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Abstract
Assembly101 is a new procedural activity dataset fea-

turing 4321 videos of people assembling and disassembling
101 “take-apart” toy vehicles. Participants work without
fixed instructions, and the sequences feature rich and natu-
ral variations in action ordering, mistakes, and corrections.
Assembly101 is the first multi-view action dataset, with si-
multaneous static (8) and egocentric (4) recordings. Se-
quences are annotated with more than 100K coarse and 1M
fine-grained action segments, and 18M 3D hand poses.

We benchmark on three action understanding tasks:
recognition, anticipation and temporal segmentation. Ad-
ditionally, we propose a novel task of detecting mistakes.
The unique recording format and rich set of annotations al-
low us to investigate generalization to new toys, cross-view
transfer, long-tailed distributions, and pose vs. appearance.
We envision that Assembly101 will serve as a new challenge
to investigate various activity understanding problems.

1. Introduction

Assembly and disassembly tasks, like putting together
a piece of furniture, or taking apart a home appliance for
repair, are common to everyday living. We often rely on
paper manuals or online instructional videos to guide us
through these tasks. The next generation of smart assis-
tants, together with augmented reality (AR) hardware, can
help us in a more embodied setting. Intelligent systems that
jointly consider instructions or goals and real-world obser-
vations can greatly advance AR applications. Mock-ups and
proof-of-concepts already exist for cooking [15], monitor-
ing worker safety [4], visiting museums [11], and learning
surgical procedures [3]. To that end, the interest in action
understanding tasks such as recognition, anticipation, and
temporal segmentation has grown, especially for egocentric
views [5, 17, 34].

In looking at the benchmarks used in action understand-

ing, there are datasets of short clips [16, 21, 45], datasets
with longer sequences from movies [18, 51] and scripted
actions [42, 43, 47], with particular focus on the cook-
ing domain [5, 12, 22, 35, 37, 40, 47, 50]. Most related to
our work are instructional video datasets [49, 50, 52]. But
these instructional videos are curated from online sources;
they are produced, have multiple shots, and primarily tar-
get multi-modal (vision + NLP) learning [40, 50, 52]. Few
datasets focus on goal-oriented, multi-step activities outside
the kitchen domain and are otherwise small-scale [2,20,34]
or limited in task or sequence diversity [1, 49].

We introduce Assembly101: 362 unique sequences of
people assembling and disassembling 101 “take-apart” toy
vehicles (see Figs. 1, 3). The dataset features recordings
from 8 static and 4 egocentric viewpoints, with 4321 se-
quences totalling 513 hours of footage. Assembly101 is an-
notated with more than 1M action segments, spanning 1380
fine-grained and 202 coarse action classes. We benchmark
on four tasks: action recognition and anticipation centered
around hand-object interactions, temporal action segmenta-
tion and our newly proposed mistake detection task dedi-
cated to investigating sequence understanding in assembly
activities. Assembly101 features three novel aspects cur-
rently under-represented in existing video benchmarks:

• Goal-oriented free-style procedures: Exist-
ing datasets feature multi-step activities follow-
ing a strictly ordered recipe [28, 40, 50, 52] or
script [8, 12, 34, 43, 47]. Assembly101 depicts
non-scripted, goal-oriented activities.

• Rich sequence variation: Participants vary in skill
level, and recordings feature realistic variations in ac-
tion ordering, mistakes, and corrections. Unlike ex-
isting skill assessment datasets [7, 13, 31, 33], which
have only skill scores, we annotate specific mistakes
and participant skill levels.

• Synchronized static and egocentric viewpoints:
This unique multi-view setting gives privileged
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Figure 1. Assembly101 includes synchronized static multi-view and egocentric recordings of participants assembling and disassembling
take-apart toys. Sequences are annotated with fine-grained and coarse actions, 3D hand poses, participants’ skill levels, and mistakes on
coarse segments (e.g. “attach cabin” highlighted in red).

static information currently missing from egocentric
datasets. It also allows for investigating hand-object
interactions with full 3D understanding and domain-
transfer between different viewpoints.

2. A Comparison of Action Datasets
Assembly101 can be characterized by its (1) multi-step

content, (2) multi-view recordings and (3) action under-
standing tasks. We make a coarse comparison to related
datasets based on this taxonomy.

2.1. Content: Multi-step activities

Multi-step activities are best exemplified in cooking and
instructional videos, so the majority of datasets in this
area are curated from online video platforms, e.g. YouTube
Instructional [1], What’s Cooking [27], YoucookII [50],
CrossTask [52], COIN [49] and HowTo100M [29]. Using
YouTube videos is appealing due to the sheer amount and
variety. However, these videos often do not suit an AR set-
ting due to their “produced” nature, e.g. mixed viewpoints,
fast-forwarding, unrelated narrations, etc. Additionally, the
majority of these datasets are from the kitchen domain and
are primarily composed for studying multi-modal learning
in vision and natural language [27, 50, 52].

Recorded datasets, e.g. Breakfast [22], GTEA [12],
50Salads [47] are major contributors to the study of multi-
step activities [9,10,39]. However, they are either small [12,
47] or have little ordering variations [22]. Assembly tasks
are a new domain explored in some datasets [2,34], but their
limited scale is less ideal for deep learning.

2.2. Viewpoint: Egocentric & multi-view

Egocentric data offers a unique viewpoint for human ac-
tivities and is particularly important for wearables, e.g. AR
glasses. Small-scale datasets include [12,20,32,34]. Large-
scale efforts include EPIC-KITCHENS [5, 6] and the re-

cent Ego4D [17], which expands beyond the kitchen to
a wide variety of daily activities. In contrast to these
datasets, Assembly101 features both egocentric and third-
person views, offering simultaneous privileged information
from the outside-in as well as multi-view egocentric data for
3D action recognition.
Multi-view fixed-camera datasets include IKEA [2] and
Breakfast [22]. We feature a synchronized egocentric
stream that allows studying the domain gap between fixed
and egocentric views. Moreover, the egocentric head pose
is tracked relative to the fixed views, enabling geometric
reasoning between the viewpoints. Although Charades-
EGO [42] also has both an egocentric and a third-person
view of people performing scripted activities, the views are
taken asynchronously, i.e. independent recording instances.

2.3. Task

Action recognition: We focus on fine-grained actions
lasting a few seconds within the context of longer ac-
tivity sequences. This is in contrast to classifying short
isolated clips, such as in Kinetics [21] and Something-
Something [16]. Our task is more similar to EPIC-
KITCHENS [5] and Charades [42, 43], which feature fine-
grained segments taken from longer daily activity videos
with challenging long-tail distributions.
Anticipating actions before they occur is a recently in-
troduced task popularized by EPIC-KITCHENS [5] and
Breakfast [22]. A notable difference between these two
is the label granularity and hence the anticipation horizon.
Anticipation methods for EPIC predict fine-grained actions
with a short, few-second long horizon, while Breakfast aims
to predict multiple coarse actions with minutes-long hori-
zons. As Assembly101 features multi-granular labels, it can
be used for both short- and long-horizon anticipation.
Temporal action segmentation datasets like GTEA [12]
and 50Salads [47] are small-scale datasets (28 and 50 videos
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Figure 2. Our custom build headset (inset) and multi-camera desk
rig, with cameras marked by red circles.

respectively). Breakfast [22] is limited in temporal varia-
tion, making it less ideal for studying sequencing and or-
dering as a problem. The assembly actions in our dataset
feature repetitions, large deviations in ordering and also re-
quire modelling longer-range information.
Hand-object interactions from egocentric views are stud-
ied in two new datasets, FPHA [14] and H2O [23]. Un-
like EPIC, FPHA and H2O provide 3D pose of one or both
hands and 6D pose of the manipulated objects. Recognition
from pose is particularly important when the amount of vi-
sual data given to the system is limited, e.g. due to privacy
concerns. Assembly101 currently offers 3D hand poses for
each frame. It offers a much larger set of fine-grained hand-
object interactions compared to FPHA and H2O.
Detecting mistakes and missed actions by wearable de-
vices could greatly improve wearer’s safety. Anomaly de-
tection in surveillance videos [48] and skill assessment [7,
13, 30, 53] are active research areas, but to the best of our
knowledge, detecting mistakes in procedural activities has
not been previously studied. The coarse action segments of
our assembly sequences are annotated with mistake labels.
Closest to our work is [46] on forgotten actions.

3. Recording and Annotation

3.1. Recording rig

We built a desk rig equipped with eight RGB cameras at
1920 × 1080 resolution and four monochrome cameras at
640× 480 resolution. The RGB cameras are mounted on a
scaffold around the desk with 5 overhead and 3 on the side.
The monochrome cameras are placed on the four corners of
a custom-built headset worn by the participants and provide
multiple egocentric views similar to the Oculus Quest VR

headset. Fig. 2 shows the recording rig and headset, with
cameras circled in red. All cameras are synchronized with
SMPTE timecode and geometrically calibrated with a fidu-
cial to sub-pixel accuracies. Participants are recorded stand-
ing, though taller participants are asked to sit to ensure their
hands and the assembled toy is visible in all camera views.

3.2. Participants, toys, & recording protocol

Participants: We recruited 53 adults (28 males, 25 fe-
males) to disassemble and assemble “take-apart” toy vehi-
cles. Each participant was asked to work with six toys in an
hour-long recording session, though the final number varies
depending on the participant’s speed.
Toys: The sequences feature 101 unique toys from 15 cate-
gories of construction, emergency response, and other ve-
hicles. Each category has variations in colour, size, and
style of vehicle; across categories, the vehicles have some
shared components e.g. construction vehicles feature the
same base but different arm attachments. Fig. 3 shows a
sample from each vehicle category and the distribution of
toys and recordings per category.
Protocol: We are interested in capturing the natural order
in which the participants assemble and disassemble the toys,
so we placed only an image of the fully assembled toy on
the table for reference. We did not provide instructions nor
specify a part ordering1. This design choice makes the as-
sembly task more challenging but also more realistic, re-
sulting in great variation in action ordering. Preliminary
recordings showed that some participants struggled with the
assembly task. For time-efficiency, we adjusted the proto-
col to have participants first disassemble a completed toy
before proceeding to “re”-assemble.

3.3. Annotations

Action labels: We label two granularities of actions and
their start and end times. Fine-grained actions are hand-
object interactions based on a single verb or movement and
an interacting object or toy part. A fine-grained action
spans two or three stages: (1) pre-contact when the hand
(and tool) starts approaching the object, (2) the interaction,
and (3) post-contact when the object is released. Addi-
tionally, we merge several co-occuring or sequential fine-
grained actions into coarse actions related to the attaching
or detaching of a vehicle part. For example, the coarse ac-
tion “detach bumper” consists of four fine-grained actions
{“unscrew bumper with screwdriver”, “remove screw from
bumper”, “pick up bumper”, “put down bumper”}. The
fine-grained actions may overlap with each other as partic-
ipants often multi-task, e.g., “put down cabin” and “pick
up screwdriver”, while the coarse actions are contiguous.
Please see Supplementary for details on annotator training
and our custom interface for labelling the actions.

1e.g. Meccano [34] provides participants with an ordered list of steps.
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Figure 3. Left: 15 toy vehicle categories. Right: Distribution of toys and recordings per category. (Best viewed in colour)

3D hand poses: We perform hand tracking from the four
monochrome egocentric cameras using a modified version
of MegATrack [19] to estimate 3D hand poses of both
hands. First, we fuse features from all views into a shared
latent space [36]. Then, we regress the joint angles and
global transformation for each hand before obtaining land-
marks on the fingertips, joints and palm center via forward
kinematics. The tracker is trained end-to-end on the dataset
from [19]. After egocentric tracking, we extract the 3D key-
point locations (21 per hand) in world coordinates as our
pose representation (see Fig. 1).

4. Dataset Statistics
4.1. Recording statistics

Our key motivation was to gather a large and diverse pro-
cedural activity dataset with varying label granularities. As-
sembly101 features 362 disassembly-assembly sequences;
each sequence is recorded from 12 viewpoints, totalling
4321 videos and 513 hours of footage. The average se-
quence or video duration is 7.1 ± 3.4 minutes (Fig. 4 left).
Tables 1 and 2 show comparisons with similar recorded
datasets. Assembly101 is considerably larger with more
than 1M fine-grained and 100K coarse segments, making
it the largest procedural activity dataset to date.

4.2. Fine-grained actions

From our 15 toy categories, we define 90 objects, e.g.,
wheel, including 5 tools together with the “hand”. Addi-
tionally, we specify 24 interaction verbs. The objects and
interaction verbs form a total of 1380 fine-grained action
labels. Fig. 4 shows the duration distribution. The av-
erage fine-grained action lasts 1.7±2 seconds. In a sin-
gle disassembly-assembly sequence, there are an average
236.7±98.4 fine-grained actions. The entire dataset totals
more than 1M fine-grained action instances. The distribu-
tion of objects and verbs is provided in the Supplementary.
There is a natural long tail, where 30% of the data accounts
for 1238 (89%) of the fine-grained actions.
Comparison with other datasets: Table 1 gives a de-

tailed numerical comparison with other fine-grained action
datasets. Assembly101 has 23-44× more action classes
and 56-111× more action segments than assembly-style
datasets IKEA and Meccano. Assembly101’s scale is com-
parable to other large-scale egocentric datasets such as
EPIC-KITCHENS and Ego4D. Compared to EPIC, Assem-
bly101’s has 1.7× more egocentric footage and 11× more
action segments. In the labelled footage of Ego4D, the clos-
est subtask of “forecasting” features 120 hours of annotated
temporal action labels. In comparison, our dataset has 12×
more action segments than Ego4D.

4.3. Coarse actions

Each coarse action is defined by the assembly or disas-
sembly of a vehicle part. There are 202 coarse actions com-
posed of 11 verbs and 61 objects. Each video sequence fea-
tures an average of 24 coarse actions. The average coarse
action comprises 10 fine-grained actions and lasts 16.5 ±
15.7 seconds (see distribution in Fig. 4). We also define the
tail classes for the coarse labels where the 30% of the data
accounts for 171 (84%) of the coarse actions.
Comparison with other datasets: While coarse actions
can also be used for classification, we consider them se-
quentially and use them for action segmentation. Table 2
compares Assembly101 with Breakfast & 50Salads, two
contemporary segmentation benchmarks. We have 2.5×
more videos, 6.7× more hours of footage, 9.3× more ac-
tion segments and 4.2× more action classes than Breakfast.
Temporal dynamics: We define and report two scores in
Table 3 to quantify the temporal dynamics. The repeti-
tion score is defined as 1 − ui/gi where ui is the num-
ber of unique actions in video i, and gi is the total num-
ber of actions and results in a score in the range [0, 1).
0 indicates no repetition, and the closer the score is to 1,
the more repetition that occurs in the sequence. Averaged
over all video sequences, we have a repetition score of 0.18,
with higher repetition (0.23) in assembly than disassembly
(0.11). Compared with Breakfast and 50Salad, our dataset
includes 1.6× and 2.3× more repeated steps, respectively.
We compute the order variation as the average edit dis-



Table 1. Fine-grained action dataset comparisons.

Dataset total
hours

#
videos

avg.
(min)

#
segments

avg. #seg.
per video

avg.
(sec) verbs

#
objects actions

labelled
frames

overlapping
segments

#partici-
pants

Meccano [34] 6.9 20 20.7 8,858 442.9 2.8 12 21 61 84.9% 15.8% 20
IKEAASM [2] 35.0 371 5.6 17,577 47.3 6.0 12 10 33 83.8% - 48
EPIC-KITCHENS-100 [6] 100.0 700 8.5 89,977 128.5 3.1 97 300 4,053 71.6% 28.1% 37
Ego4D [17] 120.0 - - 77,002 - - 74 87 - - - 406
Assembly101 (ego) 167.0 1,425 7.1 331,310 236.7 1.7 24 90 1,380 81.4% 7.0% 53
Assembly101 513.0 4,321 7.1 1,013,523 236.7 1.7 24 90 1,380 81.4% 7.0% 53

Table 2. Coarse action label dataset comparisons.

Dataset total
hours

#
videos

avg. video
length (min)

#
segments

avg. #segments
per video

avg. segments
length verbs

#
objects actions

#partici-
pants

50Salads [47] 4.5 50 6.4 899 18 36.8 6 15 17 25
Breakfast [22] 77.0 1,712 2.3 11,300 6.6 15.1 14 28 48 52
Assembly101 513.0 4,321 7.1 104,759 24 16.5 11 61 202 53

Table 3. Temporal dynamics of coarse action segments

Dataset repetitions order variations

Breakfast [22] 0.11 0.15
50Salads [47] 0.08 0.02
Assembly101 0.18 0.05
Assembly101 - Assembly 0.23 0.04
Assembly101 - Disassembly 0.11 0.05

tance, e(R,G), between every pair of sequences, (R,G),
and normalize it with respect to the maximum sequence
length of the two, 1 − e(R,G)/max(|R|, |G|). This score
has a range [0, 1]; a score of 1 corresponds to no devia-
tions in ordering between pairs. The relatively high scores
of Breakfast, 0.15, indicate that actions following a strict
ordering, making it less attractive to study temporal se-
quence dynamics than 50Salads (0.02) and Assembly101
(0.05). Overall, our dataset includes a high frequency of
repeated steps and variations in temporal ordering both in
assembly and disassembly sequences, which are character-
istic of daily procedural activities, and therefore contributes
a challenging benchmark for modelling the temporal rela-
tions between actions.

4.4. Mistake actions

Even though our participants are adults assembling chil-
dren’s toys, they still make mistakes and then need to make
corrections before proceeding. For example, putting on the
cabin before attaching the interior (see Fig. 1), making it
impossible to place the interior after, so one must remove
the cabin as a corrective action before placing the interior.
We annotate the coarse assembly segments with a parallel
set of labels {“correct”, “mistake”, “correction”}.

Mistakes are natural occurrences in many tasks and an
opportunity for an AR assistant to provide help. To the best
of our knowledge, there are no existing action datasets for

Table 4. Comparisons with other datasets with 3D hand pose.

Dataset total hours #frames #segments #actions

FPHA [14] 1.0 0.1M 1K 45
H2O [23] 5.5 0.5M 1K 36
Assembly101 513.0 111M 82K 1456

recognizing mistakes. Of the 60k coarse actions in assem-
bly, 15.9% and 6.7% segments are mistake and corrective
segments, respectively. Skill is closely related, but datasets
focusing on skill assessment assign a score to short clips
of e.g. drawing [7] or suturing [53] instead of determining
what and when the mistake occurs. We also annotated the
skill level of the participant in our videos from 1 (worst) to
5 (best). Overall, the distribution of skill labels in our se-
quences is 9%, 6%, 13%, 25% and 47% from worst to best.

4.5. 3D hand poses

As Assembly101 features hand-object interactions, 3D
hand pose is an important modality, especially since AR/VR
systems often provide this information [19]. Compared
with FPHA [14] & H2O [23], our dataset includes 82×
more segments and 200× more frames, reported in Table 4.

4.6. Training, validation & test splits

We use the 60%, 15% and 25% of the videos for creat-
ing our training, validation and test splits, respectively, with
detailed statistics given in Supplementary. For more ro-
bust evaluation, we will withhold the test split ground truths
to be used in online submission leaderboards. The valida-
tion and test sets are structured to help assess generalization
to new toys and actions and the participants’ skills. 25 of
the 101 toys are shared across training, validation and test
splits. There are also toy instances that are not a part of the
training set to facilitate zero-shot learning.



Figure 4. Distribution of durations: average durations are 7.1 mins, 1.7s and 16.5s for videos, fine-grained and coarse actions, respectively.

Table 5. Action recognition on fine-grained actions evaluated by Top-1 accuracy. Action anticipation on fine-grained actions evaluated
by Top-5 Recall.

Overall Head Tail Seen Toys Unseen Toys

Task Tested on verb object action verb object action verb object action verb object action verb object action

Fixed 64.0 50.4 39.2 69.7 63.3 51.1 49.7 18.3 9.3 63.0 55.3 42.0 64.3 48.8 38.3
Recognition Egocentric 47.0 34.3 23.0 51.3 44.6 31.0 36.2 8.6 3.1 47.3 36.0 23.5 46.9 33.8 22.9

Fixed & Ego. 58.5 45.2 34.0 63.7 57.2 44.6 45.3 15.1 7.3 57.8 48.9 35.9 58.7 44.0 33.3
Fixed 56.6 33.3 10.4 60.3 58.1 30.7 52.8 32.8 6.7 55.6 51.1 16.9 56.9 24.4 8.2

Anticipation Egocentric 51.9 21.4 5.5 54.8 49.6 22.4 49.2 21.6 2.4 51.6 28.3 7.9 51.9 19.4 5.3
Fixed & Ego. 55.1 29.4 8.8 58.5 55.3 28.0 51.6 29.1 5.3 54.3 43.5 13.9 55.3 22.8 7.3

Table 6. Top-1 fine-grained action recognition accuracy for individual views, using TSM networks.

Trained on v1 v2 v3 v4 v5 v6 v7 v8 all v* e1 e2 e3 e4 all e*

Fixed 43.1 40.6 40.3 43.6 27.8 40.4 33.3 37.5 38.3 1.7 1.8 2.2 3.1 2.2
Egocentric 8.1 7.5 4.8 6.0 2.9 10.8 2.6 8.5 6.4 13.2 13.2 29.2 29.3 21.2

Fixed & Ego. 44.1 42.6 41.1 44.8 28.0 41.5 33.4 38.2 39.2 13.9 13.1 32.7 32.7 23.0

5. Benchmark Experiments
We benchmark and present baselines for four action

tasks: recognition, anticipation, temporal segmentation and
our newly defined mistake recognition. However, as the
data is very rich, it is our hope that the extended community
will find other uses and tasks for the dataset after its release.
Due to limited space, we highlight some key results in this
section and defer the architecture, implementation and de-
tailed comparison of results to the Supplementary.

5.1. Recognition, anticipation & segmentation

For action recognition (Table 5), we define a classification
task on the fine-grained action classes, using pre-trimmed
clips based on the annotated start and end times. We train
a state-of-the-art video recognition model, TSM [25], and
two top-performing graph convolutional networks on poses,
2s-AGCN [41] and MS-G3D [26]. Performance is evalu-
ated by Top-1 accuracies for verb, object and action classes.
Action anticipation (Table 5), predicts upcoming fine-
grained actions τ = 1 second into the future. We train a
state-of-the-art model TempAgg [38]. Performance is eval-
uated by class-mean Top-5 recall as per [6].
Temporal action segmentation (Table 7) assigns frame-
wise action labels to a video sequence. We apply two com-
peting state-of-the-art temporal convolutional networks:
MS-TCN++ [24] and C2F-TCN [44], using frame-wise fea-

tures extracted from TSM [25] trained for action recogni-
tion on Assembly as input. Performance is evaluated by
mean frame-wise accuracy (MoF), segment-wise edit dis-
tance (Edit) and F1 scores at overlapping thresholds of 10%,
25%, and 50%, denoted by F1@10, 25, 50.

These three challenges form the basis for understanding
actions at various granularities. Compared to the existing
datasets, Assembly101 shows great potential for extending
video understanding to new challenging natural procedural
activities by uniting multi-view recognition, generalization
to new tasks, long-tail distributions, different skill levels and
sequences with mistakes in one dataset.

5.2. Camera viewpoints

We train the models on the instances from both fixed
and egocentric views but report the performance on each
view separately in Tables 5 and 7. Unsurprisingly, fixed
viewpoints perform better than egocentric viewpoints, with
a difference of 16.2% in “Overall” recognition, 4.9% recall
in “Overall” anticipation and 6.5% MoF in segmentation.
These differences highlight the challenging nature of recog-
nizing actions from the egocentric point of view.

Table 6 compares Top-1 action recognition accuracy on
the individual camera views. Overhead cameras v4 and v1
have the highest accuracy while side cameras v5 and v7
have the lowest, with a drop of 16% and 11% from v4.



Table 7. Baselines of temporal action segmentation; unless spec-
ified, results are from C2F-TCN.

Comparison F1@{10,25,50} Edit MoF
SOTA

MS-TCN++ [24] all 31.6 27.8 20.6 30.7 37.1
C2F-TCN [44] all 33.3 29.0 21.3 32.4 39.2

Fixed vs. Egocentric
Fixed 35.5 31.2 23.2 33.9 41.3
Egocentric 28.7 24.4 17.5 29.2 34.8

Seen vs. Unseen Toys
Seen Disassembly 35.8 31.1 22.2 31.7 39.8
Unseen Disassembly 31.9 26.6 17.0 27.9 38.9
Seen Assembly 33.0 28.6 22.7 30.0 42.5
Unseen Assembly 29.9 26.2 19.8 32.0 34.8

In egocentric views, the lower headset cameras, e3 and e4
achieve higher accuracies than e1 and e2, which do not fully
capture the table. The accuracies of e3 and e4, however, are
still more than 10% lower than that of v4.

Table 6 shows that there is a large domain gap if we train
the models on only egocentric or fixed view sequences and
cross-test rather than training on both sources of data. TSM
trained only on fixed views performs significantly worse on
egocentric views and vice versa. This indicates a significant
mismatch and presents a new challenge for studying the do-
main gap on paired egocentric and third-person actions.

5.3. Head vs. tail classes

A separate tally in Table 5 reveals a significant gap of
37% between head and tail action accuracy for recogni-
tion. The drop in tail verbs is much less than objects (18%
vs. 42% drop). Similarly, the action anticipation perfor-
mance on head classes is quite high, with a 28% recall in
Table 5. It is significantly larger than “Overall” action re-
call by 19.2%. This large difference could be due to the
evaluation metric where the class-mean balances the long-
tail distribution as 89% of action classes are tail classes.
Similarly, we evaluate the tail and head class MoF for tem-
poral action segmentation. According to this the MoF of
the tail classes is 51.5% which is much higher than the tail
MoF of 7.2%. The low tail performance scores encourage
developing few-shot action recognition methods.

5.4. Seen vs. unseen, assembly vs. disassembly

Assembly101 can be used to study generalization to new
assembly tasks through the “Unseen” toys. Both Tables 5
and 7 show that “Seen” toys score higher than “Unseen”
ones for action recognition, anticipation and segmentation.
For recognition and anticipation, there is little difference
in verb scores, but a large gap for objects, as all verbs are
shared whereas objects are not (13% unseen objects).

We separate the evaluation for assembly vs. disassembly

Table 8. Action recognition on 3D hand poses.

Method verb object action

2s-AGCN [41] 58.1 30.9 22.2
2s-AGCN [41] w/ context 64.4 33.9 26.7
MS-G3D [26] w/ context 65.7 36.3 28.7

TSM egocentric (fuse 4 views) 59.0 46.5 33.8

Object GT 28.1 98.8 27.2
MS-G3D [26] w/ context + Object GT 63.4 98.8 62.0

Table 9. Frame-wise features are extracted from TSMs pre-trained
on various datasets. Action recognition is performed by Tem-
pAgg [38] trained on these features.

Pre-trained on verb object action

Kinetics-400 [21] 28.0 19.9 9.8
SSv2 [16] 28.7 18.8 10.2
EPIC-KITCHENS-100 [6] 44.0 25.2 17.3
Assembly101 65.9 50.5 40.5

3D pose - MS-G3D [26] w/ context 65.7 36.3 28.7

portion of the sequences in Table 7 for action segmentation.
The MoF and segment scores of the assembly portion is
consistently lower than disassembly sequences, likely due
to its higher complexity, as the disassembly portions have
fewer ordering variations and no mistakes. Overall, the F1
and Edit scores do not show a significant over-segmentation
effect compared to disassembly sequences even though the
assembly tasks are more complex.

5.5. 3D pose-based action recognition

Another objective for collecting Assembly101 was to in-
vestigate action recognition using 3D hand poses. Hand
poses are commonly available in AR/VR systems and are
significantly more compact representations than video fea-
tures. Table 8 compares 3D pose-based to video-based
recognition. “2s-AGCN [41]” classifies trimmed segments
bounded by action start and end [ts, te]. “2s-AGCN [41] w/
context” extends each boundary by 0.5 seconds; the exten-
sion improves action accuracy significantly. State-of-the-art
“MS-G3D [26] w/ context” achieves the highest action per-
formance of 28.7%, though this is still 5.1% lower than the
video-based “TSM egocentric (fuse 4 views)”, where pre-
dictions from the four egocentric views are fused by aver-
age voting. Interestingly, the verb accuracy for pose-based
recognition is 6.7% higher than video-based, while its ob-
ject score is 10.2% lower than video-based. This is unsur-
prising as hand poses can easily encode movements but can-
not provide much object information. We also add an oracle
experiment incorporating ground truth object labels as one-
hot encoded frame-level features and train a TempAgg [38]
model on top. As shown in Table 8, “Object GT” alone
achieves a high object but poor verb accuracy. Fusing it with



Figure 5. Influence of skill on segmentation. “d” stands for disas-
sembly and “a” for assembly. Participants with less skills, “a1 &
a2”, have lower scores in assembly sequences.

“MS-G3D [26] w/ context” results in a significant jump in
action accuracy. We leave as future work the joint modeling
of 3D objects and hand poses for action recognition.

3D poses have the additional advantage of less sensi-
tivity to domain gaps between different environments. For
video-based models, training features from scratch requires
considerable amounts of time and data, but using features
extracted from pre-trained networks may not always gener-
alize. Table 9 compares TempAgg [38] trained on the fea-
tures extracted from TSM networks pre-trained on Kinetics-
400 [21], Something-Something [16], EPIC-KITCHENS-
100 [6] and Assembly101 for view “v1”. TSM features pre-
trained on EPIC-KITCHENS perform significantly better
than the other datasets; though there is still a gap of 23.2%
compared to pre-training on the native Assembly101. This
indicates a considerable domain gap between our dataset
and the existing action recognition benchmarks. On the
other hand, poses are low-dimensional common represen-
tations independent of the domain and therefore outperform
the scores from the other datasets by a significant margin.

5.6. Skill level

Fig. 5 compares the segmentation scores for different
skill levels from 1 (least skilled) to 5 (most skilled) in both
disassembly and assembly sequences, indicated by the pre-
fixes “d” and ‘“a”, respectively. Results show that the skill
level has little impact on the disassembly sequences. For
the least skilled groups “a1 & a2”, however, segmentation
scores for assembly sequences are significantly lower than
disassembly, likely due to the high ordering variations and
mistake segments.

5.7. Mistake detection

Identifying mistakes requires modelling procedural
knowledge and retaining long-range sequence information.
As input, we provide video sequences represented by frame-
wise features from the start of the assembly sequence to the
(end of the) current coarse action segment. The task is pre-
dicting if the current segment belongs to one of the three
classes of {“correct”, “mistake”, “correction”}. We ap-
ply the long-range video model TempAgg [38] using TSM
features and evaluate per-class Top-1 precision and Top-1

Table 10. Mistake detection results.

Mistake Correction

Task Features precision recall precision recall

Recognition GT coarse 48.6 62.7 65.6 84.9
TSM 30.8 46.6 30.8 29.6

Early prediction TSM 29.3 35.0 26.5 26.4

recall under two settings: “Recognition”, which gets the en-
tire coarse segment and “Early prediction”, which gets half
of the segment. Due to the imbalanced class distribution,
we penalize the models more for misclassifying “mistake”
and “correction” classes. As an oracle baseline, we use the
ground truth coarse action labels, “GT coarse” as input.
Baseline results: Table 10 shows the challenge in detect-
ing mistakes - even using the ground truth coarse action la-
bels as input, the recall for mistakes and corrections is only
around 62.7% and 84.9% respectively. With TSM input fea-
tures, the recall is currently only around 46.6% and 29.6%
once the segment of interest ends. Early prediction results
in a further 11.6% and 3.2% drop.

6. Conclusion

In this paper, we presented Assembly101, the largest
procedural activity dataset to date. Our dataset includes
synchronized egocentric and static viewpoints for cross-
view domain analysis, multi-granular action segments and
mistake labels to study goal-oriented sequence learning and
3D hand poses to advance 3D hand-object interaction recog-
nition. We defined four challenges, action recognition, ac-
tion anticipation, temporal action segmentation and mistake
detection, to evaluate a wide range of aspects of assem-
bly tasks, including generalization to new toys, cross-view
transfer, long-tailed distributions, skill level and pose vs.
appearance. Existing methods show promising results but
are still far from tackling these challenges with high preci-
sion, as observed in the oracle experiments, leaving room
for future explorations.

Assembly101 can be used for many different applica-
tions. In this paper, we proposed several directions such as
training the next generation of smart assistants to recognize
what a user is doing, predict subsequent steps as they watch
an assembly task, check for non-compliant steps and give
alerts or offer help. We hope that the community will find
other applications and tasks for our dataset after its release.
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