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Abstract
In this work we introduce a new class of mecha-
nisms composed of a traditional Generalized Sec-
ond Price (GSP) auction and a fair division scheme,
in order to achieve some desired level of fair-
ness between groups of Bayesian strategic advertis-
ers. We propose two mechanisms, β-Fair GSP and
GSP-EFX, that compose GSP with, respectively, an
envy-free up to one item, and an envy-free up to any
item fair division scheme. The payments of GSP
are adjusted in order to compensate advertisers that
suffer a loss of efficiency due the fair division stage.
We investigate the strategic learning implications of
the deployment of sponsored search auction mech-
anisms that obey to such fairness criteria. We prove
that, for both mechanisms, if bidders play so as to
minimize their external regret they are guaranteed
to reach an equilibrium with good social welfare.
We also prove that the mechanisms are budget bal-
anced, so that the payments charged by the tradi-
tional GSP mechanism are a good proxy of the to-
tal compensation offered to the advertisers. Finally,
we evaluate the quality of the allocations through
experiments on real-world data.

1 Introduction
Over the last decades, online advertising has been one of the
main tools for small and medium business (SMB) to grow.
Online advertising allows SMBs to reach potential customers
without geographical or demographic barriers. Moreover,
it offers better return-on-investments than other advertising
mediums thanks to its highly personalized system. Given its
crucial role in the growth of businesses (and, in its turn, soci-
ety), it is natural to study how the mechanisms implemented
in online advertising platforms can be improved to obey to
different fairness criteria for advertisers. There are indeed
various settings where one may care about balancing ads al-
locations, even just between a majority and a minority group
of advertisers. For example, one setting is when large compa-
nies and small businesses are competing for the same set of
users, and the platform may want to ensure that small com-
panies get reasonable visibility despite smaller budgets. As
another example, there may be businesses based in different

geographical locations but offering similar products/services.
These businesses may have unbalanced budgets due to their
location, but one may want to guarantee to each business
some visibility in a target set of users regardless of geograph-
ical attributes. More in general, one could think of incor-
porating fairness in sponsored search auctions whenever two
different parties are advertising to increase users’ awareness
about some sensitive topic.

We study how fairness notions borrowed from the fair di-
vision literature can be used to model fairness with respect to
advertisers. Notions from fair division already found appli-
cations in online advertising [Chawla and Jagadeesan, 2020;
Ilvento et al., 2020]. In the fair division literature, the dom-
inant notion of fairness aims at providing guarantees for
individual agents (see, e.g., [Brandt et al., 2016; Moulin,
2003]). However, we argue that a group approach would
be more practical, better aligned with societal expectations,
and easier to implement. Following recent works in group
fair division literature [Kyropoulou et al., 2020; Manurangsi
and Suksompong, 2017; Manurangsi and Suksompong, 2019;
Segal-Halevi and Suksompong, 2019], we propose to use
envy-freeness [Foley, 1967] to study group fairness. Group
envy-freeness guarantees that no group of agents envies the
allocation obtained by any other group. Unfortunately, envy-
freeness cannot be guaranteed for indivisible items even in
simple settings with two agents and one item. Thus, we
focus on two natural relaxations: envy-freeness up to one
good (EF1) [Budish, 2011; Lipton et al., 2004], and envy-
freeness up to any good (EFX) [Caragiannis et al., 2019;
Gourvès et al., 2014]. 1

In practice, any attempt to guarantee such properties in
real advertising platforms will inevitably collide with real-
world engineering constraints. Therefore, a credible solution
should be a mechanism that can be easily integrated with a
pre-existing auction framework, without requiring substan-
tial changes to it. We focus on the generalised second price
(GSP) auction framework [Edelman et al., 2007], which is
one of the most frequently adopted mechanisms for the al-
location of advertising opportunities in large Internet adver-
tising companies. In this setting, we show the existence of
simple mechanisms that guarantee some notion of group EF1
(resp., group EFX) for advertisers. Such mechanisms can be

1See the full paper for additional discussion of related work.



implemented as a post-auction layer to be run after a stan-
dard GSP mechanism. In the spirit of the work by [Dwork
and Ilvento, 2019], we study the properties of such compos-
ite mechanisms.

Original contributions We focus on a Bayesian setting
with incomplete information (i.e., the valuations for adver-
tising opportunities are stochastic, and each bidder does not
observe the realized valuations of the other bidders). For
each auction, bidders are divided in two groups (a major-
ity group and a minority group) based on their characteris-
tics and competitiveness. Given the different characteristics,
the users interact in different ways with the ads from the
two groups. This is modeled through group specifics click-
through rates and quality factors.2 First, in Section 3, we
introduce two notions of group envy-freeness (group β-EF1
and group β-EFX), parameterized on a factor β which allows
the platform to tune the strength of the fairness requirement.
We show that group β-EF1 and group β-EFX allocations
always exist for two groups with monotonic click-through
rates. Moreover, they can be computed efficiently with two
fair division schemes which are, respectively, “group ver-
sions” of the round robin procedure, and the envy-cycle elim-
ination algorithm by Lipton et al. [2004]. We define fair-
ness with respect to reported bidder’s valuations. Indeed, we
argue that an auction is perceived to be fair if the slots are
divided between the majority/minority group in a fair way,
given that prices are not publicly known to all advertisers in
real-world sponsored search auctions. Considering the so-
cial welfare of the allocation is also the customary approach
in the fair division literature, in which notions such as EF1
and EFX are defined on valuations (see, e.g., [Budish, 2011;
Amanatidis et al., 2019]). Then, in Section 4, we study
the efficiency and budget-balance of the mechanisms result-
ing from the composition of GSP with the two fair division
schemes. We show that the social welfare of the composite
mechanisms is a good approximation of the optimum. More-
over, we prove that the welfare loss experienced by the ad-
vertisers due to the fairness constraints can be partly com-
pensated through monetary incentives via redistribution of
the GSP payments. Finally, Section 5 studies the behavior of
the composite mechanisms when bidders behave as no-regret
learning agents (i.e., they take decisions so as to minimize
their external regret) and they are conservative (i.e., they do
not overbid).3 We show that the learning dynamic originat-
ing from the interaction with our composite mechanisms con-
verges to a Bayesian coarse correlated equilibrium with good
social welfare properties characterized through their price of
composition. We complement our theoretical results by eval-
uating the quality of our fair sponsored search mechanisms

2The online advertising problem with group specifics click-
through rates has already been formalized in literature in the Ad-
Types setting [Colini-Baldeschi et al., 2020; Elzayn et al., 2021].

3The assumption of having conservative bidders has often been
used in the analysis of ad auction mechanisms (see, e.g., [Leme and
Tardos, 2010; Christodoulou et al., 2016; Feldman et al., 2013]).
The rationale for this is usually that, in practice, bidders are only
partially informed and, thus, they may be more inclined to avoid
risks (i.e., to submit bids that might yield negative payoffs).

on real-world data (Section 6).

2 Preliminaries
Throughout the paper, bold case letters denote column vec-
tors. Given a vector y, its i-th component is denoted by yi.
The set {1, . . . , x} is denoted by [x], and ∆X is the |X |-
dimensional simplex over the discrete set X .

Sponsored search framework There is a set I of n bidders
and a set J of m slots. An outcome is an assignment of bid-
ders to slots. Each bidder i has a private type vi, representing
their valuation on the item which is being sold. The vector of
types is denoted as v = (v1, . . . , vn). Each bidder i belongs
to a group from a finite set of possible groups G. The function
g : [n] → G maps bidders to their group, that is, we write g(i)
to denote the group to which bidder i belongs. We assume
that bidders may belong to one of two groups G = {h, ℓ}
(e.g., a majority group and a minority group) and the two
groups may have different sizes. We denote the set of bid-
ders belonging to the two groups by Ih and by Iℓ. We make
the assumption that |Ih| ≥ m and |Iℓ| ≥ m. This assumption
is reasonable in the context of large Internet advertising mar-
kets. As it is customary in the literature, we use the model of
separable click probabilities (see, e.g., [Edelman et al., 2007;
Varian, 2007]), in which each slot j is associated with a click-
through rate αj,g(i) for group g(i). We assume that, for each
group w ∈ G, α1,w ≥ α2,w ≥ . . . ≥ αm,w, and without
loss of generality we take n = m. Group-specific click-
through rates can model, for example, cases in which dif-
ferent groups of advertisers mainly resort to different media
types. Finally, each group w ∈ G is associated with a quality
factor γw ∈ [0, 1], which reflects the clickability of ads from
bidders belonging to group w. For example, ads coming from
advertisers in the majority group may have higher clickability
than ads from advertisers in the minority groups because of
differences in the available budgets to develop the campaigns.
Quality factors are private knowledge of the advertising plat-
form, and not known by the bidders. 4

GSP auction A mechanism elicits a bid bi ∈ R≥0 for each
bidder i, which is interpreted as a type declaration, and com-
putes an outcome as well as a price pi(b,γ) for each bidder
i. We denote by π(b,γ, j) the bidder assigned to slot j when
the mechanism observes the bid vector b and vector of qual-
ity factors γ. We also denote by ν(b,γ, i) the slot assigned
to bidder i when the mechanism observes the bid vector b
and vector of quality factors γ. When the vectors of bids
and quality factors are clear from the context we simplify the
notation by writing π(j), ν(i), and pi in place of π(b,γ, j),
ν(b,γ, i), and pi(b,γ), respectively. The value perceived by
bidder i when they are allocated ν(i) is αν(i),g(i)γg(i)vi, and
their utility is ui(b,v,γ) := αν(i),g(i)γg(i)vi − pi. We fo-
cus on a family of mechanisms derived from the Generalized
Second Price (GSP) auction [Varian, 2007]. In a GSP auc-
tion the mechanism assigns the slots in order from 1 to m
and sets π(b,γ, j) to be the bidder with the highest effective
bid γg(i)αj,g(i)bi not yet assigned (breaking ties arbitrarily).

4Our results hold also in the case of advertiser-dependent clicka-
bility, because that does not alter the relative ordering of items.



For any bid profile b, quality factors γ and for each j ∈ [m],
i = π(j), the price charged to bidder i is computed as

pG
i (b,γ) :=

γg(π(j+1))αj,g(π(j+1))

γg(i)
bπ(j+1), (1)

where we set bn+1 = 0.5 The mechanism is Individually
Rational (IR) if, for each bidder i ∈ I , ui(b,v,γ) ≥ 0, for
all b, v, and γ. The mechanism is Individually Rational at the
Equilibrium (IRE) if it is IR at the equilibrium bid vectors.
Online Bayesian framework The n bidders participate in
a series of GSP auctions. At each iteration t, each bidder i
observes a valuation vti for the item being sold at time t. Let
Vi be the finite set of types of bidder i. The vector of types
vt = (vt1, . . . , v

t
n) is drawn, at each t, from a (possibly cor-

related) probability distribution F supported on a finite set of
joint types V , that is, V := ×i∈[n]Vi. Moreover, at each t, a
vector of quality factors γt ∈ [0, 1]|G| is drawn from a (possi-
bly correlated) distribution G. Each bidder i has an arbitrary
finite set of available bids Bi ⊆ R≥0, with B̄i := maxBi and
B̄i ≥ supVi. Moreover, we denote by B := ×i∈[n]Bi the
set of all possible joint bid profiles. A bidding strategy σi for
bidder i is a (possibly randomized) mapping from their types
Vi to their available bids Bi. We represent such strategies as
a |Vi| × |Bi| right stochastic matrix in which each row spec-
ifies a well-defined probability distribution over bids: bidder
i’s strategy space is Σi :=

{
σi ∈ R|Vi|×|Bi|

≥0 : σi1 = 1
}

. We
observe that bidders cannot condition their bids on their qual-
ity factors γ, since they are only known to the platform, and
not to advertisers. Finally, we define the set of joint bidding
strategies as

Σ :=

{
σ ∈ ∆V×B :

∑
b∈B

σ[v, b] = F(v), ∀v ∈ V
}
.6

At each iteration t, bidder i places bids according to a bidding
strategy σt

i ∈ Σi. In particular, bidder i observes its own
type vti , and then submits a bid bti ∼ σt

i [v
t
i ]. Then, bidder

i experiences a reward which we define as a function ut
i :

Bi → R. The utility function ut
i observed at time t implicitly

depends on the realized vector of bids bt−i, and quality factors
γt, and it is such that, for each possible bid b ∈ Bi, ut

i(b) :=
αt
j,g(i)γ

t
g(i)v

t
i − pi((b, b

t
−i),γ), with j = ν((b, bt−i),γ

t, i).

Regret and equilibria Given a sequence of decisions
(b1i , . . . , b

T
i ) up to time T , the external regret of bidder i in

type vi is how much they regret not having played the best
fixed action in hindsight at each iteration in which they ob-
served type vi. Formally, the regret experienced by bidder i
under a certain type vi ∈ Vi is

RT
vi

:= max
b̂∈Bi

{
T∑

t=1

1[vi = vti ]
(
ut
i(b̂)− ut

i(b
t
i)
)}

.

5Alternatively, we could charge bidder π(j) with the threshold
price, which is the smallest effective bid pT

i that guarantees them the
same slot. Observe that pi ≤ pT

i since the next highest bidder on j is
not necessarily π(j+1) if the bidders have different quality factors.

6Given a matrix M , we denote by M [i] its i-th row vector, and
by M [i, j] the entry in position (i, j).

Then, the cumulative external regret of bidder i at time T is
RT

i :=
∑

vi∈Vi
RT

vi . Let (bt)Tt=1 be the sequence of deci-
sions made by the bidders up to time T . Then, the empirical
frequency of play σ̄T ∈ ∆V×B obtained from the realized
sequence of types (vt)Tt=1, and from the sequence of play
(bt)Tt=1 is such that, for every (v, b) ∈ V × B:

σ̄T [v, b] :=
1

T
|
{
1 ≤ t ≤ T : bt = b,vt = v

}
|.

If each bidder i plays so as to obtain a regret RT
i growing sub-

linearly in T , then, in the limit as T → ∞, the empirical fre-
quency of play σ̄T is guaranteed to converge almost surely to
a Bayesian coarse correlated equilibrium (BCCE) [Caragian-
nis et al., 2015; Hartline et al., 2015].We denote by Σ∗ ⊆ Σ
the set of all Bayesian coarse correlated equilibria of the
game.

3 Group Fairness in GSP Auctions
In this section we present the two group fair division schemes
that will be added as a post-auction layer to GSP.

Preliminary definitions Consider an arbitrary stage t of
the repeated auctions process (dependence on t will be omit-
ted when clear from the context). For each group w ∈ G,
let ALGw(b) :=

∑
i∈Iw

γwαν(i),wbi be the value obtained
by group w via a generic mechanism with allocation rule
ν, on bid vector b. Since G = {h, ℓ}, the overall value is
ALG(b) = ALGh(b) + ALGℓ(b). Moreover, given a set of
slots J ′ ⊆ [m] assigned to group w ∈ G, we define

ALGw(J
′, b) :=

∑
j∈[|J′|]

γwαJ′[j],wbIw[j],

where J ′[j] denotes the slot with the j-th click-through rate
among slots in J ′, and Iw[j] is the bidder belonging to Iw
with the j-th effective bid in decreasing order (e.g., Ih(1)
is the bidder of group h with the highest effective bid). In-
tuitively, ALGw(J

′, b) is the maximum value attainable by
group w when it is allocated J ′ and the bid vector is b.

β-EF1 mechanism The first mechanism that we describe
employs a fair division scheme that guarantees the following
notion of group fairness.

Definition 1. (Group β-EF1 fairness) Let β := ξℓ/ξh, with
ξh, ξℓ ∈ N+, ξh ≥ ξℓ, and ξh + ξℓ ≤ m. We say that an
allocation is group β envy-free up to one good (β-EF1 fair)
for β ≤ 1 and bid profile b if, for each pair of groups h, ℓ ∈
G, there exists one item jh ∈ Jℓ such that ALGh(Jh, b) ≥
β ALGh(Jℓ \ {jh}, b).
We fix ξℓ and ξh to be the smallest integers such that β =
ξℓ/ξh. A group β-EF1 fair allocation can be obtained through
a round robin procedure that assigns ξh slots to group h for
each ξℓ slots assigned to group ℓ. The proof of this result
is very similar to the one for the classical EF1 fair division
scheme by Markakis [2017]. As an example, if we assume
group h to be the majority group (i.e., advertisers from group
h are allocated the highest slots in the ranking), then the result
of the application of the group β-EF1 round robin procedure
is the shift of advertisers assigned to a position j ∈ Jh to



position at most ⌈(1 + β)j⌉ − 1. For more details on how
this fair division scheme is implemented see the extended
version of the paper. We observe that a round robin proce-
dure guarantees group EF1 even when the number of groups
is |G| > 2. The reason is that, for any pair w,w′ ∈ G,
and positions j ∈ [|Jw|], j′ ∈ [|Jw′ |], with j ≤ j′, it holds
αJw[j],w ≥ αJw′ [j′],w. Moreover, it is possible to show that
a round robin procedure also guarantees group β-EF1 with
respect to valuations (proofs can be found in the extended
version of the paper).
Theorem 1. Given a bid profile b, the allocation computed
by the composite mechanism is β-EF1 fair with respect to
the valuation profile v. In particular, given the allocation of
slots to the two groups Jh, Jℓ, for each pair of groups h, ℓ ∈
G, there exists one item j ∈ Jℓ such that ALGh(Jh,v) ≥
β ALGh(Jℓ \ {j},v).
Intuitively, this is because the β-EF1 mechanism computes
Jh, Jℓ without employing the reported bid profile, which is
used only to determine the per-group ranking.
β-EFX mechanism The second notion of fairness which
we consider is group β-EFX fairness.
Definition 2. (Group β-EFX fairness) An allocation is group
β-envy free up to any good (β-EFX fair) for β ≤ 1 and bid
profile b if, for each pair of groups h, ℓ ∈ G, and for each
item jh ∈ Jℓ, it holds ALGh(Jh, b) ≥ β ALGh(Jℓ \ {jh}, b).
A group β-EFX fair division scheme can be obtained through
a “group version” of the envy-cycle elimination algorithm by
Lipton et al. [2004]. In particular, we propose the Group
Envy-Cycle-Elimination algorithm (GECE). The GECE algo-
rithm can be summarized as follows: denote by Jh and Jℓ the
set of slots assigned, respectively, to group h and ℓ. We say
that group h envies group ℓ if ALGh(Jh, b) < βALGh(Jℓ, b).
Initially, all the slots are not assigned, that is, Jh = Jℓ = ∅.
Then, the algorithm iterates through the slots in decreasing
order of click-through rate. The first slot is assigned to group
h. For each subsequent slot j, the algorithm checks if groups
h and ℓ envy each other, and, if this is the case, the algorithm
swaps their allocations. Otherwise, if group ℓ does not envy
group h, then the next slot is assigned to group h, else, if
ℓ envies h, the slot is assigned to group ℓ. In the following
theorem, we prove that the GECE algorithm is guaranteed to
obtain a β-EFX allocation.
Theorem 2. The allocation computed by the group envy-
cycle-elimination (GECE) algorithm is group β-EFX fair.
It is possible to show that a variation of GECE yields a group
EFX fair allocation (i.e., β-EFX with β = 1) even with more
than 2 groups.
Corollary 1. The allocation computed by the k-group envy-
cycle-elimination (k-GECE) algorithm is group EFX.

4 Efficiency and Budget Balance
In this section, we study the efficiency and budget balance
of the two mechanisms obtained by combining GSP with the
two fair division schemes described in Section 3. Let us de-
note one such composite mechanism by C. The post-auction
layer of the composite mechanism C is modifying the GSP

allocation of slots to bidders. Ideally, no bidder should be pe-
nalized for this re-allocation. Therefore, we need to update
the payments so that bidders’ utility is not negatively affected
by the composition of GSP with the fair division scheme. In-
terestingly, we can do so starting from the payments of GSP.
In particular, denote by pG

i and by pC
i , the payments charged to

advertiser i computed by GSP and by the composite mecha-
nism, respectively. Moreover, let νG(i) and νC(i) be the slots
assigned to advertiser i by GSP and by the composite mecha-
nism, respectively. Then, we define the payments charged by
the composite mechanism C as:

pC
i :=


pG
i if νC(i) ≤ νG(i)

pG
i − 2bi γg(i)

(
ανG(i),g(i) − ανC(i),g(i)

)
else.

(2)

The pricing rule shows that the composite mechanism C com-
pensates the loss of social welfare of the advertisers that ob-
tain a worse slot by reducing their payments. In order to en-
sure individual rationality, the advertisers that obtain a better
slot are not asked to compensate with a higher payment. Ob-
serve that the pricing rule does not exclude positive transfers
to the advertisers.

Now, let us first define an appropriate notion of budget bal-
ance for a composite mechanism which assigns a payment pC

i
to bidder i ∈ I , with respect to the GSP mechanism. Let
pG :=

∑
i∈I p

G
i , and pC :=

∑
i∈I p

C
i .

Definition 3. A composite mechanism is α-budget balanced,
for α ≥ 0, if pG − pC ≤ αpG.

An α-budget balanced mechanism is therefore able to cover
via the GSP payments at least an α fraction of the compensa-
tions given to the bidders by the composite mechanisms.

Let ALGG(b) and ALGC(b) be, respectively, the value of
the GSP mechanism, and of the fair composite mechanism on
an arbitrary bid vector b. Moreover, we use the following two
assumptions in the analysis of the composite mechanisms.

Assumption 1. The value of the minority group increases
after the application of the composite mechanism, i.e.,
ALGC

ℓ (b) ≥ ALGG
ℓ (b).

Assumption 2. The first slot is assigned by GSP to Ih(1),
i.e., the first bidder of group h.

Assumption 1 is natural since the basic goal of the proposed
mechanisms would be to make the minority group better off
with respect to the GSP case. Assumption 2 only requires
that the advertiser with the highest bid belongs to the majority
group. This is natural, for example, in settings where groups
have different economic power. First, we provide efficiency
and budget balance results for the β-Fair GSP mechanism.

Theorem 3. The β-Fair GSP mechanism achieves a value
that is at least a 1/(1 + β) fraction of the value of GSP, i.e.,
for all bid vectors b ∈ B, ALGC(b) ≥ ALGG(b)/(1 + β).

Theorem 4. The β-Fair GSP mechanism is 2-budget bal-
ance.

This result does not rule out that the mechanism may suffer a
net loss. However, such loss is bounded by a small constant
(see Section 6 for an empirical evaluation of such loss).



Second, we study efficiency and budget balance of the
GSP-EFX mechanism. The allocation done by the mecha-
nism is described in Section 3 and it is obtained by the com-
position of the GSP mechanism with the group EFX fair di-
vision scheme. The payments of GSP-EFX are computed as
in Equation (2). Then, we have the following.
Theorem 5. GSP-EFX achieves a value that is at least a frac-
tion 1/3 of the value of GSP, i.e., for all bid vectors b ∈ B,
ALGC(b) ≥ 1

3ALGG(b).
Finally, we prove that GSP-EFX is able to compensate at

least 1/4 of the total welfare loss generated by the application
of the EFX fair division scheme. Formally,
Theorem 6. The GSP-EFX mechanism is 4-budget balance.
Remark 1. Given a number of groups k > 2 and β = 1,
Theorem 3 and Theorem 5 can be extended to show that the
group EF1 (resp., group EFX) mechanism achieves a value
that is at least a 1/2k fraction (resp., a fraction 1/3k) of the
value of GSP.

5 Price of Composition
Equipped with the results from Section 4 we can study the
performance of the proposed mechanisms at equilibrium. We
study the quality of the equilibria emerging as the results of
the no-regret learning dynamics in which each bidder behaves
as an external-regret minimizer. To do so, we propose the
price of composition (PoC) as a natural measure to evaluate
the social welfare guarantee of our mechanisms at equilib-
rium. For an arbitrary mechanism, the social welfare attained
for bids b, valuations v ∈ V , and quality factors γ is

SW (b,v,γ) :=
∑
j∈[m]

αj,g(π(j))γg(π(j))vπ(j). (3)

Given an equilibrium strategy σ ∈ Σ∗ in an incomplete-
information game, its social welfare is evaluated by compar-
ing it to the expected ex-post social welfare of the GSP mech-
anism, which we denote by Ev,γ [SW

G(v,γ)]. In particular,
we can define the following worst-case ratio.
Definition 4. The price of composition (PoC) of a composite
mechanism C is defined as

POC := inf
F,G,σ∈Σ∗

Ev,γ,b∼σ[SW
C(b,v,γ)]

Ev,γ [SWG(v,γ)]
.

By the definition of the composite mechanisms, their social-
welfare is at most equal to the social welfare of the GSP
mechanism (see Section 4), i.e., POC ∈ [0, 1]. Moreover,
bounding the worst case POC automatically yields a POC/2
guarantee on the price of total anarchy [Blum and Mansour,
2007]. This is because SW G(v,γ) ≥ SW ∗(v,γ)/2, where
SW ∗ is the optimal social welfare with valuations v. 7

In order to characterize the PoC of our mechanisms, we in-
troduce a natural smoothness condition for composite mech-
anisms, which is a generalization of the notion of semi-
smoothness by Lucier and Paes Leme [2011]. Let SW G be

7The value of the GSP solution for the Ad-Types problem with
group-specific CTRs is at least 1/2 of the optimal solution provided
by maximum weighted matching [Colini-Baldeschi et al., 2020].

the social welfare of the baseline mechanism (that is, in our
setting, GSP), and let SW C be the social welfare provided by
the composite mechanism (in our case, β-Fair GSP or GSP-
EFX) given an arbitrary vector or valuations. Then, our no-
tion of smoothness states that social welfare gaps between
the social welfare at the baseline mechanism with truthful bid
vector v, and the social welfare for an arbitrary joint strat-
egy profile σ ∈ Σ in the composite mechanism, can be cap-
tured by the marginal increases in the individual agents’ util-
ities when unilaterally switching to a deviation strategy pro-
file σ′ = (σ′

1, . . . , σ
′
n). Formally, a composite mechanism

C is (λ, µ)-semi-smooth with respect to a baseline mecha-
nism G if there exists a profile of individual bidding strategies
σ′ = (σ′

1, . . . , σ
′
n) ∈×Σi such that, for any joint strategy

σ ∈ Σ, v ∈ V , and γ,

E b∼σ[v]
b′∼σ′[v]

[ ∑
i∈[n]

uC
i ((b

′
i, b−i), vi,γ)

]
≥ λSW G(v,γ)− µEb∼σ[v][SW

C(b,v,γ)]. (4)

In this setting, we make the additional assumption that bid-
ders are conservative and, therefore, they do not overbid. This
is in line with previous works studying the price of anar-
chy of auctions with conservative bidders (see, e.g., [Leme
and Tardos, 2010; Christodoulou et al., 2016; Feldman et al.,
2013]). 8 Under this assumption, the following holds.

Lemma 1. The β-Fair GSP mechanism is (1/2, (1 + β))-
semi-smooth, and the GSP-EFX mechanism is (1/2, 3)-semi-
smooth. Both mechanisms are individually rational at the
equilibrium.

By the fact that (λ, µ)-semi smoothness implies a λ
1+µ POC,

we characterize the POC of the mechanisms as follows.

Theorem 7. The price of composition with uncertainty of β-
Fair GSP is POC = (2(2 + β))−1.

This result shows that, even if the bidders are self-interested
(i.e., they take decisions so as to minimize their own individ-
ual regret), our composite mechanism can guarantee group
fairness, as well as convergence to a good equilibrium point.
Analogously, it is possible to prove the following for GSP-
EFX:

Theorem 8. The price of composition with uncertainty of
GSP-EFX is POC = 1/8.

6 Experimental Evaluation
We experimentally evaluate the quality of the equilibria
emerging as the results of no-regret learning dynamics in
which agents interact through the β-Fair GSP mechanism.

Regret minimization for the Bayesian setting For each
bidder i, we consider a discrete set of bids Bi. We focus on
the partial-information setting, in which, at each time instant
t, each bidder observes only the reward ut

i(b
t
i) associated to

8Our bounds on PoC can be adapted with minor modifications to
the case in which bidders are δ-conservative [Bhawalkar and Rough-
garden, 2011], i.e., bi ≤ δvi,∀i. In particular, all price of composi-
tion factors are multiplied by an additional δ factor.
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Figure 1: (Top-Left): Expected overall SW at equilibrium. (Top-
Right): expected per-group SW at equilibrium. (Bottom): expected
fraction of the GSP payments to be used for compensation in the
composite mechanism. We set ξℓ = 1 and we let ξh vary.

its choice bti ∈ Bi. This is in line with what happens in real-
world sponsored search auctions, where advertisers do not
observe competing bids (i.e., they cannot compute a coun-
terfactual utility ut

i(b) for each b ∈ Bi), but can only observe
the outcome associated to their decision bti. We instantiate an
external-regret minimizer Ri,v for each bidder i and v ∈ Vi.
In practice, we use the EXP3 algorithm by [Auer et al., 2002]
for each external regret minimizer. Then, we build a regret
minimizer for the Bayesian bidder i as follows: at each t, bid-
der i observes their realized type vt ∈ Vi and selects bti ∈ Bi

according to Ri,vi . Then, after utility ut
i(b

t
i) is observed,

only Ri,vi is updated. This simple procedure guarantees that
lim supT→∞ RT

i /T ≤ 0, which implies that the empirical
frequency of play σ̄T of the dynamic converges almost surely
in the limit to a Bayesian coarse correlated equilibrium (see,
e.g., [Hartline et al., 2015, Lemma 10]).
Experimental setting We construct a real-world dataset
through logs of a large Internet advertising company. We
test our β-Fair GSP mechanism in an artificial environment
where we have 20 advertisers, equally distributed among two
groups, and competing for ad opportunities over a sequence
of T = 104 auctions. For each i, we set Vi = {x/100 : x ∈
[100] ∪ {0}}. Moreover, in order to be able to create a steep
unbalance between the two groups, we let, for each v ∈ V ,
F(v) = F1(v1) · . . . · Fn(vn), with Fi ∈ ∆Vi for each i.
Then, for each i ∈ Ih (i.e., advertiser i belongs to the ma-
jority group), we artificially set value distributions to be such
that Fi(1) = 1, and Fi(v) = 0 for each v ∈ Vi \ {1}. Each
bidder i ∈ Iℓ has a value distribution Fi built by normaliz-
ing the distribution of bids observed from real-world bidding
data of a large Internet advertising company. We use bids as a
proxy for true valuations of advertisers. Discount curves are
computed by averaging and normalizing in [0, 1] real-world

discount factors. In particular, we estimate discount curves
on ads optimizing for two distinct conversion types, one per
group. This models different per-group preferences on the
slots. Quality factors are set to be γ = (1, 1). Experiments
are run on a 24-core machine with 57Gb of RAM.

Results Each advertiser takes decisions so as to minimize
their external regret according to the procedure described
above. Then, we analyse the equilibrium outcomes originat-
ing from advertisers behaving so as to minimize their regret,
and interacting through GSP and β-Fair GSP, respectively. To
do so, we compute the empirical frequency of play σ̄T in the
two settings. Let σ̄T,G and σ̄T,C be the empirical frequency
of play obtained via the GSP mechanism, and the empirical
frequency of play obtained via the β-Fair GSP mechanism,
respectively. Figure 1–(Top-Left), and Figure 1–(Top-Right)
report a comparison between the expected social welfare at-
tained at σ̄T,G (i.e., SW G), the expected social welfare at-
tained at σ̄T,C (i.e., SW C) for different values of ξh, while for
simplicity we keep ξℓ = 1 (see Definition 1), and the expected
social welfare obtained when advertisers are not strategic and
submit bids truthfully to a GSP mechanism (i.e., SW OPT).
Each value is computed over 20 repetitions of the dynamics,
and figures display the resulting mean and standard devia-
tion. In particular, Figure 1–(Top-Left) reports the overall
social welfare, and shows that, as expected, lower values of
k increase ∆SW , that is, the gap between the social welfare
provided by the GSP solution and the social welfare provided
by the β-Fair GSP solution. The gap is negligible for most
values of β = 1/ξh, and in the worst case, the empirical gap
is approximately 10% of the social welfare provided by GSP.
Figure 1–(Top-Right) reports the per-group social welfare at
equilibrium. Finally, Figure 1–(Bottom) describes the frac-
tion of the revenue which is lost due to compensation for
advertisers as defined in Equation (2). We observe that, in
practice, the fraction of the GSP prices used for compensa-
tion significantly lower than the worst case bound of Theo-
rem 4. In particular, the composite mechanism looses nearly
40% of GSP revenue when ξh = 1 (i.e., when the group fair-
ness constraint is as tight as possible). However, for higher
values of ξh, the fraction of pG which has to be used for com-
pensations stabilizes around 20%. This suggests that there
may be a trade-off between guarantees for advertisers and
revenue losses incurred by the platform where this type of
mechanisms could be viable in practice.

7 Discussion and Future Works
We proposed a class of composite mechanisms constructed
through the combination of GSP with different fair division
schemes. We show that these composite mechanisms yield
group fairness guarantees for advertisers, and we character-
ized the costs which the platform has to incur. In the future, it
would be interesting to study fairness guarantees in the space
of valuations, and in the space of utilities. We already pro-
vided some preliminary results going in this direction (Theo-
rem 1). Extending that to EFX presents non-trivial additional
challenges, such as showing that there exist a monotone ver-
sion of GECE. We leave that as a future research direction.
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Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg
Shah, and Junxing Wang. The unreasonable fairness of
maximum Nash welfare. ACM Trans. Economics and
Comput., 7(3):12:1–12:32, 2019.

[Chawla and Jagadeesan, 2020] Shuchi Chawla and Meena
Jagadeesan. Fairness in ad auctions through inverse pro-
portionality. arXiv preprint arXiv:2003.13966, 2020.

[Christodoulou et al., 2016] George Christodoulou, An-
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