to be most beneficial.

9 Limitations

We note a few limitations of our work: (1) in our
experiments we compared our task-decomposed
model to standard models as baselines. It will
be valuable for future work to compare our mod-
els against other models of similar scale trained
using multi-task learning in a similar manner to
(AlKhamissi and Diab, 2022), where each clas-
sification head is subtask-specific and trained us-
ing categorical cross-entropy on the corresponding
number of classes. However, that would require cat-
egorizing the group identities into a discrete num-
ber of classes. (2) To the best of our knowledge
there is no literature that uses the SBIC dataset in a
few-shot hate speech setting, therefore we resorted
to the baseline with binary prediction using the
same conditional generation framework. Future
work should compare with such models. (3) The
datasets used in this work are mostly looking at
HS from a western perspective and are only in En-
glish. Different languages and societies may have
subtleties which may affect the performance of HS
systems. Even though we believe that our work
is generalizable beyond the English language, we
have not evaluated this, and we encourage future
work to look beyond the settings we explored in
this paper. (4) We follow prior work and determine
hate-speech labels based on majority vote which
might silence the voice of minority groups, which

is especially problematic in this context. In the fu-
ture we hope to model dissenting opinions between
the annotators similar to recent work (Gordon et al.,
2022).
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A Appendix

A.1 ATOMIC20
20 Human Readable Templates

The ATOMIC20
20 knowledge graph consists of tuples

in the form of 〈 Head, Relation, Tail 〉, where
Head and Tail are provided in textual format.
However, we found that training BART on this
dataset directly led to sub-optimal results; where
it is tasked to predict the Tail given the Head
and Relation. Instead we replaced each relation
with a human readable template as shown in Table
8, where the Head is injected in place of {0} and
the model is tasked with predicting the Tail.

A.2 StereoSet Training
Nadeem et al. (2021) designed two types of Con-
text Association Tests (CATs): intrasentence and
intersentence to measure the degree of stereotyp-
ical bias in language models at the sentence level
and discourse level respectively. In this work, we
only consider the latter and only include stereotyp-
ical sentences (i.e. omit the anti-stereotype exam-
ples). In the pre-finetuning step of StereoSet, the
BART model is tasked with predicting the expla-
nation of a given stereotype conditioned on the tar-
geted group, bias type and stereotype. The dataset
is linearized according to the following format:
Input: "Target: {TARGET_GROUP} Bias Type:
{BIAS_TYPE} Sentence: {STEREOTYPE} Con-
text?" and the Output: is "{EXPLANATION}".
For example: Input: "Target: {Cape Verde} Bias
Type: {race} Sentence: {They rely on the ports.}
Context?"; Output: "{Cape Verde has a lot of wa-
ter.}".

A.3 Scale Experiments
In this analysis, we investigate the role of scale in
TOKEN . Table 9 shows that the results are only
better from the 16 to the 64-shot case, suggesting
that scale does play a role in the proposed method.

Relation Human Readable Template

ObjectUse {0} is used for {1}
AtLocation You are likely to find {0} in {1}
MadeUpOf {0} is made up of {1}
HasProperty {0} is {1}
CapableOf {0} can {1}
Desires {0} wants {1}
NotDesires {0} does not want {1}
isAfter Something that happens after {0}

is {1}
HasSubEvent Something you might do while

{0} is {1}
isBefore Something that happens before

{0} is {1}
HinderedBy {0} is hindered by {1}
Causes Sometimes {0} causes {1}
xReason {0}. The reason for PersonX do-

ing this is {1}
isFilledBy {0} can be filled by {1}
xNeed But before {0}, PersonX needed

{1}
xAttr {0} is seen as {1}
xEffect As a result of {0}, PersonX will

{1}
xReact As a result of {0}, PersonX feels

{1}
xWant After {0}, PersonX would want

{1}
xIntent Because of {0}, PersonX wanted

{1}
oEffect as a result of {0}, others will {1}
oReact as a result of {0}, others would

feel {1}
oWant as a result of {0}, others would

want {1}

Table 8: Human readable templates for each relation
used to train the BART model. The Head is injected
in place of {0} and is tasked with predicting the Tail
{1} in a conditional generation framework.
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Model 16 32 64 128 256 512 1024

Baseline 53.49 51.47 58.28 66.70 68.24 70.09 71.30
TOKEN 55.23 60.29 63.68 65.10 67.52 68.67 69.66

Table 9: Results using BARTBASE as the core model. Similar to the previous experiments the baseline model
predicts the HS label directly, while the TOKEN model employs task decomposition and knowledge infusion using
the ATOMIC20

20 and StereoSet datasets. (see §6.3 for more details)


