
Presented at the Task-Agnoistic Reinforcement Learning Workshop at ICLR 2019

INSIGHTS ON VISUAL REPRESENTATIONS
FOR EMBODIED NAVIGATION TASKS

Erik Wijmans1∗, Julian Straub2, Dhruv Batra1,3, Judy Hoffman3, Ari Morcos3
1Georgia Institute of Technology, 2Facebook Reality Labs (FRL), 3Facebook AI Research (FAIR)
1{etw}@gatech.edu, 2{jstraub}@oculus.com, 3{dbatra, judyhoffman, arimorcos}@fb.com

ABSTRACT

Recent advances in deep reinforcement learning require a large amount of data
and result in representations that are often over specialized to the target task. In
this work, we study the underlying potential causes for this specialization by mea-
suring the similarity between representations trained on related, but distinct tasks.
We use the recently proposed projection weighted Canonical Correlation Analy-
sis (PWCCA) to examine the task dependence of visual representations learned
across different embodied navigation tasks. Surprisingly, we find that slight dif-
ferences in task have no measurable effect on the visual representation. We then
empirically demonstrate that visual representations learned on one task can be
effectively transferred to a different task. Finally, we show that if the tasks con-
strain the agent to spatially disjoint parts of the environment, differences in rep-
resentation emerge, providing insight on how to design tasks that induce general,
task-agnostic representations.

1 INTRODUCTION

Recent advancements in Deep Reinforcement Learning (Deep RL) have allowed for the creation of
systems that are able to out-perform human experts on various different games such as Chess, Go,
Dota2, and Starcraft2. However, these advances have largely relied on using significant amounts of
computation to account for lack of sample efficiency. Deep RL has also been shown to be able to
greatly over-fit on even complex problems Zhang et al. (2018), giving concern that the representa-
tions learned via Deep RL will be specific to their task and won’t be reusable for new tasks.

In this paper we seek to answer the following question: Do different embodied navigation tasks
induce different visual representations? There have been a number of recent simultaneous works
proposing to train robots as Embodied Agents in simulated environments with the ultimate goal of
transferring agents learned in simulation to reality. Embodied navigation tasks decouple the task
from the environment, in contrast to video game objectives in which the task and environment are
fundamentally coupled. Furthermore, the ability to reuse representations for new tasks and in new
environments is of particular concern to the goal of transferring embodied agents from simulation to
reality. Once in the real world, the agent should be capable of learning new tasks – such as finding
new objects or handling new questions – and be able to cope with the non-stationarity of a changing
world.

To study our primary question, we first adapt the methodologies proposed in Raghu et al. (2017);
Morcos et al. (2018) and find that, surprisingly, differences in task do not lead to differences in
visual representation. We leverage this knowledge to show that visual representations trained for
embodied tasks are useful for learning new tasks. Finally, we design a special case where the differ-
ent tasks constrain the agent to spatially disjoint locations in the environment, resulting in different
representations and providing insight on how task independent visual representations emerge.

2 HOW DEPENDENT ON THE TASK ARE REPRESENTATIONS?

In this experiment, we analyze visual representations learned for different embodied tasks.

∗Work done while an intern at FRL and FAIR
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(a) Top-down view in the environment. Cir-
cles denote the location of all target objects.
Coloring denotes which target set objects are
in for the multi-target disjoint split: blue for
A, red for B, and green is unused.
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(b) PWCCA results of comparing networks
trained on different embodied tasks. On the
x-axis is a description of the layer. All lay-
ers are marked with their number of output
channels, along with any parameters. k is
kernel size, s is stride, d is dilation. Fire
are SqueezeNet Fire modules.

Figure 1

Core Hypothesis. Training for different embodied tasks induces different visual representations.
Due to Deep RL’s ability to over-fit on even complicated tasks, it is reasonable to expect that the
representations learned will be highly tuned to their specific task.

2.1 EXPERIMENTAL SETUP

Task. We instantiate the Object Goal Navigation Task (ObjectNav) due to its reliance on both
semantic and spatial understanding. In ObjectNav, an agent is given a token describing an object
in the environment, such as fridge, and then must navigate through the environment until it finds a
good view of the fridge and calls the stop action. The reward given to the agent when it calls stop
is proportional to how much of the target object is in the agent’s field of view. At every time-step, a
shaped reward of −∆geo dist is also provided.

To gain insight into the impact of task differences on visual representations, we must first understand
the differences between the tasks themselves. An ideal task set should contain tasks for which the
learning and reward dynamics are very similar, but which differ in simple and easily understandable
ways. To accomplish this, we randomly divide the set of target objects, X , into two equally sized
and disjoint subsets A and B such that A ∩ B = ∅, A ∪ B = X , and |A| = |B| (assuming |X | is
even). We average our results over five different choices of A and B.

Environment. We use the state-of-the-art reconstruction method proposed in Whelan et al. (2018)
to create an extreme high-fidelity reconstruction. We utilize a perceptual and semantically realistic
environment so that our analysis will be more applicable to the ultimate goal of agents operating in
reality. See Fig. 1a for a top-down view of the environment.

Agent. The agent has 4 primitive actions, move forward, which moves 0.1 meters forward;
turn left and turn right (which turn 9 degrees left and right, respectively), and stop which
signals that the agent believes it has completed its task. At every time-step, the agent receives an
egocentric RGB image and the token specifying the target object.

Policy. We parameterize our agent with 3 components. A visual encoder, a target encoder, and a
recurrent policy. The visual encoder utilizes SqueezeNet1.2 as the backbone architecture due to its
parameter efficiency and representational power. Given an RGB image, the visual encoder produces
a 256 dimensional embedding. See Fig. 1b for the full architecture of the visual encoder.

Note that the vast majority (∼ 80%) of the learnable parameters are in the visual encoder. This is
key to our analysis as we find that a policy with significantly more parameters is able to do very well
on the task with a frozen randomly initialized visual encoder.

Training. We use Proximal Policy Optimization (PPO) to train our agent.
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Figure 2: Results of transferring policies learned on one task to the other task. Train reward while
learning target set B (left) and target set A ∪ B (right) under three different regimes.

2.2 MEASURING SIMILARITY OF REPRESENTATIONS

In order to compare the representations of two deep neural networks, we follow the approach of
Raghu et al. (2017); Morcos et al. (2018).

Given two neural networks, A and B, and a set of N inputs, Raghu et al. (2017); Morcos et al.
(2018) compare the representations at layerL of both networks by 1) extracting the neuron activation
matrix, X , of both networks – where Xi,j is the activation of the ith neuron on the jth input; and 2)
compute the distance between the neuron activation matrices using Canonical Correlation Analysis
(CCA). CCA finds a basis which maximizes the correlation between two matrices and then computes
the correlation in that basis to account for any rotational differences in the activation matrices.

We follow the technique proposed by Morcos et al. (2018) to account for differing numbers of
noise dimensions between representations. Given each of the CCA directions hi and correlation
coefficients ρi, Morcos et al. (2018) first computes the projection coefficients αi =

∑
k |〈di, Xk〉|

and then computes 1 minus the weighted average of the correlation coefficients, Dpwcca = 1.0 −
1∑
k αk

∑
k αkρk, as the distance between representations.

A naive approach for using PWCCA to measuring the effect of different target sets on the represen-
tation learned would be to train a policy forA and a policy for B and then measure the dissimilarity.
This approach 1) doesn’t control for the effect of different random initialization, and, more impor-
tantly, 2) doesn’t ground the values reported by PWCCA (which is a unit-less metric). To control for
these issues, we compare the distance between models trained on different tasks to the distance be-
tween models trained on the same task. To compare representations across different tasks, we train
N networks for A and N networks for B, compute the PWCCA distance for each pair of networks,
and then average over the N2 pairwise comparisons to control for the random seed. To compare
representations learned for the same task, we take the N networks trained on A (or B), and compute
the PWCCA distance for the

(
N
2

)
network pairs.

2.3 RESULTS

We use the following notation to denote our comparison: comparisons across networks trained on
the same task are denoted without a dash, e.g. A is the comparison of networks trained on A among
themselves. Comparisons across networks trained on different tasks are denoted with a dash, e.g.
A-B is the comparison between networks trained on A and networks trained on B. These compar-
isons are repeated over five different choices of A and B.

If networks trained on different tasks learn different representations, we would expect that the A-B
distance should be higher than that for A or B alone. In contrast, we found that distances were
similar regardless of task trained, suggesting that networks learn task-agnostic visual representations
(Fig. 1b). This result implies that the representation learned for one task should transfer to another.

3 TRANSFERRING BETWEEN A AND B

Setup. We examine two types of transfer experiments: 1) transferring the policy learned on A to
B (or from B to A); 2) transferring the policy learned on A to A ∪ B, the full set of targets. In all
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(a) PWCCA analysis on the single target dis-
joint target sets
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(b) PWCCA analysis on the multiple target
disjoint target sets

Figure 3

transfer experiments, every layer of the visual encoder is frozen. We also compare fine-tuning the
policy learned on A to learning a new policy from scratch.

Results. Consistent with the PWCCA experiments, we found that visual representations learned on
A are effective for learning bothB andA∪B (Fig. 2). We also found fine-tuning to be more effective
than learning a new policy from scratch, suggesting that general navigation skills can transfer. The
most striking result is how quickly A ∪ B can be learned using representation learned on A.

4 A SPATIALLY DISJOINT SPLIT

In the previous sections, we demonstrated that the visual representations learned across tasks are
highly similar and can be transferred across tasks, but the aspects of these tasks which enable task-
agnostic learning remain unclear. One possibility is that both target sets cover the entire visual
manifold, leading agents to explore the same portions of the environment across tasks. To test this
hypothesis, we created hand-designed target sets which contain little to no spatial overlap.

Single target. For the single target case, we find the two targets which are farthest apart and assign
them to the two target sets. This construction results in agents with minimal spatial overlap in their
trajectories. Consistent with our hypothesis, we found that the PWCCA distance across tasks is now
substantially higher than that within the same tasks (Fig. 3a).

Multiple targets. We also examine spatially disjoint sets with multiple target objects. See Fig. 1a
for a visualization of the multi-target disjoint split. Again, we found that spatially disjoint target
sets result in greater dissimilarity of the visual representations across tasks (Fig. 3b), consistent with
spatial overlap leading to similar visual representations.

5 FUTURE WORK

In the future, we plan to extend this analysis along other axes of variation, including different archi-
tectures, different environments, and tasks with different reward structures.
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