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Abstract. Following a navigation instruction such as ‘Walk down the
stairs and stop at the brown sofa’ requires embodied AI agents to ground
referenced scene elements referenced (e.g.‘stairs’) to visual content in the
environment (pixels corresponding to ‘stairs’). We ask the following ques-
tion – can we leverage abundant ‘disembodied’ web-scraped vision-and-
language corpora (e.g. Conceptual Captions) to learn the visual ground-
ings that improve performance on a relatively data-starved embodied
perception task (Vision-and-Language Navigation)? Specifically, we de-
velop VLN-BERT, a visiolinguistic transformer-based model for scoring
the compatibility between an instruction (‘...stop at the brown sofa’)
and a trajectory of panoramic RGB images captured by the agent. We
demonstrate that pretraining VLN-BERT on image-text pairs from the
web before fine-tuning on embodied path-instruction data significantly
improves performance on VLN – outperforming prior state-of-the-art in
the fully-observed setting by 4 absolute percentage points on success rate.
Ablations of our pretraining curriculum show each stage to be impactful
– with their combination resulting in further gains.

Keywords: vision-and-language navigation, transfer learning, embod-
ied AI

1 Introduction

Consider the navigation instruction in Figure 1, ‘Walk through the bedroom
and out of the door into the hallway. Walk down the hall along the banister
rail through the open door. Continue into the bedroom with a round mirror on
the wall and butterfly sculpture.’ In vision-and-language navigation (VLN) [4],
agents must interpret such instructions to navigate through photo-realistic en-
vironments. In this instance, the agent needs to exit the bedroom, walk past
something called a ‘banister rail’ and find the bedroom containing a ‘round mir-
ror’ and ‘butterfly sculpture.’ But what if the agent has never seen a butterfly
before, let alone a sculpture of one? To solve this task, an agent needs to deter-
mine if the visual evidence along a path matches the descriptions provided in
the instructions. As such, the ability to ground references to objects and scene
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Walk through 
the bedroom...

Walk through 
the bedroom...

score: 1.87Walk out of 
the room...

Follower Model Speaker Model Compatibility Model (Ours)

Instructions: Walk through the bedroom and out of the door into the hallway. 
Walk down the hall along the banister rail through the open door. Continue 
into the bedroom with a round mirror on the wall and butterfly sculpture.

Fig. 1. We propose a compatibility model (right) for path selection in vision-and-
language navigation (VLN). In contrast to the follower (left) and speaker (center)
models that have typically been used in prior work, our model takes a path and in-
struction pair as input and produces a score that reflects their alignment. Based on
this model we describe a training curriculum that leverages internet data in the form
of image-caption pairs to improve performance on VLN.

elements like ‘butterfly sculpture’ and ‘banister rail’ is central to success. Ex-
isting work has focused on learning this grounding solely from a task-specific
training dataset of path-instruction pairs [3, 8, 13, 20, 21, 28, 30, 31] – which are
expensive, laborious, and time-consuming to collect at scale and thus tend to
be relatively small (e.g. the VLN dataset contains around 14k path-instruction
pairs for training). As an alternative, we propose learning visual grounding from
freely-available internet data, such as the web images with alt-text captured in
the Conceptual Captions dataset [24], containing around 3.3M image-text pairs.

Conceptually, transfer learning from large-scale web data to embodied AI
tasks such as VLN is an attractive alternative to collecting more data. Empiri-
cally, however, the effectiveness of this strategy remains open to question. Unlike
web images, which are highly-curated and with clear aesthetic biases, embodied
data contains content and viewpoints that are not widely published online. As
shown in Figure 2, an embodied agent may perceive doors via a close-up view of
a door frame rather than as a carefully composed image of a (typically closed)
door. In VLN, image framing is a consequence of the agent’s position rather
than an aesthetic choice made by a photographer. Consequently, in this paper
we investigate this question – to what degree can visual grounding learned on
static web images be transferred to the embodied VLN task? That is, can ‘dis-
embodied’ web data be used to improve visual grounding for embodied agents?

To answer this question, we introduce VLN-BERT, a joint visiolinguistic
transformer-based compatibility model for scoring the alignment between an
instruction and an agent’s observations along a trajectory. We structure VLN-
BERT to enable straight-forward transfer learning from a model from prior work
on general visiolinguistic representation learning [18], and explore a training
curriculum that incorporates both large-scale internet data and embodied path-
instruction pairs. VLN-BERT is sequentially trained using 1) language-only data
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Fig. 2. Images from the Conceptual Captions (CC) [24] (top) and Matterport3D
(MP3D) [5] (bottom) datasets illustrate the differences between the two domains. Im-
ages from CC are typically well-lit, well-composed and aesthetically pleasing, while for
MP3D images (used in VLN) the framing depends on the position of the agent (e.g. a
couch (left) in CC is typically viewed head-on, whereas in MP3D they may be hidden
to the side as an agent navigates past them).

(Wikipedia and BooksCorpus [34] as in BERT [7]), 2) web image-text pairs (Con-
ceptual Captions [24] as in ViLBERT [18]), and 3) path-instruction pairs from
the VLN dataset [4]. Following this protocol the model progressively learns to
represent language, then to ground visual concepts, and finally to ground visual
concepts alongside action descriptions. We evaluate VLN-BERT on a path selec-
tion task in VLN, demonstrating that this training procedure leads to significant
gains over prior work (4 absolute percentage points on leaderboard success rate).

Contributions. Concretely, we make the following main contributions:

– We develop VLN-BERT, a visiolinguistic transformer-based model for scor-
ing path-instruction pairs. We show that VLN-BERT outperforms strong
single-model baselines from prior work on the path selection task – increas-
ing success rate (SR) by 4.6 absolute percentage points.

– We demonstrate that in an ensemble of diverse models VLN-BERT improves
SR by 3.0 absolute percentage points on “unseen” validation, leading to a SR
of 73% on the VLN leaderboard (4 absolute percentage points higher than
previously published work)1.

– We ablate the proposed training curriculum, and find that each stage con-
tributes significantly to the final outcome, with a cumulative benefit that is
greater than the sum of the individual effects. Notably, we find that pretrain-
ing on image-text pairs from the web provides a significant boost in path
selection performance – improving SR by 9.2 absolute percentage points.

2 Related Work

Path Selection in VLN. In VLN [4], an agent is required to follow a nav-
igation instruction from a start location to a goal. While most existing works
1 evalai.cloudcv.org/web/challenges/challenge-page/97/leaderboard/270

https://evalai.cloudcv.org/web/challenges/challenge-page/97/leaderboard/270
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focus on the setting in which the test environments are previously unseen, many
also consider the scenario in which the test environment is previously explored
and stored in memory (i.e., fully observable). In this setting, a high-probability
path is typically generated by performing beam search through the environment
and ranking paths according to either: (1) their probability under a ‘follower’
model [3,8,13,20,21,30,31], as in Figure 1 (left), or (2) by how well they explain
the instruction according to a ‘speaker’ (instruction generation) model [8, 28],
as in Figure 1 (center). In contrast, we use beam search with an existing agent
model [28] to generate a set of candidate paths, which we then evaluate using
our discriminative path-instruction compatibility model, as in Figure 1 (right).

Data Augmentation and Auxiliary Tasks in VLN. To compensate for
the small size of existing VLN datasets, previous works have investigated var-
ious data augmentation strategies and auxiliary tasks. Many papers report re-
sults trained on augmented data including instructions synthesized by a speaker
model [8, 20, 21, 28]. Tan et al. [28] use environmental dropout to mimic addi-
tional training environments to improve generalization. Li et al. [17] incorporate
language-only pretraining using a BERT model. Several existing papers [11, 30]
and one concurrent hitherto-unpublished work [10] consider path-instruction
compatibility as an auxiliary loss function or reward for VLN agents. We fo-
cus on path-instruction compatibility in the context of transfer learning from
large-scale internet data, which has not been previously explored.

Vision-and-Language Pretraining. There has been significant recent progress
towards learning transferable joint representations of images and text [15,16,18,
26, 27, 32]. Using BERT-like [7] self-supervised objectives and Transformer [29]
architectures, these models have achieved state-of-the-art results on multiple
vision-and-language tasks by pretraining on aligned image-and-text data col-
lected from the web [24] and transferring the base architecture to other tasks
such as VQA [9], referring expressions [12], and caption-based image retrieval [6].
However, these tasks are all based on single images. The extent to which these
pretrained models can generalize from human-composed and curated internet
images to embodied AI tasks has not been investigated. In this work we propose
a training curriculum to handle potential domain-shift and augment a previ-
ous model architecture to process panoramic image sequences, extending the
progress in vision-and-language to vision-and-language navigation (VLN).

3 Preliminaries: Self-Supervised Learning from the Web

Recent works have demonstrated that high-capacity models trained under self-
supervised objectives on large-scale web data can learn strong, generalizable
representations for both language and images [7, 15, 16, 18, 26, 27, 32]. We build
upon these works as a basis for transfer and describe them briefly here.
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Language Modeling with BERT. The BERT [7] model is a large transformer-
based [29] architecture for language modeling. The input to the model is se-
quences of tokenized words augmented with positional embeddings and outputs
a representation for each. For example, a two sentence input could be written as

<CLS> w
(1)
1 , . . . , w

(1)
L1

<SEP> w
(2)
1 , . . . , w

(2)
L2

<SEP> (1)

where CLS, and SEP are special tokens. To train this approach, [7] introduce
two self-supervised objectives – masked language modelling and next sentence
prediction. Given two input sentences from a text corpus, the masked language
modelling objective masks out some percentage of tokens and tasks the model
to predict their values given the remaining tokens as context. The next sentence
prediction objective requires the model to predict whether the two sentences fol-
low each other in the original corpus or not. BERT is then trained under these
objectives on large language corpuses from the web (Wikipedia and BooksCor-
pus [34]). This model forms the basis for both our approach and the visiolinguistic
representation learning discussed next.

Visiolinguistic Representations Learning with ViLBERT. Extending
BERT, ViLBERT [18] (and a number of similar approaches [15,16,18,26,27,32])
focuses on learning joint visiolinguistic representations from paired image-text
data, specifically web images and their associated alt-text collected in the Con-
ceptual Captions dataset [24]. ViLBERT is composed of two BERT-like process-
ing streams that operate on visual and textual inputs, respectively. The input
to the visual stream is composed of image regions (generated by an object de-
tector [2,22] pretrained on Visual Genome [14]) that act as “words” in the visual
domain. Concretely, given a single image I consisting of a set of image regions
{v1, . . . , vk} and a text sequence (i.e. a caption) w1, . . . , wL, we can write the
input to ViLBERT as the sequence

<IMG> v1, . . . , vk <CLS> w1, . . . , wL <SEP> (2)

where IMG, CLS, and SEP are special tokens marking the different modality sub-
sequences. The two streams are connected using co-attention [19] transformer
layers, which attend from the visual stream over language stream and vice versa.
Notably, the language stream of ViLBERT is designed to mirror BERT such that
it can be initialized by a pretrained BERT model. After processing, the model
produces a contextualized output representation for each input token.

In analogy to the training objectives in BERT, ViLBERT introduces the
masked multimodal modelling and multimodal alignment tasks. In the first, a
random subset of language tokens and image regions are masked and must be
predicted given the remaining context. For image regions, this amounts to pre-
dicting a distribution over object classes present in the masked region. Masked
text tokens are handled as in BERT. The multimodal alignment objective trains
the model to determine if an image-text pair matches, i.e. if the text describes the
image content. Individual token outputs are used to predict masked inputs in the
masking objective, and the IMG and CLS tokens are used for the image-caption
alignment objective. We build upon this model extensively in this work.
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cross-modal 
attention

vision stream language stream

IMG r0 r1 rN CLS Turn right door

Energy(path, instruction)

Training Curriculum

Language-Only
(Wikipedia and BookCorpus)

A couch, also known as a sofa 
is a piece of furniture for 
seating two or three people...

Path-Instruction Pairs
(Room-to-Room)

Turn right and into the living room. Walk 
past the sofa and stop by the door.

Image-Caption Pairs
(Conceptual Captions)

blue sofa in the living room

Fig. 3. We propose VLN-BERT (top), a visiolinguistic transformer-based model similar
to the model from [18], to process image regions from a sequence of panoramas and
words from an instruction. We demonstrate that with the proposed training curriculum
(bottom) visual grounding learned from image-text pairs from the web (center) can be
transferred to significantly improve performance in VLN.

4 Approach

4.1 Vision-and-Language Navigation as Path Selection

In the Vision-and-Language Navigation (VLN) [4] task, agents are placed in an
environment specified as a navigation-graph G = {V, E}. Nodes v ∈ V represent
different positions within the environment, and are represented by 360-degree
panoramas taken at that viewpoint. Meanwhile, edges delineate navigable paths
between panorama positions. The agent is provided with a navigation instruc-
tion x that describes the shortest-path between a starting position vs and goal
position vg (as illustrated in the bottom right of Figure 3). Agents are consid-
ered to have succeeded if they traverse a path τ = [vs, v1, v2, . . . , vN ] with a final
position vN that is within 3m of the goal vg.

Much of the work in VLN focuses on this problem as an exploration task in
new environments; however, many practical deployments of robotic agents would
be long-term in relatively fixed environments (e.g. an assistant operating in a
single home). In this paper, we consider the setting in which the environment is
previously explored with the navigation-graph and panoramas are stored in the
agent’s memory. This setting has been studied in prior work [8,13,20,28,30] and is
operationalized by providing the agent unrestricted access to the Matterport3D
Simulator [4] during inference such that it can consider arbitrarily many valid
paths originating from the starting position vs, before selecting one to follow.

In this setting, the navigation task becomes one of identifying the path best
aligned with the instructions. Concretely, given a set of valid paths T with the
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same starting position vs and an instruction x, the problem of navigation is to
identify a trajectory τ∗ such that

τ∗ = argmax
τ∈T

f(τ, x) (3)

for some compatibility function f that determines if the trajectory follows the
instruction and terminates near the goal. The two major challenges are how
to learn a compatibility function f and how to efficiently search through the
large set of possible paths. Given that our focus is on transfer learning, we
address the first challenge within a simple path selection setting. Specifically, we
consider a small set of paths T ′ = {τ1, τ2, . . . , τM} for each instruction, which
are generated using beam-search with a greedy instruction-following agent [28],
and task f with selecting the path that best aligns with the instruction from
this set. Future work might explore how f could be further used as a heuristic
to efficiently search through the larger, exhaustive set of candidate paths T .

4.2 Modeling Instruction-Path Compatibility

To formalize the task, we consider a function f that maps a trajectory τ and an
instruction x to compatibility score f(·, ·). We model f(τ, x) as a visiolinguis-
tic transformer-based model denoted as VLN-BERT. The architecture of VLN-
BERT is structural similar to ViLBERT [18]; this is by design because it enables
straight-forward transfer of visual grounding learned from large-scale web data.
Specifically, we make a number of VLN-specific adaptations to ViLBERT, but
they are all structured as augmentations (adding modules) rather than abla-
tions (removing existing network components) so that pretrained weights can be
transferred to initialize large portions of the model.

Representing Trajectories and Instructions. Predicting path-instruction
compatibility requires jointly reasoning over a sequence of observations and a
sequence of instruction words. As in prior work [8], a trajectory is represented
as a sequence of panoramic images (as in Figure 3 bottom right) with positional
information – i.e. τ = [(I1, p1), . . . , (IN , pN )] where (Ii) are panoramas and (pi)
are poses. Further, we represent each panorama Ii as a set of image regions
{r(i)1 , . . . , r

(i)
K }. Let an instruction x be a sequence of tokens w1, . . . , wL. We can

thus write a path-instruction pair for VLN-BERT as the input sequence

<IMG> r
(1)
1 , . . . , r

(1)
K , . . . , <IMG> r

(N)
1 , . . . , r

(N)
K , <CLS> w1, . . . , wL <SEP> (4)

where IMG, CLS, and SEP are special tokens as before.
The transformer models on which VLN-BERT (as well as BERT and ViL-

BERT) is based are inherently invariant to sequence order – only representing
interactions between inputs as a function of their values. The common practice
to introduce this information is to add positional embeddings to the input token
representations. For language, this is straight-forward and amounts to an index-
in-sequence encoding. Panorama trajectories on the other have significantly more
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(a) Panoramic Spatial Information (b) Overall Region Encoding

Fig. 4. We encode spatial information for each region to include not only the region
position, but also its relation to the trajectory path (a). We form overall region encoding
by summing visual features, an embedding indicating the index of the source panorama
in the trajectory, and an embedding of panoramic spatial information (b).

complex relationships. While the panoramas themselves are a sequence, there are
also geometric relationships between them (e.g. two panoramas being 1.2 meters
apart at 10 degrees off north). Further, each individual image region not only
has a position in the image (as modelled in ViLBERT) but also an angle relative
to the heading of an agent as it traverses the trajectory. These are important
considerations for language-guided navigation – after all, something on your left
going one way is on your right if you go in the opposite direction. Being able to
reason about the order of panoramas and the relative heading of image content
is integral for following instructions like ‘Go down the hallway on the right then
stop when you see a table on your left.’.

To address this, as visualized in Figure 4(a), we encode the spatial location
of each image region ri in terms of its location in the panorama (top-left and
bottom-right corners in normalized coordinates as well as area of the image cov-
ered), its elevation relative to the horizon, and its heading relative to the agents
current and next viewing directions. All angles are encoded as [cos(θ), sin(θ)].
The resulting 11-dimensional vector Si is projected into 2048 dimensions using a
learned projectionWS . To capture the sequential order of the panoramas within
a trajectory, we project the scalar panorama index to 2048 dimensions using a
learned embeddingWP . As shown in Figure 4(b), the complete visual input rep-
resentation for the image region is the element-wise sum of the visual features,
panorama index embedding, and panoramic spatial embedding.

Extracting Image Regions from Panoramas. To extract image regions
{v(i)1 , . . . , v

(i)
k } from each panorama, we generate 600 × 600 pixel perspective

projections using an 80 degree field of view at the 36 discrete heading and ele-
vation directions used in previous work [4]. Similarly to ViLBERT, we use the
bottom-up attention model [2,22] pretrained on Visual Genome [14] to extract a
set of image regions and features from each perspective image. Since the perspec-
tive images have substantial overlap we remove redundant regions within each
panorama. First, we discard regions that are centred more than 20 degrees away
from the center of the image (i.e. we discard regions along the boarders). We
assume that the discarded regions will be captured in a neighboring perspective
image (spaced at 30 degree heading increments), with more visual context. Next,
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we examine pairs of image regions within each panorama in order of decreasing
feature similarity. We discard the region in the pair with the lower bottom-up
attention class detection score, until a maximum of 100 regions per panorama
remain. We define similarity as the cosine distance between image features to
which we add the absolute difference in region heading and elevation. Including
heading and elevation differences ensures that visually similar features found in
different regions of the panorama are unlikely to be classified as redundant.

Training for Path Selection. To train VLN-BERT for path selection, we
consider a 4-way multiple-choice task. Given an instruction x, we sample four
trajectories out of which only one is successful {τ+1 , τ

−
2 , τ

−
3 , τ

−
4 }. We run VLN-

BERT on each instruction-trajectory pair and extract their corresponding final
representations. We denote these outputs for the CLS and the first IMG token as
hCLS and hIMG respectively and compute a compatibility score si as

si = f(τi, x) =W
(
h
(i)

CLS � h
(i)

IMG

)
(5)

where � denotes element-wise multiplication and W is a learned transformation
matrix. Scores, normalized via a softmax, are supervised with cross-entropy loss,

p = softmax(s) (6)

L
(
x, {τ+1 , τ

−
2 , τ

−
3 , τ

−
4 }

)
= CrossEntropy

(
p,1[τ+1 ]

)
(7)

where 1[τ+1 ] is a 1-hot vector with mass at the index of τ+. At inference, we
simply sort trajectories by their compatibility scores si.

Mining Negative Examples. We find that choosing an appropriate set of
path-instruction pairs is important for performance. Ideally, samples would span
the space of all possible pairs, including hard negatives. The question is how to
find varied path-instruction pairs with semantically meaningful differences? We
find that using beam search with an instruction-following model yields a diverse
set of paths that are effective for training. Specifically, we sample up to 30 beams
per instruction from the follower model of Tan et al. [28] and label the path as
successful if it meets the VLN success criteria (i.e. < 3m from the goal). Finally,
one positive and three negatives pairs are sampled at random for training.

4.3 Internet-to-Embodied Transfer Learning

While VLN-BERT can be trained from scratch, we designed the model to specif-
ically enable transfer learning from language [7] and visiolinguistic [18] models
trained on large-scale web corpora. This transfer is especially important due
to the data-sparsity in VLN dataset (containing ∼14k path-instruction training
pairs) and has a natural bias towards describing only objects present in training
environments. In this section, we describe a pretraining curriculum for transfer-
ring models learned on ‘disembodied’ web data to the embodied VLN task.

We summarize the pretraining process in Figure 3. In total, we consider three
stages focused on learning language, visual grounding, and action grounding.
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– Stage 1: Language. We initialize the language stream of our model with
weights from a BERT [7] model trained on Wikipedia and the BooksCor-
pus [34] under the masked language modelling and next sentence prediction
objectives. Directly training on the path selection task after this stage is
analogous to introducing a BERT encoder to represent instructions.

– Stage 2: Visual Grounding. Starting from a pretrained BERT model,
Lu et al. train both streams of ViLBERT on the Conceptual Captions
dataset [24] under the masked multimodal language modelling and multi-
modal alignment objectives. In this stage, we initialize model weights with
a ViLBERT model trained in this manner. Training directly from this stage
provides an initialization that can associate descriptions with image regions.

– Stage 3: Action Grounding. In the final stage, we pair paths and in-
structions from VLN and train the model under the masked multimodal
modelling objective from [18]. While the previous stage learns to ground vi-
sual concepts, this stage additionally exposes the model to actions and their
trajectory-based referents. For example, correctly predicting a masked in-
struction phrase like ‘turn ’ or ‘stop at the ’ requires the model
to reason about the agent’s path from the visual inputs and positional en-
codings.

Finally, we fine-tune VLN-BERT as described in the previous section.

5 Experiments

Our experiments primarily address following questions:

1. Does pretraining on web image-text pairs improve VLN performance?
2. How does the performance of VLN-BERT compare with strong baselines?
3. Does VLN-BERT consider relevant image regions to produce alignment scores?

5.1 Dataset

We conduct experiments using the Room-to-Room (R2R) navigation task [4]
based on the Matterport3D dataset [5]. R2R contains human-annotated path-
instruction pairs that are divided into training, seen and unseen validation, and
unseen testing sets. To generate a dataset for path selection we run beam search
on the instruction-follower model from [28], to produce a set of up to 30 candidate
paths for each instruction in R2R. We find that with a beam size of 30 over 99%
of the candidate sets contain one path that reaches the goal, which places an
acceptable upper bound on path selection performance. In all of the experiments
that follow, results are reported for selecting one path from the set of candidates.

5.2 Evaluation Metrics

We compare the performance of different models using standard VLN metrics.
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– Success rate (SR) measures the percentage of selected paths that stop
within 3m of the goal. In path selection this is our primary metric of interest.

– Oracle Success rate (SR) measures the percentage of selected paths with
any position that passes within 3m of the goal.

– Navigation error (NE) measures the average distance of the shortest path
from the last position in the selected path to the goal position.

– Path length (PL) measures the average length of the selected path.
– Success rate weighted by path length (SPL), as defined in [1], provides

a measure of success normalized by the ratio between the length of the
shortest path and the selected path.

Note that for path selection we calculate metrics using only the selected path,
which corresponds with the pre-explored environment setting. However, for the
VLN leaderboard results we follow the required approach of prepending the
exploration path to the selected path (which affects path length based metrics).

5.3 Training Baseline Models

We compare with the follower and speaker models from [28], which achieve state-
of-the-art performance on the VLN test set in an ensemble model setting. The
only auxiliary dataset used to train these baseline models is ImageNet [23] (used
to pretrain an image feature extractor). All of the other components are trained
from scratch (including word embeddings). Data augmentation, via environmen-
tal dropout [28], is used to train the follower model and greatly improves per-
formance. We report results using code and weights provided by Tan et al. [28].

5.4 Results

Does pretraining on web image-text pairs improve VLN performance?
To answer this question we dissect our proposed training curriculum as indicated
in Table 1, and find that in general each stage of training does contribute to per-
formance. First, we find that our model has limited performance learning from
scratch, achieving only 30.5% SR (compared with the 54.7% SR achieved by
the speaker model from [28]). However, language-only pretraining, which corre-
sponds to initializing our model with BERT [7] weights, improves performance
substantially to 45.2% SR (an improvement of 14.7 absolute percentage points)
– indicating that language understanding plays an important role in VLN.

Next, we find that both pretraining on image-text pairs from the Conceptual
Captions [24] (visual grounding) and pretraining on path-instruction pairs from
VLN [4] (action grounding) similarly improve success rate (by 4.5 and 4.9 abso-
lute percentage points, respectively) when used independently. However, when
the two pretraining stages are combined in series the improvement jumps to 14.1
absolute percentage points in success rate or 9.2 absolute percentage points over
the next best setting. The substantial level of improvement that results from
our full training curriculum suggests that not only does pretraining on webly-
supervised image-text pairs from [24] improve path selection performance, but it
also constructively supports the action grounding stage (Stage 3) of pretraining.
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Table 1. We compare the contribution from the different stages of pretraining. We find
that stage 2 and 3 both contribute significantly to task performance (improving Val
Unseen Success Rate (SR) by∼15-20 absolute percentage points over the no pretraining
baseline – rows 3 and 4 vs. 1), with their full combination providing further synergistic
gains (row 5). Notably, skipping the visual grounding stage (but still doing the others)
results in a 9 absolute percentage point drop in Val Unseen SR (compare rows 4 and 5)
– demonstrating the importance of internet-to-embodied transfer of visual grounding.

Pretraining Stage Val Seen Val Unseen

#
Language

Only
Visual

Grounding
Action

Grounding PL NE ↓ SPL ↑ OSR ↑ SR ↑ PL NE ↓ SPL ↑ OSR ↑ SR ↑

V
L
N
-B

E
R
T

1 (no pretraining) 10.78 6.78 0.35 54.22 37.55 10.29 6.81 0.27 50.62 30.52

2 X 10.33 4.89 0.55 69.31 58.73 9.59 5.47 0.41 57.34 45.17
3 X X 10.42 4.48 0.58 71.57 62.16 9.70 4.96 0.45 62.79 49.64
4 X X 10.51 4.28 0.60 72.65 63.82 9.81 5.05 0.46 62.75 50.02

5 X X X 10.28 3.73 0.66 76.47 70.20 9.60 4.10 0.55 69.22 59.26

How does VLN-BERT compare with strong baseline methods? The
results in Table 2 compare path selection performance of VLN-BERT with the
state-of-the-art speaker and follower models from [28]. We evaluate path selection
using the set of up to 30 candidate paths generated with beam search using the
follower from [28]. For the follower model results this amounts to taking the
top beam from the candidate set. In the single model setting we see that VLN-
BERT, trained with our full curriculum, achieves 59.3% SR, which is 4.6 absolute
percentage points better than either of the other two methods.

In the pre-explored setting, the speaker and follower models are typically
linearly combined (using a hyperparameter selected through grid search on val
unseen) to further improve path selection performance [8, 28]. In the ensemble
models section of Table 2, the speaker + follower line (row 4) represents our
execution of the state-of-the-art ensemble model from [28]. In rows 5-7, we con-
sider three model ensembles composed of a speaker, follower, and one additional
model (again linearly combined with hyperparameters selected via grid search on
val unseen). We find that adding another (randomly seeded) speaker or follower
model yields modest improvements of 1.2 and 2.7 absolute percentage points
in SR (rows 5 and 6). In contrast, adding VLN-BERT results in a 5.7 absolute
percentage point boost in SR (row 7), which is 3.0 absolute percentage points
higher on success rate than the next best ensemble.

In Table 3 we report results on the VLN test set via the VLN leaderboard, us-
ing the three-model ensemble that includes a speaker, follower, and VLN-BERT.
The ensemble achieves a success rate of 73%, which is 4 absolute percentage
points greater than previously published work [28], and 2 absolute percentage
points greater than concurrent, unpublished work [33].
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Table 2. Results comparing VLN-BERT with the follower and speaker from [28].
Notably, in the ensemble models setting, combining VLN-BERT with the speaker and
follower results in a 3 absolute percentage point improvement in Val Unseen Success
Rate (SR) over the next best three-model ensemble (compare rows 6 and 7).

Val Seen Val Unseen

# Re-ranking Model PL NE ↓ SPL ↑ OSR ↑ SR ↑ PL NE ↓ SPL ↑ OSR ↑ SR ↑

Si
ng

le
M
od

el
s 1 follower (flw) [28] 10.40 3.68 0.62 74.12 65.10 9.57 5.20 0.49 58.79 52.36

2 speaker (spk) [28] 11.19 3.80 0.56 77.25 60.69 10.71 4.25 0.49 72.07 54.66

3 VLN-BERT 10.28 3.73 0.66 76.47 70.20 9.60 4.10 0.55 69.22 59.26

E
ns
em

bl
e

M
od

el
s 4 spk + flw [28] 10.69 2.72 0.70 82.94 74.22 10.10 3.32 0.63 76.63 67.90

5 spk + flw + flw 10.73 2.72 0.71 83.33 74.71 10.12 3.22 0.64 77.56 69.14
6 spk + flw + spk 10.77 2.45 0.73 85.98 76.86 10.17 2.99 0.65 79.28 70.58

7 spk + flw + VLN-BERT 10.61 2.35 0.78 86.57 81.86 10.00 2.76 0.68 81.91 73.61

Table 3. Leaderboard results on Test Unseen for methods using beam search.

Test Unseen

Re-ranking Model PL NE ↓ SPL ↑ OSR ↑ SR ↑

Speaker-Follower [8] 1,257 4.87 0.01 96 53
Tactical Rewind [13] 197 4.29 0.03 90 61
Self-Monitoring [20] 373 4.48 0.02 97 61
Reinforced Cross-Modal Matching [30] 358 4.03 0.02 96 63
Environmental Dropout [28] 687 3.26 0.01 99 69
Auxiliary Tasks† [33] 41 3.24 0.21 81 71

VLN-BERT 687 3.09 0.01 99 73
†indicates unpublished/concurrent work

Does VLN-BERT consider relevant image regions to produce align-
ment scores? To gain insight into the visual grounding learned by VLN-BERT,
we visualize which panoramic image regions affect the compatibility score. This
analysis is performed using a simple gradient-based visualization technique [25].
We take the gradient of our learned score f(x, τ) with respect to the feature rep-
resentation for each region from each panorama, and sum this 2048-dimensional
gradient vector over the feature dimension to produce a scalar measure of re-
gion importance. To gain further insight, we analyze how the region importance
varies when the instruction is perturbed by removing parts of the description.

Two examples of this analysis are illustrated in Figure 5. The left panel pro-
vides the original and modified versions of the instructions. The middle panel
illustrates the region importance histograms and the top-5 regions that influence
the compatibility score for the original instructions. The right panel provides
the equivalent illustrations for the modified instructions. The words and regions
highlighted in green provide a qualitative assessment of the visual grounding
learned by VLN-BERT. Next, we remove a part of the original instruction that
refers to a high-importance region, producing the modified versions of the in-
structions. The purple highlights demonstrate that after the instructions have



14 A. Majumdar et al.
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Original Instruction: Moving towards 
the stairs, but without using them, 
take a left, walk down the stairs, then 
stop next to the fridge.

Modified Instruction: Moving towards 
the stairs, but without using them, 
take a left, walk down the stairs.

Original Instruction: Leave the 
kitchen, and walk through the pantry. 
In the hall take a left, and take a right 
at the end of the hall. Stop next to the 
plant on the table in the entryway.

Modified Instruction: Leave the 
kitchen, and walk through the pantry. 
In the hall take a left, and take a right 
at the end of the hall.
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Fig. 5. We compare region importance histograms under instruction ablations – re-
moving a phrase or sentence. Region importance is calculated by taking the gradient of
the compatibility score with respect to image region features. The images above each
histogram correspond to the most influential regions (i.e. the peaks in the histogram).
The underlined instruction phrases correspond with the regions outlined in green and
purple.In the top example, removing the reference to the ‘fridge’ (in green) shifts the
importance to other regions along the path (i.e. the ‘stairs’ in purple), suggesting that
VLN-BERT considers visually relevant image regions to score path-instruction pairs.

been modified, VLN-BERT appropriately shifts importance to remaining scene
elements referenced in the instructions. For example, in the first row regions
containing a ‘fridge’ are important for the original instruction, whereas for the
modified instruction the importance shifts to the ‘stairs’.

6 Conclusion

In this work, we demonstrated internet-to-embodied transfer of visual concept
grounding – leveraging large-scale image-text data from the web to improve a
discriminative path-instruction alignment model for VLN. In our path re-ranking
setting, this model improves over prior work and our ablations show each stage
of our transfer curriculum contributes significantly.
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