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Abstract

Direct speech-to-speech translation (S2ST), in
which all components can be optimized jointly,
is advantageous over cascaded approaches to
achieve fast inference with a simplified pipeline.
We present a novel two-pass direct S2ST archi-
tecture, UnitY , which first generates textual rep-
resentations and predicts discrete acoustic units
subsequently. We enhance the model perfor-
mance by subword prediction in the first-pass
decoder, advanced two-pass decoder architec-
ture design and search strategy, and better train-
ing regularization. To leverage large amounts
of unlabeled text data, we pre-train the first-
pass text decoder based on the self-supervised
denoising auto-encoding task. Experimental
evaluations on benchmark datasets at various
data scales demonstrate that UnitY outperforms
a single-pass speech-to-unit translation model
by up to 2.5 ASR-BLEU with 2.83× decoding
speed-up. We show that the proposed methods
boost the performance even when predicting
spectrogram in the second pass. However, pre-
dicting discrete units achieves 2.51× decoding
speed-up compared to that case.

1 Introduction

Automatic speech translation to another language
is an indispensable technology for international
communications, with the spread of social media
and virtual communications nowadays. A tradi-
tional approach of speech-to-speech translation
(S2ST) is to cascade automatic speech recogni-
tion (ASR), machine translation (MT), and text-
to-speech (TTS) components, each of which is op-
timized separately on different data (Lavie et al.,
1997; Nakamura et al., 2006; Wahlster, 2013).
With the emergence of sequence-to-sequence mod-
els (Sutskever et al., 2014; Cho et al., 2014; Bah-
danau et al., 2015), however, it is getting prevailing
to adopt a direct approach1. This approach consists

1In (Lee et al., 2022a), a direct S2ST model is defined as a
model that does not use intermediate text representations. On

in translating input speech into the other language
based on a single architecture with fewer compo-
nents than the cascaded systems (Jia et al., 2019b;
Tjandra et al., 2019; Zhang et al., 2021). The direct
approach is attractive for building a low-latency
system with a simplified pipeline, thus reducing
developing costs. However, direct S2ST models
suffer from poor performance due to data scarcity,
similar to direct speech-to-text translation (S2TT)
models (Bérard et al., 2016). In the field of S2TT,
data shortage has been addressed by leveraging pre-
training (Li et al., 2021; Wang et al., 2021c; Tang
et al., 2022), multi-task learning (Weiss et al., 2017;
Tang et al., 2021), pseudo labeling (Jia et al., 2019a;
Pino et al., 2020), knowledge distillation (Liu et al.,
2019; Inaguma et al., 2021b). Consequently, the
translation quality of direct S2TT models is ap-
proaching that of cascaded S2TT models (Ansari
et al., 2020; Anastasopoulos et al., 2021). These
techniques have also shown the effectiveness for
direct S2ST models and led to a decent perfor-
mance (Kano et al., 2021; Dong et al., 2022; Jia
et al., 2022a; Popuri et al., 2022).

Recent works (Lee et al., 2022a,b) propose to
model discrete acoustic units, extracted from Hu-
BERT (Hsu et al., 2021), instead of a continuous
speech signal that enables usage of a standard cross-
entropy loss during training. This significantly
shortens the target sequence length and thus makes
training and inference more efficient. The discrete
units are directly converted to the waveform with a
unit-based neural vocoder (Polyak et al., 2021) by-
passing spectrogram representation. On the other
hand, Translatotron2 (Jia et al., 2022b) decomposes
the target representations into linguistic and acous-
tic counterparts explicitly. The former predicts a

the other hand, in (Jia et al., 2022b), it is defined as a model
that directly predicts the target spectrogram. In this paper, we
use a more general definition that the entire architecture is
optimized jointly and the translation is conducted in a more di-
rect way. We do not include a vocoder in the training pipeline
of all direct models.



phoneme sequence first, and the latter synthesizes
the target spectrogram conditioned on the continu-
ous representation of the linguistic part.

This paper presents a novel two-pass direct S2ST
architecture, dubbed UnitY , which takes the best
of both worlds of the S2UT model and Transla-
totron2. Unlike Translatotron2, UnitY models lin-
guistic sequences using subwords (first pass) in-
stead of phonemes and it models speech as a dis-
crete sequence of acoustic units (second pass). To
achieve better translation quality and decoding effi-
ciency, UnitY consists of a deep text decoder and
a shallow unit decoder and assigns more search
spaces to the first pass. We further advance the
model performance by introducing a text-to-unit
(T2U) encoder between the two decoders to bridge
the gap between textual and acoustic representa-
tions. We also adopt R-Drop regularization (Wu
et al., 2021) to avoid over-fitting in the first pass
and improve the translation quality. Following the
success of large-scale pre-training, we leverage un-
labeled text effectively to pre-train the first pass text
decoder with multilingual BART (mBART) (Liu
et al., 2020) at the subword level.

Extensive experiments show the superiority of
the UnitY S2ST system measured by both trans-
lation quality and runtime efficiency. First, UnitY
achieves up to 2.5 ASR-BLEU improvement over
the S2UT model on the Fisher Es→En (Post et al.,
2013), CVSS-C (Jia et al., 2022c), and multi-
domain En↔Es (Popuri et al., 2022) corpora. The
improvement holds regardless of the data size and
the use of self-supervised pre-training. In addition,
our proposed design improves Translatotron2 as
well, indicating its versatility for two-pass direct
S2ST architectures regardless of the choice of the
target. Second, UnitY achieves 2.83× and 2.51×
decoding speed-ups over the S2UT and improved
Translatotron2 models, respectively. A combina-
tion of the aforementioned improvements suggests
the UnitY design as a starting point for further im-
provements in direct S2ST. 2

2 UnitY
In this section, we propose UnitY , a two-pass di-
rect S2ST model that generates subwords and dis-
crete acoustic units subsequently. Hereafter, we
refer to discrete acoustic units as discrete units
for brevity. Let X denote a source speech input,

2Code is available at https://github.com/
facebookresearch/fairseq/examples/
speech_to_speech/unity.
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Figure 1: Model architecture of UnitY

and Y = (y1, · · · , yM ) and U = (u1, · · · , uL) be
the corresponding reference text translation and
discrete unit sequences in the target language, re-
spectively. Note that there is no duration informa-
tion for each discrete unit in U because consecutive
units are collapsed (Lee et al., 2022a).

2.1 Architecture

The overall architecture of UnitY is shown in Fig-
ure 1. UnitY consists of four modules: speech en-
coder, first-pass text decoder, text-to-unit (T2U) en-
coder, and second-pass unit decoder. We build the
speech encoder based on Conformer (Gulati et al.,
2020), which augments Transformer (Vaswani
et al., 2017) with a convolution module, while im-
plementing the rest three modules based on Trans-
former. UnitY has five major architecture modi-
fications from Translatotron2 (Jia et al., 2022b),
(1) generating subwords instead of phonemes in
the first pass, (2) generating discrete units instead
of the spectrogram in the second pass to bypass
duration modeling, (3) replacing Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) layers with Transformer layers in both de-
coders, (4) introducing a T2U encoder between
the two decoders, and (5) assigning more model
capacities to the first pass.

First-pass text decoder The first-pass text de-
coder TextDec generates a sequence of subwords
Y autoregressively by attending the speech encoder
output H . The training objective of the first pass is
to minimize the direct S2TT loss Ls2t as:

Ls2t(Y |X) = − 1

M

M∑
i=1

logPs2t(Yi|X,Y<i)

= − 1

M

M∑
i=1

logPs2t(Yi|Dtext
i )

Dtext
i = TextDec(H,Y<i),

https://github.com/facebookresearch/fairseq/examples/speech_to_speech/unity
https://github.com/facebookresearch/fairseq/examples/speech_to_speech/unity
https://github.com/facebookresearch/fairseq/examples/speech_to_speech/unity


where Dtext
i ∈ Rdmodel is the i-th continuous de-

coder state right before projecting it to the logit.
We consider that Dtext contains rich acoustic infor-
mation in addition to contextual information thanks
to multiple multi-head cross-attention over H .

There are five advantages of generating sub-
words instead of phonemes. First, the sequence
length is considerably reduced, leading to better
training and inference efficiencies (Cherry et al.,
2018). Second, using large vocabularies improves
the translation quality of the first pass (Gowda and
May, 2020). Third, the text output helps the audi-
ence understand the translation content while lis-
tening to the audio. Fourth, our approach can eas-
ily scale to more target languages, as it is unnec-
essary to prepare separate grapheme-to-phoneme
(G2P) models for each target language. Last, read-
able text can be generated without any complicated
post-processing such as WFST (Mohri et al., 2002;
Bahdanau et al., 2016).

T2U encoder A bidirectional T2U encoder
T2UEnc transforms the continuous states of the
first-pass decoder Dtext ∈ RM×dmodel into Z ∈
RM×dmodel as follows:

Z = T2UEnc(Dtext).

The T2U encoder bridges the gap in representations
between text and unit decoders without changing
the sequence length.

Second-pass unit decoder The second-pass unit
decoder UnitDec generates a sequence of dis-
crete units U autoregressively by attending to only
the T2U encoder output Z. The training objective
of the second pass is to minimize Ls2u similar to
the S2UT task while being conditioned on Y as:

Ls2u(U |X,Y ) = − 1

L

L∑
i=1

logPs2u(Ui|X,Y,U<i)

= − 1

L

L∑
i=1

logPs2u(Ui|Dunit
i )

Dunit
i = UnitDec(Z,U<i)

= UnitDec(H,Y,U<i),

where Dunit
i ∈ Rdmodel is the i-th continuous de-

coder state right before projecting it to the logit.
The unit decoder does not attend to H to synchro-
nize the text and speech outputs, similar to the
motivation in (Jia et al., 2022b). In other words,

we do not expect that the second-pass decoder cor-
rects translation errors from the first-pass decoder.3

Once the unit generation finishes, a separate unit-
based vocoder (Polyak et al., 2021) converts the
discrete units to the waveform with duration pre-
diction of each discrete unit (Lee et al., 2022a).

2.2 Training with R-Drop
UnitY introduces an intermediate S2TT sub-task
to make the optimization tractable while maintain-
ing the end-to-end differentiability. However, the
easier S2TT task is more likely to overfit than
the primary S2UT task. To tackle this problem,
we apply a more effective regularization based
on R-Drop (Wu et al., 2021) to the first-pass de-
coder in addition to standard regularization such as
dropout (Srivastava et al., 2014) and label smooth-
ing (Szegedy et al., 2016). Theoretically, R-Drop
reduces the inconsistency of model predictions be-
tween training and inference by dropout, thus im-
proving the generalization ability. R-Drop dupli-
cates the network input during training and cal-
culates two output probability distributions with
different dropout masks. Then, a constraint is intro-
duced by minimizing the Kullback–Leibler (KL)
divergence loss between the two probability distri-
butions. We apply R-Drop to both text and unit
decoders. The total training objective of UnitY
with R-Drop, Ltotal, is formulated as follows:

Ltotal =

2∑
i=1

Ls2u(U |Xi, Y ) +αLs2u
kl (X1,X2)

+ws2t(

2∑
i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2)), (1)

where Xi is a duplicated input from X , Ls2u
kl and

Ls2t
kl are R-Drop losses for the unit and text de-

coders, ws2t is a weight for the S2TT loss, and α
and β are weights for the R-Drop losses, respec-
tively. We implement R-Drop by duplicating inputs
instead of feeding them to the network twice. The
mathematical formulation of Ls2u

kl and Ls2t
kl is de-

scribed in Appendix A.1.

2.3 Text decoder pre-training
Similar to ASR and S2TT studies (Baevski et al.,
2020; Li et al., 2021), S2ST models also benefit
from self-supervised pre-training (Jia et al., 2022a;

3We also investigate attending to the speech encoder output
with an additional cross-attention, but it does not lead to an
improvement in ASR-BLEU. We discuss this in Section 5.1



Popuri et al., 2022), especially for the speech
encoder. In addition to the speech encoder pre-
training with wav2vec2.0 (Baevski et al., 2020),
(Popuri et al., 2022) initializes the unit decoder of
the S2UT model with a unit-based mBART, which
is pre-trained with discrete units converted from
a large amount of unlabeled speech data. How-
ever, unlabeled text data cannot be leveraged for
the single-pass decoder pre-training, although it is
more accessible in many written languages.

To fully leverage the unlabeled text data, we
initialize the first-pass decoder with a text-based
mBART, which can be pre-trained with unlabeled
text data in a self-supervised way. To this end,
we use the same vocabulary as the mBART. An
advantage of using such a large vocabulary is im-
proving the inference speed thanks to the shortened
text sequence length. Following (Li et al., 2021;
Popuri et al., 2022), we freeze parameters in the
feed-forward network (FFN) of the text decoder
during S2ST fine-tuning. Note that we initialize
the T2U encoder and second-pass unit decoder ran-
domly.

2.4 Search algorithm
During inference, we perform two-pass beam
search decoding. First, we find the most probable
text hypothesis Ŷ in the first-pass decoder using
beam search with a beam size of B1st. We then
feed continuous decoder states Dtext correspond-
ing to Ŷ to the T2U encoder. Next, we generate
the most probable discrete unit sequence Û in the
second-pass decoder by another beam search with
a beam size of B2nd. Finally, Û is taken as inputs
to a separate unit-based vocoder to generate the
waveform. We find it more effective to assign a
larger beam size to the first pass, i.e., B1st > B2nd,
because there is more diversity among beam candi-
dates than the second pass. The computation time
is also reduced since the sequence length of text is
much shorter than that of discrete units. Therefore,
we use B2nd = 1 unless otherwise noted.

2.5 Deep-shallow two-pass decoders
By increasing the number of layers, we assign more
model capacities to the first-pass decoder than the
second-pass decoder. We refer to this as deep-
shallow two-pass decoders. This capacity assign-
ment improves translation quality and inference
efficiency simultaneously because of a shorter se-
quence length in the first pass. A practical capacity
assignment for the MT task is studied in (Kasai

et al., 2021) by trading the number of layers be-
tween the encoder and decoder. In this work, we
focus on the two-pass decoders for the S2ST task.

3 Experimental setting

In this section, we describe experimental settings
for our experiments in Section 4.

3.1 Data
We use three datasets: Fisher Es→En (Post et al.,
2013), CVSS-C (Jia et al., 2022c), and mutli-
domain En↔Es (Popuri et al., 2022) corpora.

Fisher Es→En This corpus contains 170-hour
Spanish conversational telephone speech with the
corresponding Spanish transcriptions as well as the
English translations. The target speech is synthe-
sized by a high-quality in-house TTS model trained
with a single female speaker following (Lee et al.,
2022a).

CVSS-C CVSS is a public multilingual S2ST
corpus based on CoVoST2 (Wang et al., 2021b). It
covers 21 language directions to English. We use
the CVSS-C part of the CVSS corpus, in which a
single-speaker female TTS synthesizes the target
speech. We combine all language directions to train
a single many-to-English multilingual model.

Multi-domain En↔Es Following (Popuri et al.,
2022), we use all samples from multiple public
S2TT corpora in each direction to improve the ro-
bustness of model training (Jia et al., 2022b; Chan
et al., 2021). We also use all samples from val-
idation sets in all domains for checkpoint selec-
tion. We further augment the S2ST training data
by pseudo-labeling ASR corpora with MT and
T2U/TTS models. We used a T2U model (Lee
et al., 2022b) for direct speech-to-unit models and
a TTS model for the rest. Both T2U and TTS
models are based on Transformer (Vaswani et al.,
2017).4

For En→Es, we use all samples from Europarl-
ST (Iranzo-Sánchez et al., 2020) and Must-
C (Di Gangi et al., 2019) and augment the training
data by TEDLIUM3 (Rousseau et al., 2012), Lib-
rispeech (Panayotov et al., 2015), and Common
Voice (version 7.0) (Ardila et al., 2020), result-
ing in 1983-hour source speech. For Es→En, we
use all samples from CoVoST2, Europarl-ST, and

4We train En and Es T2U/TTS models on the LJSpeech (Ito
and Johnson, 2017) and CSS10 (Park and Mulc, 2019) corpora,
respectively.



mTEDx (Elizabeth et al., 2021), and augment the
training data by Common Voice and MLS (Pratap
et al., 2020), resulting in 1404-hour source speech.
More details are summarized in Appendix A.5.

3.2 Pre-processing

Speech We convert source audio to 16kHz and
generate target speech with 22kHz. When extract-
ing discrete units, we downsample the target speech
to 16kHz. For filterbank features, we extract 80-
dimensional coefficients on both the source and tar-
get sides. We apply utterance-level cepstral mean-
variance normalization to both inputs.

Discrete units We extract discrete units with an
English HuBERT trained on Librispeech after per-
forming k-means clustering with 100 clusters on
the Fisher corpus (Lee et al., 2022a). For the rest
corpora, we extract discrete units with a multilin-
gual HuBERT (mHuBERT) (Popuri et al., 2022)
trained on En, En, and Fr parts of VoxPopuli (Wang
et al., 2021a) with the number of k-means clusters
of 1000.

Text We lowercase text data and remove all punc-
tuation marks except for apostrophes. When initial-
izing the text decoder in two-pass direct S2ST mod-
els randomly, we use vocabularies of 1k, 6k, and
2k unigram subword units (Kudo, 2018) built with
the SentencePiece toolkit (Kudo and Richardson,
2018) for the Fisher, CVSS-C, and multi-domain
corpora, respectively. When pre-training the text
decoder with mBART, we use the same vocabulary
as mBART.

3.3 Pre-training

We use the same wav2vec2.0 and unit mBART
models as (Popuri et al., 2022). All the models
are publicly available, we list the URLs in Ap-
pendix A.6.

Wav2vec2.0 (encoder pre-training) We use 24-
layer Conformer wav2vec2.0 (Baevski et al., 2020)
models trained on Libri-Light (Kahn et al., 2020)
for En and VoxPopuli for Es, respectively.

Text mBART (decoder pre-training) We train a
text mBART model with En and Es unlabeled text
on CC100 (Conneau et al., 2020). We use of a 65k
unigram subword unit for the vocabulary.

Unit mBART (decoder pre-training) We use a
unit-based mBART model trained with En and Es

unlabeled speech on VoxPopuli. The unit vocabu-
lary is the same as that of the mHuBERT model.

3.4 Baseline
We build two cascaded S2ST systems and four di-
rect S2ST systems. All speech encoders are based
on Conformer. When pre-training the speech en-
coder of direct systems with wav2vec2.0, we also
pre-train that of ASR and S2TT models in the cas-
caded systems with the same wav2vec2.0 for a fair
comparison. R-Drop is applied to all the models
that predict discrete symbols. The training objec-
tive of each system is described in Appendix A.2.

Cascaded (ASR→MT→TTS) We combine a
Conformer ASR, a Transformer MT, and a Trans-
former TTS model.

Cascaded (S2TT→TTS) We combine a Con-
former direct S2TT model and a Transformer TTS
model. For the multi-domain corpora, we pre-train
the S2TT’s decoder with mBART.

Translatotron We build a direct S2ST model that
predicts spectrogram with a single decoder based
on Transformer, similar to (Lee et al., 2022a).

Translatotron2+ We train an improved version
of Translatotron2 (Jia et al., 2022b) by enhanc-
ing the architecture and training with the proposed
methods for UnitY. Firstly, we replace phoneme
targets with subwords in the first pass. Secondly,
we introduce an additional encoder between text
and spectrogram decoders, which we refer to as
a text-to-speech (T2S) encoder. The second-pass
decoder attends to the T2S encoder output only.
Unlike (Jia et al., 2022b), we use an autoregres-
sive Transformer decoder instead of a non-attentive
Tacotron (NAT) (Shen et al., 2020) for the second-
pass spectrogram decoder. Lastly, we apply R-
Drop to the first-pass decoder.

S2UT We train a direct S2ST model that predicts
discrete units with a single decoder based on Trans-
former (Lee et al., 2022a).

3.5 Vocoder
We use a HiFi-GAN vocoder (Kong et al., 2020)
to convert the spectrogram to the waveform for
TTS and direct speech-to-spectrogram models. We
use a unit-based HiFi-GAN vocoder (Polyak et al.,
2021) to convert discrete units to the waveform for
direct speech-to-unit models. Both the vocoders
are trained separately.



ID Model Encoder
ASR-BLEU (↑)

dev dev2 test

A0 Synthetic target (Lee et al., 2022a) 88.5 89.4 90.5

Cascaded systems
A1 ASR → MT → TTS LSTM (Lee et al., 2022a) 42.1 43.5 43.9

A2

S2TT → TTS

LSTM (Jia et al., 2019b) 39.4 41.2 41.4
A3 LSTM (Jia et al., 2022b) – – 43.3
A4 LSTM (Lee et al., 2022a) 38.5 39.9 40.2
A5 Transformer (Dong et al., 2022) 44.3 45.4 45.1
A7 Conformer wav2vec2.0 51.0 52.2 52.1

Direct systems (speech-to-spectrogram)
A8

Translatotron

Transformer (Jia et al., 2019b) 30.1 31.5 31.1
A9 Transformer (Lee et al., 2022a) – – 33.2
A10 Transformer (Dong et al., 2022) 42.4 43.3 43.6
A11 Conformer 43.9 44.4 43.8
A12 Conformer wav2vec2.0 45.5 47.6 46.3

A13 Translatotron2 Conformer (Jia et al., 2022b) – – 42.4

A14
Translatotron2+

Conformer 50.4 51.1 50.8
A15 Conformer wav2vec2.0 58.4 59.5 58.6

Direct systems (speech-to-unit)
A16

S2UT
Transformer (Lee et al., 2022a) – – 39.9

A17 Conformer 46.2 47.6 47.4
A18 Conformer wav2vec2.0 53.4 53.9 53.7

A19
UnitY

Conformer 50.5 51.6 51.4
A20 Conformer wav2vec2.0 55.1 56.5 55.9

Table 1: ASR-BLEU on Fisher Es→En corpus. Decoders in all the models are initialized randomly. Translatotron2+
is our improved version of Translatotron2. Note that A10 uses pseudo labeled external resources with a cascaded
S2ST system and A13 uses data augmentation by concatenating multiple utterances.

3.6 Architecture
Let N1st, N2nd, and Nt2u be the depth of
the first-pass decoder, second-pass decoder,
and T2U encoder, respectively. We use
(N1st,N2nd,Nt2u) = (4,2,2) on the Fisher and
CVSS-C corpora. On the multi-domain corpus,
we use (N1st,N2nd,Nt2u) = (12,2,2) when pre-
training the first-pass decoder with mBART. Oth-
erwise, we use (N1st,N2nd,Nt2u) = (6,6,2). We
describe the other architecture configurations in
Appendix A.3.

3.7 Training
We optimize all models with the mixed precision
training (Micikevicius et al., 2018). We implement
our models based on the Fairseq toolkit (Ott et al.,
2019; Wang et al., 2020). The detailed training
hyperparameters are described in Appendix A.4.

3.8 Decoding
We use a beam width of 10 for ASR, S2TT, and
S2UT models. For UnitY, we set B1st and B2nd to
10 and 1, respectively. We use a beam width of 10
for the first-pass decoder for Translatotron2+. Note
that beam search is not involved in spectrogram
generation.

3.9 Evaluation

Following the previous works (Lee et al., 2022a;
Popuri et al., 2022), we use a pre-trained ASR
model to transcribe the generated target speech and
calculate BLEU scores (Papineni et al., 2002), re-
ferred to as ASR-BLEU scores. The ASR model is
fine-tuned from a wav2vec2.0 with the connection-
ist temporal classification (CTC) objective (Graves
et al., 2006). We use the sacrebleu toolkit (Post,
2018) to calculate the BLEU scores. The reference
target translation is normalized with lowercasing,
removal of punctuation marks, conversion of digits
to spoken forms, and removal of non-verbal words
in parentheses like “(Applause)” or “(Music).”

4 Experimental results

In this section, we present the experimental re-
sults on three corpora. We study various modeling
choices from the perspective of target representa-
tion (spectrogram v.s. discrete unit) and decoder
architecture (single pass v.s. two pass) in both su-
pervised and semi-supervised settings. We also
benchmark the decoding efficiency of direct S2ST
models.



ID Model
ASR-BLEU (↑)

Avg. High Mid Low

B0 Synthetic target♢ 91.1 88.4 89.5 93.0

Cascaded systems
B1 S2TT → TTS♢ 10.6 28.8 15.5 2.4
B2 + ST&ASR PT 12.7 30.7 18.3 4.4

Direct systems (speech-to-spectrogram)
B3 Translatotron♢ 3.4 11.9 3.5 0.3
B4 Translatotron 7.6 21.8 10.6 1.5
B5 + ST&ASR PT 9.6 23.9 13.8 3.2

B6 Translatotron2♢ 8.7 25.4 12.6 1.5
B7 + Transformer decoder♠ 10.1 26.9 14.2 2.8
B8 + ST&ASR PT♢ 12.0 29.7 16.6 4.2

B9 Translatotron2+ 11.3 29.1 16.9 3.1
B10 + ST&ASR PT 13.1 29.8 18.8 5.2

Direct systems (speech-to-unit)
B11 S2UT 9.1 25.9 12.9 1.9
B12 + ST&ASR PT 11.4 27.2 16.4 4.0

B13 UnitY 12.0 29.0 17.8 4.0
B14 + ST&ASR PT 13.0 30.4 18.7 4.8

Table 2: ASR-BLEU on CVSS-C corpus. ♢Results
from (Jia et al., 2022c), ♠Results from (Jia et al.,
2022a). Decoders in all the models are initialized ran-
domly.

4.1 Fisher Es→En
The results on the Fisher Es→En corpus are shown
in Table 1. We first compared four direct sys-
tems trained from scratch (A11, A14, A17, A19).
Our Conformer-based S2UT (A17) and Transla-
totron2+ (A14) outperformed the previous studies
by a large margin. Note that Translatotron2+ is an
improved version of the original work in (Jia et al.,
2022b) by using the same techniques proposed for
UnitY in Section 2.5 Among them, UnitY (A19)
achieved the best ASR-BLEU scores. Therefore,
the two-pass decoding is the main factor of the
improvements but complementary to targeting dis-
crete units.

Next, we pre-trained the speech encoder with
wav2vec2.0 (A12, A15, A18, A20).6 We con-
firmed that all the models benefited from the pre-
training, but the gain was small for Translatotron.
Unlike when training the models from scratch,
Translatotron2+ gained the most and achieved the
best test ASR-BLEU, 58.3. However, UnitY has
an advantage of decoding efficiency over Trans-

5A14 predicts phonemes while A14 predicts subwords in
the first pass.

6We did not pre-train the text decoder with mBART be-
cause it was not helpful on this corpus. This is because Fisher
is a conversational domain, which is very different from text
data used for mBART pre-training. We could make the text
decoder pre-training effective by including conversational data
during mBART pre-training, which we leave future work.

latotron2+, which we will discuss in Section 4.4.
Lastly, the direct models except for Translatotron
outperformed a strong cascaded system pre-trained
on the same wav2vec2.0 by a large margin.

4.2 CVSS-C

The results on the CVSS-C corpus are listed in
Table 2. We observed consistent trends with the
results on the Fisher corpus. UnitY outperformed
the S2UT model by 1.6 and 2.9 ASR-BLEU on
average with and without encoder pre-training with
an S2TT model, respectively. The encoder pre-
training improved ASR-BLEU scores of all the
direct models, similar to (Jia et al., 2022c). Trans-
latotron2+ also achieved similar performances to
UnitY and outperformed Translatotron2 by 1.1
ASR-BLEU on average.

4.3 Multi-domain En↔Es

We present results on the multi-domain En↔Es
corpora (Popuri et al., 2022) in Table 3. C5’ is our
reproduced model of C5. We observed that UnitY
with text decoder pre-training (C7) improved the
S2UT model with unit decoder pre-training (C5’)
by 1.3 and 2.5 ASR-BLEU on average in En→Es
and Es→En directions, respectively. This confirms
the effectiveness of the two-pass modeling still
hold in the high-resource scenario. Furthermore,
UnitY without text decoder pre-training (C6) al-
ready outperformed C5’ and degraded from C7
only slightly.

Comparing UnitY and Translatotron2+, we ob-
served mixed results that UnitY outperformed
Translatotron2+ in Es→En except for CoVoST2
while Translatotron2+ performed better in En→Es.
However, the proposed text decoder pre-training
was still helpful for Translatotron2+, especially in
En→Es, showing the versatility of our method. We
also confirmed that UnitY outperformed strong cas-
caded systems in most test sets if we use the same
amount of data.

4.4 Decoding efficiency

We evaluated the decoding efficiency of direct
S2ST models. We measured the runtime and total
number of floating point operations (FLOPs) on an
Intel® Xeon® Gold 6230 CPU. We randomly sam-
pled 500 utterances from the multi-domain Es→En
dev set while keeping the ratio of the number of
samples per domain. Note that we also took the
vocoder inference into account.



ID Model

ASR-BLEU (↑)

En→Es Es→En
(1983 hours) (1404 hours)

Europarl-ST MuST-C Avg. CoVoST-2 Europarl-ST mTEDx Avg.

Cascaded systems
C1 ASR→MT→TTS♢ 28.8 34.2 31.5 33.8 29.1 32.4 31.5
C2 S2TT→TTS♢ 32.6 30.1 31.4 28.4 23.6 21.5 24.5

Direct systems (speech-to-spectrogram)
C3 Translatotron2+ 36.0 34.0 35.0 37.0 23.4 31.3 30.6
C4 + Text Dec-PT 37.2 34.5 35.8 37.2 23.7 31.7 30.9

Direct systems (speech-to-unit)
C5 S2UT + Unit Dec-PT♢ 33.6 33.7 33.7 33.5 28.6 29.1 30.4
C5’ S2UT + Unit Dec-PT 33.5 33.3 33.4 34.5 29.9 29.9 31.4

C6 UnitY 35.1 33.7 34.4 35.4 30.8 31.3 32.5
C7 + Text Dec-PT 35.3 34.1 34.7 36.4 33.1 32.2 33.9

Table 3: ASR-BLEU on multi-domain En↔Es. ♢Results from (Popuri et al., 2022). The encoder in all the models
is pre-trained with wav2vec2.0. XX Dec-PT stands for pre-training of the first-pass decoder with a XX-based
mBART model.

Figure 2: Runtime of direct S2ST models on multi-
domain Es→En corpus. X→Y on the top right of each
data point represents the beam width in each decoder
pass.

The results in Figure 2 showed that UnitY
achieved 2.51× and 2.83× decoding speed-ups
over Translatotron2+ and S2UT models, respec-
tively. These confirms the efficiency of discrete
unit prediction and two-pass decoding, thanks to
reduced output sequence lengths. Using a large
vocabulary in the first pass via the text decoder
pre-training also improved the decoding speed a
lot. We found that the translation quality of the
two-pass models improved by increasing the beam
width of the first-pass decoder up to 10. On the
other hand, the quality did not degrade significantly
by decreasing the beam width of the second-pass
decoder down to 1, i.e. greedy decoding. This in-
dicates that more ambiguities exist in the first pass
than in the second pass. Therefore, we can obtain
better translation quality and decoding speed by
assigning more computation time to the first pass.

ID Model
(ASR-)BLEU (↑)

Speech Text

D1 Translatotron2+ 47.8 54.3
D2 + w/o T2S encoder 17.4 54.3
D3 + w/o R-Drop 45.9 51.6

D5 UnitY 50.5 55.4
D6 + w/o T2U encoder 49.1 55.0
D7 + w/o R-Drop 48.2 53.2
D8 + CA to speech encoder (seq) 50.3 55.4
D9 + CA to speech encoder (para) 50.4 55.3
D10 + CTC on unit decoder 50.2 55.3

Table 4: Ablation study for two-pass direct S2ST models
on the Fisher Es→En dev set. CA stands for cross-
attention.

We also present the results of FLOPs in Ap-
pendix A.7.1. To summarize, UnitY achieved
1.65× and 1.16× FLOPs reduction over Transla-
totron2+ and S2UT models, respectively.

5 Analysis

In this section, we conduct analyses to shed light
on the source of improvements in UnitY. We also
study whether the same techniques used for UnitY
are helpful for Translatotron2+. We use the Fisher
Es→En and multi-domain Es→En corpora, but
pseudo-labeled ASR data is excluded from the lat-
ter for quick exploration, resulting in 196-hour
source speech. We report average dev scores over
three runs with different random seeds.

5.1 Ablation study

We first conducted an ablation study for two-pass
direct S2ST models in Table 4. We evaluated the



ID Model
Output

unit
(ASR-)BLEU (↑)

Speech Text

E1
Translatotron2+

Phoneme 50.4 –
E2 Character 50.2 54.0
E3 Subword 49.2 54.4

E4
UnitY

Phoneme 49.8 –
E5 Character 48.9 53.7
E6 Subword 50.5 55.4

Table 5: Results of output units for the first-pass decoder
in two-pass direct S2ST models on the Fisher Es→En
dev set

translation quality of outputs from both decoders.
It was effective to introduce a T2U/T2S encoder be-
tween the first-pass and second-pass decoders, es-
pecially for Translatotron2+ (D2, D6). We attribute
this to the fact that the gap in representations be-
tween text and spectrogram is larger than between
text and discrete units. An additional T2U/T2S
encoder was essential for bridging the gap in repre-
sentations between the first-pass and second-pass
decoders. R-Drop was also beneficial for boost-
ing the translation quality of the first-pass decoder,
which improved the final performance accordingly
(D3, D7). Moreover, we investigated adding an-
other cross-attention over the speech encoder out-
put to the unit decoder, as discussed in Section 2.1.
We expected that the first-pass decoder output lost
useful information to generate target speech faith-
ful to source speech. We explored parallel (para,
D8) and sequential (seq, D9) cross-attention, sim-
ilar to (Zhu et al., 2019), but neither showed any
improvement. The first-pass decoder already ex-
tracted source acoustic information well via mul-
tiple cross-attention modules. An auxiliary CTC
objective for the unit decoder, as used for the S2UT
model (Lee et al., 2022a), was not helpful for UnitY
(D10). This was because the introduction of the
first-pass decoder already eased for the second-pass
decoder to learn monotonic alignments.

5.2 Output unit for first-pass decoder

We studied optimal granularity of the output unit
for the first-pass decoder in Translatotron2+ and
UnitY. As an output unit, we explored phonemes,
characters, and subwords (1k).

The results in Table 5 showed that the subword
unit in the first-pass decoder (E6) was the most
effective for UnitY thanks to a better translation
quality in the first pass. On the other hand, the
phoneme unit (E1) was best for Translatotron2+.

ID Model Initialization of
first-pass decoder

(ASR-)BLEU (↑)

Speech Text

F1

UnitY

Random 30.7 34.8
F2 mBART 33.2 38.3
F3 Unsupervised MT 33.2 38.2
F4 Supervised MT1 32.9 36.7
F5 Supervised MT2 33.3 37.5
F6 S2TT (F8) 32.5 37.8

F8 S2TT mBART – 38.0

Table 6: Results of pre-training strategies for the first-
pass decoder in UnitY on the multi-domain Es→En dev
set

However, we found that the subword unit outper-
formed the phoneme unit when pre-training the
encoder of Translatotron2+ on the Fisher corpus
(see Appendix A.7.2 for the full results).

5.3 Pre-training strategy for first-pass text
decoder

We explored a better pre-training strategy for the
first-pass text decoder in UnitY. We investigated
pre-training the text decoder with an MT model
trained with bitext data from scratch (Supervised
MT1, Supervised MT2). Supervised MT1 used
CCMatrix (Schwenk et al., 2021) while Supervised
MT2 is the MT model in the cascaded system7.
Moreover, we fine-tuned the mBART model to
the MT task in an unsupervised MT way via on-
line back translation (Liu et al., 2020) on CC100
(unsupervised MT). Furthermore, we studied ini-
tializing the speech encoder and the text decoder
with a separate direct S2TT model fine-tuned from
wav2vec2.0 and mBART models. After the ini-
tialization, we fine-tuned the whole parameters of
UnitY (S2TT).

Hereafter, we use the multi-domain Es→En cor-
pus because it is the only corpus we pre-trained
the first-pass text decoder with mBART. The re-
sults in Table 6 showed that pre-training the text
decoder with the vanilla mBART (F2) or the un-
supervised MT model (F3) was the most effective.
Pre-training with supervised MT models (F4, F5)
did not improve performance, even for the first pass.
This is consistent with a finding in (Jia et al., 2022a)
although they pre-train the first-pass phoneme de-
coder of Translatotron2 with a phoneme-based su-
pervised MT model. Therefore, leveraging a sep-
arate MT system is effective for generating weak

7We used OpenSubtitle2018, UNCorpus, EUBookshop v2,
Europarl v10, Wikipedia v1.0, and TED2020 v1 for training.



ID
Decoder depth

#Params
(Billion)

(ASR-)BLEU (↑)

First
pass

Second
pass Speech Text

G1 2 6 0.79 30.3 34.5
G2 4 6 0.82 30.5 34.5

G3 6 2 0.79 30.3 34.3
G4 6 4 0.82 29.9 33.9
G5 6 6 0.86 30.7 34.8
G6 6 8 0.89 30.2 34.2
G7 6 12♠ 0.96 29.8 33.7

G8 12 2 0.95 30.7 34.9
G9 12♠ 2 0.95 33.2 38.3
G10 12♠ 12♠ 1.12 32.2 36.2

Table 7: Results of capacity assignment to two-pass
decoders in UnitY on the multi-domain Es→En dev set.
♠Pre-trained with the corresponding mBART model,
where we set the number of layers to 12 because of the
availability of the pre-trained mBART model.

supervisions (Popuri et al., 2022) rather than pa-
rameter initialization. Pre-training a part of UnitY
with an independent S2TT model (F8), which was
trained on the same corpus, was not helpful either.
Surprisingly, the BLEU score from the text decoder
in UnitY was better than that of F8. Therefore,
training signals from the unit decoder never affect
the text decoder.

5.4 Capacity assignment to two-pass decoders

We sought to effectively assign the model capac-
ity to the two decoders in UnitY to obtain a better
translation quality. The results in Table 7 showed
that the six-layer text decoder with six-layer unit
decoder was the best when initializing the first-pass
decoder randomly (G1-G6). Next, we pre-trained
the unit decoder with a unit-based mBART while
initializing the text decoder randomly (G7). This
setting was no better than initializing both decoders
randomly (G5, G7). We confirmed the effective-
ness of pre-training by training a model with the
same amount of parameters from scratch (G8,G9).
Lastly, we initialized the text and unit decoders
with the corresponding mBART models while ini-
tializing the T2U encoder randomly (G10), but it
did not improve the performance further. There-
fore, it is most effective to pre-train the deep text
decoder only and keep the unit decoder shallow.

5.5 Data scale

Improving the translation quality of S2ST models
on low-resource data is crucial since collecting a
large amount of training data is challenging. We
compared direct S2ST models at various training

Figure 3: Dev ASR-BLEU at different data scales on
the multi-domain Es→En corpus. The amount of train-
ing data is measured by source speech. All and PL
represent all supervised data and pseudo-labeled data,
respectively.

Figure 4: Results of human evaluation on multi-domain
Es→En corpus

data scales in Figure 3. We observed that UnitY
consistently outperformed the Translatotron2+ and
S2UT models when the data size was no less than
50 hours. The text decoder pre-training became less
effective as the data size increased, consistent with
a finding in Section 4.3. However, pre-training the
text decoder of UnitY was essential for obtaining
decent performances in the low-resource settings
(≤ 50 hours).

5.6 Human evaluation

Finally, we conducted an audio-only human evalua-
tion to assess the translation quality while removing
the necessity of ASR systems. We adopted cross-
lingual semantic textual similarity (XSTS) (Licht
et al., 2022), which emphasizes adequacy rather
than fluency, and percent acceptable translations,
the percentage of items that received an XSTS
score of three or above. We used the mTEDx test
set (989 samples) and generated the target audio



from the S2ST systems. Moreover, we randomly
sampled 495 samples and generated the target au-
dio from the reference translation followed by TTS.
The reference translations serve as a reference point
and a ceiling against which to compare our systems.
Three bilingual annotators evaluate each item and
assign it a score from one to five. The median
score is taken per item. More details are described
in Appendix A.8.

The results are presented in Figure 4.8 We con-
firmed that UnitY consistently outperformed the
cascaded and S2UT models in both metrics.

6 Related works

6.1 Two-pass sequence generation

Two-pass decoding has many advantages by main-
taining the end-to-end optimization capability
while inheriting the benefits of a cascading ap-
proach. First, we can incorporate an additional
search process to find a better output (Xia et al.,
2017; Hu et al., 2020). Second, we can rescore
the intermediate hypotheses using an external mod-
ule such as language model (Dalmia et al., 2021).
Third, we can inject specific information in the in-
termediate decoder to bias the output toward the
desired domain (Zhao et al., 2019). Fourth, we
can provide an intermediate output to users before
generating the final output, which would be helpful
for streaming applications (Sainath et al., 2019).
Lastly, the two-pass approach makes the optimiza-
tion tractable, which has advanced performance
of speech translation models (Anastasopoulos and
Chiang, 2018; Sperber et al., 2019; Sung et al.,
2019; Dalmia et al., 2021; Inaguma et al., 2021a;
Yan et al., 2022; Jia et al., 2022b).

6.2 Direct speech-to-spectrogram translation

Direct speech-to-spectrogram translation models
predict spectrogram in the target language from the
source speech in an end-to-end fashion. Transla-
totron (Jia et al., 2019b) is the first direct S2ST
model but suffered from poor performance even
with auxiliary ASR and S2TT tasks. (Kano et al.,
2021) subsequently pre-trains the components with
ASR and S2TT models, which is more effective
for distant language pairs. Translatotron2 (Jia
et al., 2022b) improves Translatotron significantly
by incorporating two-pass decoding. However, we

8The models used here are early versions and slightly dif-
ferent from Table 3. We will update the results in the next
version.

showed that our methods further improved Transla-
totron2.

6.3 Direct speech-to-unit translation (S2UT)

Direct speech-to-unit translation models predict
discrete units rather than spectrogram. (Tjandra
et al., 2019) uses vector-quantized variational au-
toencoder to extract target discrete units. (Lee et al.,
2022a) extracts target discrete units by HuBERT.
(Lee et al., 2022b) normalizes speaker identity of
real target speech using a CTC-based speech-to-
unit model. (Huang et al., 2022) further improves
the normalization by considering rhythm, pitch,
and energy.

7 Conclusion

In this work, we proposed UnitY, a novel ef-
ficient two-pass direct S2ST model that subse-
quently generates both text and discrete unit out-
puts. We improved the model performance by pre-
dicting subwords in the first pass, bridging decoder
representations by an additional encoder, deep-
shallow two-pass decoders, regularizing the train-
ing with R-Drop, and pre-training the first-pass
decoder with mBART. Experimental evaluations
on the Fisher Es→En, CVSS-C, and multi-domain
En↔Es corpora demonstrated that UnitY outper-
formed a single-pass S2UT model consistently in
translation accuracy and inference speed, regard-
less of the use of pre-training. We showed that
the proposed methods improve the two-pass direct
speech-to-spectrogram model as well, confirming
their versatility. Still, UnitY achieved 2.51× de-
coding speed-up over the case.

Limitation Although R-Drop improved transla-
tion quality a lot, it requires an additional computa-
tion to generate the second probability distribution.

Since two-pass models require linguistic units
as the target for the first-pass decoder, they cannot
be used when the target language is unwritten. A
promising direction is to find more coarse discrete
units whose sequence length is shorter than that of
the original discrete units.

Future work To accelerate training and decod-
ing efficiencies, it is promising to take filterbank
features as inputs instead of a waveform to reduce
the input sequence length. Since greedy decoding
has shown to be enough for the second-pass unit
decoder in Section 4.4, we consider that using a
non-autoregressive decoder (Gu et al., 2018) in the



second pass further reduces the computation time
without quality degradation. Similarly to (Jia et al.,
2022a; Bapna et al., 2022), joint speech-text self-
supervised encoder pre-training followed by joint
speech-text fine-tuning would improve the perfor-
mance further. We believe it is complementary
to our first-pass decoder pre-training with mBART.
UnitY can also be extended to a multilingual model
that generates speech in multiple target languages.
We consider the two-pass approach more suitable
for that purpose than the single-pass approach be-
cause we can obtain structured representations be-
fore generating speech, which disentangles multi-
lingual translation and multilingual speech synthe-
sis. Finally, it is also interesting to extend UnitY to
the streaming S2ST task.
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A Appendix

A.1 Mathematical formulation of R-Drop

We describe a mathematical formulation of R-
Drop (Wu et al., 2021) discussed in Section 2.2.
Given a set of unique inputs X, the general R-Drop
loss Lkl is formulated as follows:

Lkl(X1,X2) =
1

2
(Dkl(P (·|X1)||P (·|X2)

+Dkl(P (·|X2))||P (·|X1))),

where Xi is a duplicated input from X, Dkl is a
KL divergence, and P is a categorical probability
distribution.

A.2 Training objective

In this section, we describe training objectives for
baseline S2ST models. In addition to the primary
S2ST/S2UT task, we introduce auxiliary S2TT and
ASR tasks. We adopted a character-level ASR task
for direct S2ST models on the Fisher Es→En cor-
pus while we did not use it on the rest corpora.

Translatotron Given the target spectrogram S,
translation Y , and transcription Ysrc, corresponding
to a source speech X , the training objective of
Translatotron is formulated as:

Ltotal = Ls2s(S|X)

+ws2tLs2t(Y |X) +wasrLasr(Ysrc|X), (2)

where Ls2s is the primary S2ST loss, Ls2t is the
auxiliary S2TT loss, Lasr is the auxiliary ASR loss,
ws2t is a weight for the S2TT loss, and wasr is a
weight for the ASR loss, respectively. Note that R-
Drop is not used because the output of the primary
S2ST task is continuous.

We adopt the autoregressive decoder of Trans-
former TTS (Li et al., 2019) as the spectrogram
decoder. Therefore, Ls2s is defined as a sum of the
L1 loss L1, L2 loss L2, and end-of-sentence (EOS)
prediction loss Leos as follows:

Ls2s(S|X) = L1 +L2 +Leos.

Translatotron2+ The training objective of Trans-
latotron2+ is formulated as:

Ltotal =

2∑
i=1

Ls2s(S|Xi, Y )

+ws2t(
2∑

i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2))

+wasr(
2∑

i=1

Lasr(Ysrc|Xi) + γLasr
kl (X1,X2)),

(3)

where Xi is a duplicated input from X , Ls2t
kl is

the R-Drop loss for the first-pass decoder, Ls2t
kl is

the R-Drop loss for the auxiliary ASR decoder,
and β and γ are the corresponding weights for the
R-Drop losses, respectively. Unlike Eq (2), the
primary S2ST task depends on the output from the
first-pass decoder. We apply R-Drop to the S2TT
and ASR tasks only. We also investigated applying
R-Drop to the second-pass spectrogram decoder
by minimizing the difference of two outputs in the
continuous space, but the training was unstable.

S2UT In addition to the primary S2UT loss and
auxiliary S2TT and ASR losses, we use a CTC loss
on top of the unit decoder following (Lee et al.,
2022a). The training objective of the S2UT model
is formulated as:

Ltotal =

2∑
i=1

Ls2u(U |Xi) +αLs2u
kl (X1,X2)

+wctc

2∑
i=1

Lctc(Y |Dunit
i )

+ws2t(
2∑

i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2))

+wasr(

2∑
i=1

Lasr(Ysrc|Xi) + γLasr
kl (X1,X2)),

(4)

where Ls2u is the primary S2UT loss, Ls2u
kl is the

R-Drop loss for the unit decoder, Lctc is the CTC
loss, Dunit

i is the unit decoder output for the i-th
forward pass, α is a weight for the R-Drop loss,
and wctc is a weight for the CTC loss, respectively.
Unlike Eq. (1), there is no dependency between the
primary S2UT task and auxiliary S2TT task except
for sharing the same encoder.



ID #GPU
# of frames ×

gradient accumulation
Learning

rate Warmup Dropout Label
smoothing

Loss weight R-Drop

wasr ws2t wctc γ β α

A7 16 2k×4 1.0e-3

10k

0.1

0.2

– – – – 8.6 –
A11 16 20k×1 1.0e-3 0.3 0.1 0.1 – 0.0 0.0 –
A12 16 4k×2 1.0e-3 0.1 – – – – – –
A14 16 20k×1 1.5e-3 0.3 0.1 0.1 – 3.0 3.0 –
A15 16 4k×2 1.0e-3 0.1 – 0.1 – – 3.0 –
A17 4 20k×1 8.6e-4 0.3 8.0 8.0 1.6 1.0 1.0 1.0
A18 16 2k×4 1.0e-3 0.1 – – – – – 1.0
A19 4 20k×1 6.0e-4 0.3 8.0 8.0 – 3.0 3.0 1.0
A20 16 2k×4 1.0e-3 0.1 – 8.0 – – 3.0 1.0

B4

32

40k×1 1.0e-3

10k

0.1

0.2 –

0.1 –

–

0.0 –
B5 40k×1 1.0e-3 0.1 0.1 – 0.0 –
B9 40k×1 1.1e-3 0.1 0.1 – 10.0 –
B10 40k×1 1.0e-3 0.1 0.1 – 10.0 –
B11 20k×2 8.6e-4 0.3 8.0 1.6 0.5 0.5
B12 20k×2 7.0e-4 0.3 8.0 1.6 0.5 0.5
B13 20k×2 1.5e-3 0.3 8.0 – 1.5 1.5
B14 20k×2 7.0e-4 0.3 8.0 – 5.0 1.5

C3,4
32 2k×30 5.0e-4

10k
0.1 0.2

– 8.0 – – 10.0 –
C5’ 1k – – – – – 0.0
C6,7 1k – 8.0 – – 10.0 0.0

Table 8: Training hyperparameters

S2TT, ASR We also apply R-Drop to S2TT and
ASR tasks. The training objective of the S2TT
model is formulated as:

Ltotal =

2∑
i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2). (5)

Similarly, the training objective of the ASR model
is formulated as:

Ltotal =
2∑

i=1

Lasr(Ysrc|Xi) + γLasr
kl (X1,X2).

(6)

A.3 Architecture details
Let dmodel be a model dimension of Transformer,
dff be an inner dimension of the FFN layers, and
Nhead be the number of attention heads.

Speech encoder We used a 16-layer Conformer
encoder stacked on 2-dimensional convolution
blocks when training models from scratch. The
convolution blocks reduced the input sequence
length by a factor of 4. We set (dmodel, dff ,Nhead)
to (256,2048,4). We set the kernel size of the
depthwise convolution in the convolution module
of each Conformer block to 31. When pre-training
the encoder with wav2vec2.0, we used a 24-layer
Conformer encoder and stacked a one-layer length
adaptor (Li et al., 2021) on it. The length adaptor
halved the sequence length. Therefore, the frame

rate of every encoder output corresponds to 40ms in
both cases. In this case, we set (dmodel, dff ,Nhead)
to (1024,4096,16).

Translatotron We used a six-layer Transformer
spectrogram decoder. We set (dmodel, dff ,Nhead)
to (512,2048,8). When pre-training the speech
encoder with wav2vec2.0, we doubled these three
values. We set the pre-net dimension and reduc-
tion factor of the spectrogram decoder to 32 and 3,
respectively.

Translatotron2+ Let Nt2s be the depth of the
T2S encoder. We set (N1st,N2nd,Nt2s) to (4,6,2)
on the Fisher and CVSS-C corpora. On the
multi-domain corpus, we set (N1st,N2nd,Nt2s) to
(12,6,2) when pre-training the first-pass decoder
with mBART. Otherwise, we set (N1st,N2nd,Nt2s)
to (6,6,2). We used the same dmodel, dff , and
Nhead as Translatotron in all the settings.

S2UT We used a six-layer Transformer unit de-
coder. When training models from scratch on
the Fisher corpus, we set (dmodel, dff ,Nhead) to
(256,2048,4). On the CVSS-C corpus, we set
(dmodel, dff ,Nhead) to (512,2048,8). When pre-
training the speech encoder with wav2vec2.0, we
set (dmodel, dff ,Nhead) to (1024,4096,16).

UnitY We used the same first-pass decoder
as Translatotron2+ in all the settings. We set
(N2nd,Nt2u) to (2,2). We used the same dmodel,
dff , and Nhead as S2UT in all the settings.



Corpus
Language direction

En→Es Es→En

S2TT
Europarl-ST (75.6 hours) (Iranzo-Sánchez et al., 2020)

Must-C (495 hours) (Di Gangi et al., 2019)

CoVoST2 (112 hours) (Wang et al., 2021b)
Europarl-ST (20.6 hours)
mTEDx (63.4 hours) (Elizabeth et al., 2021)

ASR
MLS (918 hours) (Pratap et al., 2020)

Common Voice v7 (290 hours) (Ardila et al., 2020)
Librispeech (960 hours) (Panayotov et al., 2015)
TEDLIUM3 (452 hours) (Rousseau et al., 2012)

MT
Supervised MT1 CCMatrix (Schwenk et al., 2021) –

Supervised MT2
(Cascaded S2ST)

OpenSubtitle2018 (Lison et al., 2018)
UNCorpus (Ziemski et al., 2016)

EUBookshop v2 (Skadin, š et al., 2014)
Europarl v10 (Koehn, 2005)

Wikipedia v1.0(Wołk and Marasek, 2014)
TED2020 v1‘(Reimers and Gurevych, 2020)

T2U/TTS CSS100 (23.8 hours) (Park and Mulc, 2019) LJSpeech (24 hours) (Ito and Johnson, 2017)

Unlabeled text
Text mBART CC100 (Conneau et al., 2020)

Unlabeled speech
Wav2Vec2.0 Libri-Light (60k hours) (Kahn et al., 2020) VoxPopuli Es (16k hours) (Wang et al., 2021a)

Unit mBART
VoxPopuli En (14k hours)
VoxPopuli Es (16k hours)
Libri-Light (60k hours)

mHuBERT
VoxPopuli En (14k hours)
VoxPopuli Es (16k hours)
VoxPopuli Fr

Table 9: Statistics for the multi-domain En↔Es corpora

Model URL

En wav2vec2.0 https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md#wav2vec-20

Es wav2vec2.0 https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md#wav2vec-20

En HuBERT https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/direct_s2st_discrete_units.md

mHuBERT https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/textless_s2st_real_data.md

En-Es Unit mBART https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/unit_mBART/checkpoint.pt

En Transformer TTS https://huggingface.co/facebook/tts_transformer-en-ljspeech

Es Transformer TTS https://huggingface.co/facebook/tts_transformer-es-css10

Table 10: Links to pre-trained self-supervised models and TTS models

S2TT We used a six-layer Transformer decoder.
When initializing it with mBART, we set the depth
to 12.

ASR We used the same architecture as S2TT ex-
cept for the vocabulary in all the settings.

A.4 Training details

We list the training hyperparameters in Table 8.

A.5 Data

We list all datasets we used for the experiments in
Table 9.

A.5.1 Data filtering
For discrete unit generation with a T2U model, we
found that target discrete units were over-generated
in long-form samples. We filtered out such samples

by thresholding with a ratio of the sequence length
of the discrete units over the number of correspond-
ing source speech frames. We used a threshold
of 0.7 for the multi-domain En→Es corpus while
using ∞ for the rest. We used the same number
of samples for all direct S2ST models for a fair
comparison.

A.6 Pre-trained models

We list all the pre-trained self-supervised models
and TTS models used in our experiments in Ta-
ble 10.

A.7 Additional results

In this section, we present additional experimental
results.

https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md#wav2vec-20
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md#wav2vec-20
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/direct_s2st_discrete_units.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/textless_s2st_real_data.md
https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/unit_mBART/checkpoint.pt
https://huggingface.co/facebook/tts_transformer-en-ljspeech
https://huggingface.co/facebook/tts_transformer-es-css10


ID Encoder
pre-training Model

Output
unit

(ASR-)BLEU (↑)

Speech Text

E1
Translatotron2+

Phoneme 50.4 –
E2 Character 50.2 54.0
E3 Subword 49.2 54.4

E1’
✓ Translatotron2+

Phoneme 58.1 –
E2’ Character 58.1 61.5
E3’ Subword 58.4 62.0

E4
UnitY

Phoneme 49.8 –
E5 Character 48.9 53.7
E6 Subword 50.5 55.4

E4’
✓ UnitY

Phoneme 54.7 –
E5’ Character 55.0 60.9
E6’ Subword 55.1 61.2

Table 11: Results of output units for the first-pass decoder in two-pass direct S2ST models on the Fisher Es→En
dev set. We use 1k unit for the subword vocabulary.

Figure 5: FLOPs of direct S2ST models on multi-
domain Es→En corpus. The beam width of two-pass
models corresponds to the first-pass decoder.

A.7.1 FLOPs

In Figure 5, we show the results of FLOPs mea-
sured with a subset of the multi-domain Es→En
dev set, as discussed in Section 4.4. UnitY achieved
1.65× and 1.16× FLOPs reduction over Transla-
totron2+ and S2UT models, respectively.

A.7.2 Output unit for first-pass decoder

We show full results of a comparison of output units
for the first-pass decoder in two-pass direct S2ST
models in Table 11, as discussed in Section 5.2.
The results showed that the subword unit was the
best for UnitY regardless of pre-training the speech
encoder with wav2vec2.0. In contrast, in the case
of Translatotron2+, the best unit differed according
to whether we pre-trained the speech encoder or
not. However, predicting subwords in the first pass
led to the best BLEU score for the text output in all
the settings.

A.8 Human evaluation protocol
In this section, we describe metrics used in human
evaluation.

Mean translation score We used cross-lingual
semantic textual similarity (XSTS) (Licht et al.,
2022) as the most appropriate human evaluation
protocol. Annotators judged the semantic similar-
ity between the source and the translated sentence.
As a result, whether a translation conveys the origi-
nal meaning is more important than whether it has
perfect syntax, wording, and grammar. Annotators
assigned each item a score from one to five. A
score of no less than three means the meaning is at
least “mostly equivalent.” We treat a translation that
received a score of no less than three as having “ac-
ceptable” quality. Annotators need to be bilingual,
as they compare the source and translated sentences
directly. Since XSTS is an audio-only evaluation
metric, it also considers the audio quality.

For each system, we computed the average
XSTS score across items. We set a target of over
four average XSTS for systems where we expect
or desire high-quality translations. We set a target
of over three average XSTS for systems where we
expect a medium level of quality.

Percent acceptable translations For each sys-
tem, we also computed the percentage of items that
received an XSTS score of three or above. We
refer to this as the percent acceptable translations.
This metric helps us understand what percentage of
translations produced by the system can preserve
meaning adequately and what percentage has very
low and unacceptable quality. This metric tends



to be more stable and less sensitive to annotator
agreement than the average XSTS score.
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