
Code Quality Prediction
Under Super Extreme Class Imbalance

Noah Lee
Meta Platforms, Inc.
Menlo Park, USA
noahlee@fb.com

Rui Abreu
Meta Platforms, Inc.
Menlo Park, USA
rui@computer.org

Nachiappan Nagappan
Meta Platforms, Inc.

Bellevue, USA
nnachi@fb.com

Abstract—Predicting the quality of software in the early
phases of the development life cycle has various benefits to
an organization’s bottom line with wide applicability across
industry and government. Yet, developing robust software quality
prediction models in practice is a challenging task due to “super”
extreme class imbalance. In this paper, we present our work
on a code quality prediction framework, we call Automated
Incremental Effort Investments (AIEI), to fasten the process of
going from data to a performant model under super extreme
class imbalance. Experiments on a large scale real-world dataset,
from Meta Platforms, show that the proposed approach competes
with or outperforms state-of-the art shallow and deep learning
approaches. We evaluate the practical significance of the model
predictions on test case prioritization efficiency, where AIEI
achieves the top rank reducing code review time by 2.5% and
test case resource utilization by 9.3%.

Index Terms—Software Reliability, Code Quality Prediction,
Super Extreme Class Imbalance

I. INTRODUCTION

Delivering software at scale and speed without jeopardizing
quality is of importance to many industries and governments
to maximize resource efficiency, competitive advantage, and
avoid preventable costs [15]. As an example, poor software
quality, in the U.S. alone, is estimated to be at 2 trillion
dollars1 attributable to failed software projects, technical debt
from legacy systems, and operational failures.

Software quality prediction [7], [16], [19] aims to identify
risky code at authoring time to prevent future operational
failures in production. Arguably, it is amongst the best allies
to improve reliability [2], quality assurance [13], and resource
management activities [12]. Yet, developing robust software
quality prediction models in practice is a challenging task.
This is notoriously the case at Meta where thousands of engi-
neers are committing code changes into production every day.
The code is large, comprises multiple languages, covers the
full stack, and undergoes rigorous code quality management
processes [9].

We introduce the term “super” extreme class imbalance,
where the minority class label only accounts for < 0.1%.
While the literature has dealt in depth with moderate or
extreme class imbalance, empirical evidence on super extreme
class imbalance in the code quality prediction context is scarce.

1https://www.it-cisq.org/cost-of-poor-software-quality-in-the-us/index.htm
(accessed August 26, 2022)

As the minority class (i.e. an adverse code quality event)
becomes extremely rare, standard best practices start to fail
and need special considerations.

In this paper, we propose a learning framework, we call Au-
tomated Incremental Effort Investments (AIEI) (see Figure 1).
The goal of AIEI is to i) assess the feasibility and significance
of performing code quality prediction under super extreme
class imbalance and ii) fasten the process to go from data
to a performant model while gaining a better understanding
of the modeling intricacies that arise. Experiments on large-
scale real-world data show that our approach competes with
or outperforms state-of-the art shallow and deep learning
approaches. We further evaluate model performance on test
case prioritization efficiency by looking at savings in code
review time and test case resource utilization. AIEI achieves
the top rank (#1) improving review time by 2.5% and test
case resource utilization by 9.3% when compared to the
best performing model in the model pool. Comparing to
baseline models BM-25 and BM-50, we observe a 99.3% and
99.6% improvement. The main contributions of this paper are
summarized below:

• We present a code quality prediction framework that can
deal with super extreme class imbalance and efficiently
go from data to a high performant model. We compute
empirical lower bounds on the required training samples
to prevent cross validation fold failures while keeping the
training size minimal. This type of work and context has
not been addressed in prior research (see Section III).

• We provide large-scale empirical results on our codebase
covering +20 languages, +1K projects, a quarter million
data samples, and evaluate +40 models in the full model
pool. The scale of our study provides stronger empirical
evidence compared to prior studies (see Section IV).

• We discuss how our approach competes with or out-
performs state-of-the art shallow and deep learning ap-
proaches based on the Matthew Correlation Coefficient
(MCC) (see Section V).

II. RELATED WORK

Machine Learning for Software Engineering (ML4SE)
— ML4SE is at the intersection between machine learning
and software engineering and aims to automate software
engineering tasks such as requirement analysis [24], effort



Fig. 1. The Automated Incremental Effort Investment (AIEI) framework and Top-K Meta Ensemble (TKME) model architecture.
A diagram describing how in Step-1 we train a large model pool on small data (low effort). The intent is to reduce the model
pool to identify top model candidates quickly that then undergo a more rigorous learning process with increased training effort
and rigor. The TKME architecture combines the inferences from the reduced model pool to deliver the final predictions.

estimation [14], software defect prediction [6], [17], [18], type
inference [5], [11], code completion [23], summarization [8],
[22], embeddings [25], [27], synthesis [4], and translation [21].
Software quality prediction — Nagappan et al. [16] em-
pirically studied the influence of organizational structure on
software quality and proposed a metric scheme to quantify
organizational complexity. They presented empirical evidence
that organizational metrics are effective predictors of failure-
proneness.

Reddivari and Raman [19] presented an evaluation of 8 ML
techniques in the context of reliability and maintainability by
training models on software derived metrics. They reported
that Random Forest is the best performer with an AUC of
0.8. Compared to our work, we perform model validation on
datasets that are 250X larger in size with a class imbalance
that is 20-500X more extreme.

Goyal and Bhatia [7] compared 30 prediction models based
on ANNs, SVMs, decision trees, KNNs, and Naı̈ve-Bayes
classifiers on 6 datasets. Key features were static code metrics
such as McCabe complexity. They reported that ANN is the
best performer in terms of ROC, AUC, and accuracy measures.
In contrast, our work considers a model pool of +40 models
as part of the AIEI framework, in addition to static code
metrics, we leverage author and team-specific (organizational)
information, covers +20 languages, and +1K different projects.
Software {reliability, defect, bug, fault} prediction —
Closely related to software quality prediction are sub cate-
gories such as defect, bug, vulnerability, and system prediction.

Wang, et al. [26] proposed a representation learning algo-
rithm to learn the semantic representation of code from token
vectors that are derived from Abstract Syntax Trees (ASTs)
in preference to manual feature engineering. They leveraged
Deep Belief Networks (DBS) and validated their approach on
10 open source projects for within-project and cross-product
defect prediction. The scale of their evaluated datasets has less
than 1K files and the reported class imbalance ranges from
10% to 50%.

Paterson et al. [18] presented a test case prioritization
strategy based on defect prediction for Java on 6 real-world

programs instead of coverage-based approaches. They showed
that using defect prediction to prioritize test cases reduces
the number of test cases required to find a fault by on
average 9.48% when compared with existing coverage-based
strategies.

Fan et al. [6] proposed a defect prediction framework
based on an attention-based recurrent neural network deep
learning architecture. They leveraged abstract syntax trees
(ASTs) to learn syntactic and semantic features and validated
their approach on 7 open-source Java projects using the F1-
measure (mean=0.56) and AUC (mean=0.71). Information on
the scale of the datasets could not be verified.

Pandey et al. [17] performed an in-depth literature review
and analysis of over 154 articles on Software Fault Prediction
(SFP) spanning a period from 1990 to 2019. They found that
ML approaches had higher AUC performance than classical
statistical methods (mean AUC of 0.78 to 0.84) and high-
lighted data quality, overfitting, and class imbalance to be key
challenges.

Hershkovich et al. [10] proposed a test prioritization ap-
proach by learning a bug prediction model on 5 open-source
projects. They demonstrated that the model can detect more
than double the number of bugs compared to a coverage-
oriented approach with a mean AUC of 0.94 and mean PRC
of 0.32.

Zheng et al. [29] proposed a semi-supervised graph-based
approach to perform balanced defect prediction. They com-
pared their approach with other state-of-the-art deep learning-
based methods (mean MCC of 0.3, 0.35, 0.48) and reported
impressive results (MCC 0.844 - 0.958) for the case of extreme
class imbalance.

Our work differs in the following aspects: i) we attempt
code quality prediction under super extreme class imbalance,
ii) our datasets, covered languages, and projects are larger in
scope, iii) our framework focuses on automated ways to go
from data to performant models under resource constraints
and iv) our primary performance evaluation measure similar
to [29] is using MCC to account for class imbalance bias when
using metrics such as AUC, F1, precision (P), and recall (R).



III. METHODOLOGY

A. Problem formulation

We frame code quality prediction as a supervised binary
classification task. Given D = {xi, yi}ni=1 with n data points,
X ∈ Rn×d features, and yi ∈ {0, 1} labels, we are interested
in predicting code changes that lead to adverse quality events
(QEs). In our case n denotes the number of pull requests (we
internally call diffs), X a feature space describing quantitative
characteristics of diffs, and y is a label vector to denote if a
diff xi resulted in an adverse QE (i.e., yi = 1). Due to the
high bar on code quality the distribution of y is extremely
imbalanced.

Given an initial model portfolio MF = {hj}Lj=1 full of
individual and diverse learners hj the goal is to find automated
means to go from X to a high performing model or set of
models M̂ = {hj}lj=1 efficiently under resource constraints,
where L denotes the number of models in the full model
portfolio, L′ the number of models in the reduced model pool,
and l the number of models in the final model generating
predictions, with l << L′ << L and j an index variable (see
Figure 1).

B. Super extreme class imbalance

Super extreme class imbalance requires special considerations
when using modeling best practices such as in feature engi-
neering, model selection, tuning, and cross validation. While
class imbalance has been addressed at length in the community
and acknowledged to be a challenge [17], not much research
or empirical evidence can be found on the case where the
imbalance is “super” extreme, i.e.,

∑
yi = 1/n < 0.1% (see

Table I).
For instance, during cross-validation, due to label scarcity,

the sampling of instances for each class label could lead to
folds without any label instances of the positive class even
for stratified k-fold cross validation. Such failure folds bias
our model inference estimates when quantifying aggregate
model performance to assess generalizability. We performed a
sensitivity analysis to empirically determine the lower bound
on the minimum required training samples to efficiently train
the full model pool with minimal effort and resource overhead.
At least 10K samples are required for Stratified K-Fold cross
validation and 100K samples for K-Fold cross validation under
super extreme class imbalance.

TABLE I
CLASS IMBALANCE SEVERITY LEVELS. A DESCRIPTION OF DIFFERENT

CLASS IMBALANCE DEGREE CLASSIFICATIONS AND THEIR PROPORTIONS.

Imbalance degree Minority class (y=1) proportion
Mild 20− 40%
Moderate 1− 20%
Extreme < 1%
Super extreme < 0.1%

C. Automated incremental effort investment (AIEI) framework

At a high level, our framework architecture consists of
a full model pool MF , a reduced model pool MR and
our final model(s) M̂, which leverages a meta ensemble
component

∑
j ĥ(·) to fine-tune our inferences and generate

code quality predictions. Our focus is on being intentional
on how we discover model insights early in the modeling
process and correspondingly adjust training effort investments
through an agile incremental process to reach competitive
model performance faster. Rather than brute forcing through
all models with all available data and analyses steps, providing
early indicators of model performance and resource utilization
can help the modelers to be more efficient with their own time
and their use of constrained system resources. The idea is
simple. Initially, assume we have a training investment budget
of E that we evenly distribute equally across the full model
pool MF to gain a broad understanding of model behavior
and various learning settings (e.g., feature space, architecture
configurations, model parameters) (see Eq. 1). Here E refers
to effort investments such as the chosen training size and effort
spent on modeling due diligence.

E(MF ) =
∑
j

1/L (1)

In Step-1 we train MF with a reduced set of training
data samples that we empirically determined to avoid the bias
introduced by the super extreme class imbalance. The goal
is to quickly discover and learn the top candidate models
that are optimized for prediction performance, runtime, and
resource utilization efficiency. In Step-2, we allocate future
effort investments with larger training data, rigorous model
validation, and modeling due diligence to assess prediction
generalizability. By doing so, we alleviate the need to iterate
through the full space of model and parameter combinations
freeing up time and resources for the most promising path
forward.
MF consists of a set of available individual learners with

the assumption that MF contains a variety of different model
types, runtime, and resource utilization characteristics 2. In
practice this model pool is dynamically changing as new mod-
els or improvements to existing models are being developed
and become available. To obtain the reduced model pool of
top candidate models, we perform the following steps (see
Algorithm 1), where i is an index variable, k the number of
folds, tk the run time and rk the resource utilization of the
models, which is used together with the model performances

2For this study we used the following models: AdaBoost, Bagging,
BernoulliNB, CalibratedCV, CategoricalNB, ClassifierChain, ComplementNB,
DecisionTree, ExtraTree, GaussianNB, GradientBoosting, HistGradientBoost-
ing, KNeighbors, LabelPropagation, LabelSpreading, LinearDiscriminant-
Analysis, LinearSVC, LogisticRegression, LogisticRegressionCV, MLP, Mul-
tiOutput, MultinomialNB, Nearest-Centroid, NuSVC, OneVsOne, OneVsRest,
OutputCode, PassiveAggressive, Perceptron, QuadraticDiscriminantAnalysis,
RadiusNeighbors, RandomForest, Ridge, RidgeCV, SGD, SVC, Stacking,
Voting, XGB, LGBM, and GaussianProcess.



to rank the full model pool. Based on the ranking the modeler
chooses the optimal cut off point.

Algorithm 1 Step-1: Reduced model pool identification
Input: MF ,X, y, Θ
Output: MR, λ, nγ

1: Compute super extreme class imbalance rate λ = 1
n

∑
i yi = 1

2: Compute data batches of different sizes s = [n1, n2, n3, ..., ni],
with ni = 10i

3: for <all si> do
4: Compute cv-folds {F}ki with label distribution ŷ = [1−λ, λ]
5: for <all cv-folds {F}ki > do

Check if fold contains minority class misses, i.e.
∑

yi = 0
6: end for
7: Compute cv-folds failure rate distribution ri = ({F}ki , s)
8: end for
9: Compute the lower bound nγ = argmin(r, s), s.t. r̄i =

0,min{si}
10: for <all MF, nγ> do
11: Compute y, hj , tk, rk
12: end for
13: Compute model ranking rank(MF )
14: Resolve ties by incorporating model performance of hj and tk, rk

In Step-2, we perform full model training with all data and
rigorous model validation on MR. We compute the full model
performance distribution to assess generalization performance
and filter out any models that exhibit high variability. We
then re-rank the remaining model pool by performance and
resource utilization characteristics similar to Step-1. Lastly,
we aggregate model predictions to fine tune the predictions as
described next.

D. Top-K Meta Ensemble (TKME)

We use a Top-K Meta Ensemble (TKME) to fine tune the
model performance by combining the hypothesis space from
MR = {h1,h2,h3, ...,hL′} in order to make the final
predictions. Various combination schemes are possible such
as majority, averaging, stacking, and their weighted or non-
weighted derivatives [20]. The main assumption is that com-
bining individual learners into an aggregate prediction will
lead to increased model performance. In this study, we start
with a simple majority voting scheme of the top performing
models in the reduced model pool (see Eq. 2).

arg max
k∈{0,1}

∑
i,c

Ik(y) (2)

Given MR we use ϕ =
∑M̂

i=1 hi to combine the top-k
models, with k ∈ {2n+1}mn=1 to prevent ties in the aggregated
model decisions. We cap k to be k < 10, k = {3, 5, 7, 9},
given empirical evidence that beyond 10 combining individual
models leads to diminishing returns when trading off model
run times vs. performance. The benefits of the AIEI framework
are i) shorter modeling cycles, ii) faster time-to-failure, iii)
increased resource efficiency, and iv) higher agility to get from
data to a good performing model or set of models.

E. Performance metrics

The performance metric we primarily look at is the
Matthew’s Correlation Coefficient (MCC) [1], a more com-
plete and reliable alternative than the F1 measure, AUC, or
Accuracy especially for problems that involve super extreme
class imbalance [28]. MCC produces a high score only if all
elements of the confusion matrix perform well.

IV. EXPERIMENTS AND RESULTS

For all our experiments, we used a single machine with 114GB
RAM, 24 cores, 500GB disk space, running CentOS (version
8), and no GPU. We found that AIEI allows us to incrementally
build intuition on model performance, runtime, and resource
characteristics to identify top model candidates and reach
competitive model performance efficiently.

We can use the model predictions to prioritize the diffs and
associated test cases to gain savings in diff review time (DRT)
and resource utilization (RU). If a diff is predicted to not cause
a QE incident, we can relax or remove the review and test
requirements for this diff. By review time, we refer to the
time it takes to review the code change, the time it takes to
run the associated tests, and in the case of QEs, the incident
management and root causing time. With resource utilization
we refer to the number of tests that need to be run per diff,
which directly maps to the actual resource utilization profile
of our testing infrastructure.

A. Baseline and model comparison for test case prioritization
efficiency

We computed two baseline models (BM) we call BM-50 and
BM-25. BM-50 simulated the predictive behavior of a random
chance model (e.g. 50% of diffs were randomly chosen to
undergo review and testing efforts). BM-25 simulated a policy
where we only test 25% of all code changes to stay within
certain capacity constraints. For both baselines we used a
super extreme class imbalance ratio and a sample size of 10K
diffs/day. For each model we computed the confusion matrix
and assigned cost estimates to compute % savings between
our approach, models from the reduced model pool, and the
two baseline models (see Table II) and (see Table III). Cost
measures have been normalized to account for anonymity and
internal publication policies.

We found AIEI to improve DRT by 2.5% compared to
the best performing model. In comparison to the baseline
models BM-25 and BM-50 we observed a 99.3% and 99.6%
improvement, respectively. In the case of RU we observed a
9.3% improvement.

B. Real-world dataset

We have collected a dataset of internal pull requests (aka
diffs) from the period between 2021-01-01 to 2021-06-30
(n = +1.5M ). To provide a sense of rough scale and
diversity, the data comprise +1K top level directories and
+20 languages.

From the raw data, we computed a set of simple human-
engineered features at the diff level such as meta-information



TABLE II
SIMULATION STUDY OF MODEL PERFORMANCE IMPACT ON TEST CASE

PRIORITIZATION WITH RESPECT TO REVIEW TIME. TP=TRUE
POSITIVE, FP=FALSE POSITIVE, TN=TRUE NEGATIVE, FN=FALSE

NEGATIVE ARE REPORTED IN PERCENTAGES INDICATED BY A *. WE
BOLDFACED AIEI’S PERFORMANCE.

Rank Model TP* FP* TN* FN* Cost
1 AIEI (k=3) 0.001 0 0.999 0 5,659
2 DecisionTree 0.001 0 0.998 0 5,808
3 AdaBoost 0 0 0.999 0.001 6,124
4 AIEI (k=5) 0.001 0.001 0.998 0 6,758
5 GradientBoosting 0 0.001 0.998 0.001 8,491
6 AIEI (k=7) 0.001 0.001 0.997 0 9,297
7 Perceptron 0 0.001 0.998 0.001 10,051
8 GaussianNB 0.001 0.003 0.996 0 15,048
9 LDA 0.001 0.003 0.996 0 15,307
10 NearestCentroid 0.001 0.003 0.996 0 15,624
11 Baseline (25%) 0 0.255 0.744 0.001 923,160
12 Baseline (50%) 0.001 0.504 0.495 0 181,7760

TABLE III
SIMULATION STUDY OF MODEL PERFORMANCE IMPACT ON TEST CASE

PRIORITIZATION WITH RESPECT TO RESOURCE UTILIZATION.

Rank Model TP* FP* TN* FN* Cost
1 AIEI (k=3) 0.001 0 0.999 0 27
2 AdaBoost 0 0 0.999 0.001 30
3 DecisionTree 0.001 0 0.998 0 50
4 AIEI (k=5) 0.001 0.001 0.998 0 62
5 GradientBoosting 0 0.001 0.998 0.001 90
6 Perceptron 0 0.001 0.998 0.001 122
7 AIEI (k=7) 0.001 0.001 0.997 0 149
8 GaussianNB 0.001 0.003 0.996 0 315
9 LDA 0.001 0.003 0.996 0 322
10 NearestCentroid 0.001 0.003 0.996 0 331
11 Baseline (25%) 0 0.252 0.747 0.001 25,170
12 Baseline (50%) 0.001 0.497 0.502 0.001 49,700

(version count, repo name, test plan, summary plan), code
metrics (code complexity, test coverage, churn, file/line count,
comments), reviewer metrics (reviewer/subscriber count),
growth metrics (percent change), author and team information,
and linter flags.

A diff comprises one or multiple source code files and
associated meta-data to characterize and track a code change
throughout its life time. We used internal adverse quality
events (QEs) data related to system reliability, which attributes
QEs to diffs. All QEs usually have an association with the
relevant diffs, which can include both, the diff that triggered
the QE incident and the ones that remediated the root cause.
For our purposes, we are mainly interested in the former to
proactively identify the code changes that led to QEs. From
the set of diffs that are attributed to a QE we identified the
reversion diff (i.e., the diff that triggered the QE incident
and got therefore reverted) and assigned a positive label to
it (y = 1). All other diffs were labeled as negative (y = 0).
We only focused on diffs that can fix the QE incident as in
practice the first line of response is to quickly identify and
mitigate the diff that triggered the QE.

C. Can we predict code quality under super extreme class
imbalance?

We applied our AIEI framework to a real-world dataset
described in SectionIV-B. We started with a full model pool
of +40 shallow learners. In Step-1, we used a 0.7/0.15/0.15
train/valid/test split. We then used the computed lower bounds
on the required training samples to train the full model
pool with the minimum required samples. Out of the full
model pool 7 learners achieved an MCC > 0.5, which we
used to form the reduced model pool. In Step-2, we kept
the train/valid/test split constant, but increased the dataset
to a quarter million data points with a class imbalance of
0.1% for the training and validation set. To assess predic-
tive generalization performance, we performed a stratified K-
Fold cross-validation with 5 folds and computed the model
performance distribution for the reduced model pool. Despite
the class imbalance we did not perform any over- or under
sampling nor class re-weighting. We found that we can predict
code quality under super extreme class imbalance with an
MCC of +0.6 (moderate to strong correlation) and that our
results compete or outperform state-of-the-art shallow or deep
learning approaches (see Table IV).

TABLE IV
COMPARISON OF OUR METHOD WITH OTHER SOTA MODELS. MODEL

PERFORMANCE FOR ONE OF THE REPORTED DATASETS IN [29]

MCC Class imbalance
DPCAG 0.958 1.80%
AIEI 0.652 0.10%
DBN-CP (RF) 0.476 1.80%
GMNN 0.431 1.80%
DP-ARNN (RF) 0.389 1.80%
DP-CNN (RF) 0.388 1.80%
Node2defect 0.363 1.80%
DP-CNN (LR) 0.196 1.80%
DP-ARNN (LR) 0.163 1.80%
DBN-CP (LR) 0.075 1.80%

V. DISCUSSION

We found that AIEI enabled us to perform code quality
prediction under super extreme class imbalance with practical
significance. By leveraging the concept of incremental effort
investment and computing empirical lower bounds on the
minimum training data size allowed us to go from data
to a performant model efficiently, discover early top model
candidates, and save on unnecessary resource utilization. In
[29], the authors compared several deep learning models to
perform code defect prediction. In our experiments AIEI
performed with a mean MCC of 0.652 and tight variance
bounds (σ2=0.003), despite the super extreme class imbalance,
providing further evidence on the predictive generalizability of
our approach (see Table IV). We hope these results can inform
future meta-analysis studies.

A limitation of our approach is that we have not leveraged
the textual code features to aid interpretability, i.e. once we
know that a diff is likely to lead to a QE we would want to
know what can be done about it at the code level. Nevertheless,



this initial study provides us with the confidence that code
quality prediction under super extreme class imbalance can be
addressed.

Drawing general conclusions from empirical studies in
software engineering is difficult because any process depends
on a potentially large number of relevant context variables
[3]. Therefore, we cannot assume that the results of a study
generalize beyond the specific environment in which it was
conducted. Researchers become more confident in a theory
when similar findings emerge in different contexts.

VI. CONCLUSION

We proposed a code quality prediction framework to efficiently
learn meaningful predictive patterns under super extreme class
imbalance. In the future, we plan on integrating new data
sources into the learning problem and investigate code fea-
tures. On the longer-term roadmap we plan to extend our work
to other code quality dimensions.

VII. ACKNOWLEDGMENTS

The authors thank Lawerence Chen, Tobi Akomolede, and Wes
Dyer for their helpful discussions that prompted this work.

REFERENCES

[1] Phi coefficient. https://en.wikipedia.org/wiki/Phi coefficient. Accessed:
2022-02-01.

[2] Ayman Amin, Lars Grunske, and Alan Colman. An approach to software
reliability prediction based on time series modeling. Journal of Systems
and Software, 86(7):1923–1932, 2013.

[3] V.R. Basili, F. Shull, and F. Lanubile. Building knowledge through
families of experiments. IEEE Transactions on Software Engineering,
25(4):456–473, 1999.

[4] Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution
for neural program synthesis beyond domain-specific languages. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[5] Siwei Cui, Gang Zhao, Zeyu Dai, Luochao Wang, Ruihong Huang, and
Jeff Huang. Pyinfer: Deep learning semantic type inference for python
variables. ArXiv, abs/2106.14316, 2021.

[6] Guisheng Fan, Xuyang Diao, Huiqun Yu, Kang Yang, Liqiong Chen, and
Autilia Vitiello. Software defect prediction via attention-based recurrent
neural network. Sci. Program., 2019, jan 2019.

[7] Somya Goyal and Pradeep Kumar Bhatia. Software quality prediction
using machine learning techniques. In Manoj Kumar Sharma, Vijay-
pal Singh Dhaka, Thinagaran Perumal, Nilanjan Dey, and João Manuel
R. S. Tavares, editors, Innovations in Computational Intelligence and
Computer Vision, pages 551–560, Singapore, 2021. Springer Singapore.

[8] Sakib Haque, Aakash Bansal, Lingfei Wu, and Collin McMillan. Action
word prediction for neural source code summarization. In 2021 IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 330–341, 2021.

[9] Mark Harman and Peter O’Hearn. From start-ups to scale-ups: Oppor-
tunities and open problems for static and dynamic program analysis.
In 2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 1–23. IEEE, 2018.

[10] Eran Hershkovich, Roni Stern, Rui Abreu, and Amir Elmishali. Pri-
oritized test generation guided by software fault prediction. In 2021
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 218–225, 2021.

[11] Kevin Jesse, Premkumar T. Devanbu, and Toufique Ahmed. Learning
type annotation: Is big data enough? In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2021, page 1483–1486, New York, NY, USA, 2021. Association for
Computing Machinery.

[12] Capers Jones and Olivier Bonsignour. The Economics of Software
Quality. Addison-Wesley Professional, 1st edition, 2011.

[13] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris
Mockus, Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical
study of just-in-time quality assurance. IEEE Transactions on Software
Engineering, 39(6):757–773, 2013.

[14] Yasir Mahmood, Nazri Kama, Azri Azmi, Ahmad Salman Khan, and
Mazlan Ali. Software effort estimation accuracy prediction of machine
learning techniques: A systematic performance evaluation. Software:
Practice and Experience, 52:39 – 65, 2022.

[15] Erik Meijer and Vikram Kapoor. The responsive enterprise: embracing
the hacker way. Communications of the ACM, 57(12):38–43, 2014.

[16] Nachiappan Nagappan, Brendan Murphy, and Victor R. Basili. The in-
fluence of organizational structure on software quality. 2008 ACM/IEEE
30th International Conference on Software Engineering, pages 521–530,
2008.

[17] Sushant Kumar Pandey, Ravi Bhushan Mishra, and Anil Kumar Tripathi.
Machine learning based methods for software fault prediction: A survey.
Expert Systems with Applications, 172:114595, 2021.

[18] David Paterson, Jose Campos, Rui Abreu, Gregory M. Kapfhammer,
Gordon Fraser, and Phil McMinn. An empirical study on the use
of defect prediction for test case prioritization. In 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST),
pages 346–357, 2019.

[19] Sandeep Reddivari and Jayalakshmi Raman. Software quality prediction:
An investigation based on machine learning. In 2019 IEEE 20th
International Conference on Information Reuse and Integration for Data
Science (IRI), pages 115–122, 2019.

[20] Lior Rokach. Ensemble methods for classifiers. In Data mining and
knowledge discovery handbook, pages 957–980. Springer, 2005.

[21] Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guil-
laume Lample. Unsupervised translation of programming languages. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[22] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu
Zhang, Dongmei Zhang, and Hongbin Sun. On the evaluation of
neural code summarization. In International Conference on Software
Engineering (ICSE’22), February 2022.

[23] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan.
Pythia: Ai-assisted code completion system. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery amp;
Data Mining, KDD ’19, page 2727–2735, New York, NY, USA, 2019.
Association for Computing Machinery.

[24] Pratvina Talele and Rashmi Phalnikar. Software requirements classifi-
cation and prioritisation using machine learning. In Amit Joshi, Mahdi
Khosravy, and Neeraj Gupta, editors, Machine Learning for Predictive
Analysis, pages 257–267, Singapore, 2021. Springer Singapore.

[25] Ke Wang and Zhendong Su. Blended, precise semantic program
embeddings. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2020,
page 121–134, New York, NY, USA, 2020. Association for Computing
Machinery.

[26] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic
features for defect prediction. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 297–308. IEEE,
2016.

[27] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. Learning
semantic program embeddings with graph interval neural network. Proc.
ACM Program. Lang., 4(OOPSLA), nov 2020.

[28] Jingxiu Yao and Martin Shepperd. Assessing software defection pre-
diction performance: Why using the matthews correlation coefficient
matters. In Proceedings of the Evaluation and Assessment in Software
Engineering, pages 120–129. 2020.

[29] Xianda Zheng, Yuan-Fang Li, Huan Gao, Yuncheng Hua, and Guilin
Qi. Towards balanced defect prediction with better information propa-
gation. Proceedings of the AAAI Conference on Artificial Intelligence,
35(1):759–767, May 2021.


