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Abstract. While Structure-from-Motion pipelines certainly have their
success cases in the task of 3D object reconstruction from multiple im-
ages, they still fail on many common objects that lack distinctive tex-
ture or have complex appearance qualities. The central problem lies in
6DOF camera pose estimation for the source images: without the ability
to obtain a good estimate of the epipolar geometries, all state-of-the-art
methods will fail. Although alternative solutions exist for specific objects,
general solutions have proved elusive. In this work, we revisit the notion
that silhouette cues can provide reasonable constraints on multi-view
pose configurations when texture and priors are unavailable. Specifically,
we train a neural network to holistically predict camera poses and pose
confidences for a given set of input silhouette images, with the hypothesis
that the network will be able to learn cues for multi-view relationships
in a data-driven way. We show that our network generalizes to unseen
synthetic and real object instances under reasonable assumptions about
the input pose distribution of the images, and that the estimates are
suitable to initialize state-of-the-art 3D reconstruction methods.

1 Introduction

Three-dimensional object reconstruction, the process of converting imagery of an
object into a representation of its geometry, is an increasingly mainstream com-
ponent of augmented- and virtual-reality (AR/VR) research and applications,
with much of this growth due to the increasing facility and scalability of cap-
ture technologies. In AR/VR entertainment, for example, commodity 3D scan-
ning technology can efficiently generate photorealistic models for use in virtual
worlds, reducing manual effort required by 3D artists. Likewise, many research
applications now utilize realistic 3D models to drive synthetic data generation.

Historically, high-quality object capture methodologies have required a cer-
tain level of controlled capture, such as a fixed camera rig, or specific imag-
ing equipment, such as a depth sensor [29, 38]. Modernized pipelines driven by
structure-from-motion (SfM) followed by multi-view stereo (MVS) and depthmap
fusion [48, 47] have increasingly democratized the process in recent years, en-
abling less-experienced users to run photogrammetry from a handheld camera,

⋆ This work was completed while Yoni was an intern at Meta.
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Fig. 1. Our deep neural network takes as input a set of silhouette masks of an object
observed from different viewpoints. After applying several permutation-equivariant lay-
ers that combine image-specific and image-set-generic features, the network outputs a
6DOF pose and a pose confidence for each input image.

either with known temporal sequencing (i.e., video capture) or capturing im-
ages as an unordered collection. These general-purpose pipelines also enable dis-
tributed collection, where photos from multiple users in different environments
are leveraged to create a 3D model.

However, while casual 3D reconstruction is increasingly feasible, output re-
construction quality in these pipelines varies widely depending on the input
imagery and target object, and there exist several categorical limitations, par-
ticularly for low-texture objects and objects having non-Lambertian surface re-
flectance properties. A number of approaches, for example the recent works of
Yariv et al. [66] and Schmitt et al. [46], have pushed the envelope of dense surface
estimation pipelines by jointly modeling object geometry, view-dependent light-
ing/reflectance effects, and – importantly – allowing for camera pose parameters
to be refined as part of the optimization process, which is not generally possible
with traditional MVS. These approaches have shown a remarkable improvement
in completeness of the reconstructed object surface, as well as impressive quality
for low-texture objects with complex appearance.

In this paper, we address a key remaining gap for state-of-the-art reconstruc-
tion methods: camera pose initialization, particularly when photometric methods
fail. To this end, we introduce a neural-network-based alternative to SfM tackling
the classical computer vision problem of multi-view pose from unknown object
silhouettes [8, 7, 17, 31]. Given a set of binary object masks obtained from mul-
tiple images of an object, the goal is to produce a camera pose for each image,
relative to an arbitrary, unspecified object coordinate frame. The driving concept
here is that, when constraints like point correspondences cannot be utilized, the
object contour in the image still provides signal on the space of possible relative
camera poses. For example, each foreground pixel in one image has a correspond-
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ing location in every other image, and thus the epipolar lines for those pixels
must intersect the object silhouette in the other image. While previous work has
wielded such principles using handcrafted features and/or controlled scenarios,
our hypothesis is that a neural network should be able to naturally learn the
joint space of camera viewpoints.

For the current work, we assume we are given a set of pre-extracted sil-
houette images with known camera intrinsic calibration, generally upright ori-
entation, and medium-baseline camera motion. This image set is fed to an
order-equivariant neural network (Fig. 1) that regresses a six-degrees-of-freedom
(6DOF; i.e.rotation and translation) pose for each image simultaneously, as well
as a confidence estimate that helps to identify images with higher levels of pose
ambiguity. The network’s task during training is to learn how to map the ob-
ject contours into a common latent representation while also taking into account
the global state of all contours together, and then to form a mapping from this
representation into a final 6DOF pose.

For training, we render randomly posed silhouettes of CAD models and di-
rectly optimize the network’s output to match the poses used for rendering. At
test time, the network uses only the input silhouette images, without any knowl-
edge about the 3D geometry of the observed object. Our method provides the
following overall contributions:

– A deep-learning approach for silhouette-based multi-view 6DOF pose estima-
tion for unknown objects. Previous works in this space have been very tailored
to controlled settings or known objects [64], or have required carefully hand-
crafted features in a robust framework while only estimating 3DOF camera
rotations [31].

– A neural network architecture leveraging DSS and DeepSets layers [33, 68] to
achieve unordered multi-view pose estimation. Such architectures have not
been previously used for this task. In our case, the selection of the output
global coordinate system is arbitrary, and there is not just one “correct” so-
lution, in contrast to previous applications of permutation-equivariant layers.
We thus introduce a new loss function that is agnostic to the output global
coordinate system (Eqs. (2-7)). This formulation is crucial for making the
training problem possible.

– A loss formulation that incorporates the von Mises-Fisher distribution to allow
for pose confidence regression. We demonstrate that our network’s confidence
predictions reliably correspond to per-view pose accuracy results.

– Generalizability: While we train on only 15 object classes of CAD models, we
show that the network generalizes to unseen object classes on a number of
synthetic and real datasets, including datasets with imperfect masks.

– Putting silhouettes into practice: Considering the case of uncontrolled, un-
known object capture, we demonstrate that silhouette-based reasoning offers
a workable solution for low-texture objects where color-based reconstruction
methods have inherent limitations. Examples are shown for a new “Glass Fig-
urines” dataset, where our method succeeds in several challenging cases where
a state-of-the-art SfM pipeline [48] fails.
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2 Related Work

Camera pose estimation for object reconstruction has a long history in the field
of computer vision. For unknown objects and unordered images, possibly the
most well-established approaches are photogrammetric methods like Structure-
from-Motion (SfM) [48]. These methods are driven by 2D feature correspondence
search, where distinct 2D image keypoints are detected, described, and matched
between the input images. Assuming that such 2D image-to-image correspon-
dences can be reliably found, additional geometric reasoning is used to begin
recovering 6DOF image poses. In contrast to incremental SfM methods that
build the final 3D reconstruction one image at a time, the method we propose is
more in line with global SfM approaches [12, 50] and recent holistic deep-learned
approaches [37], where pose properties for all images are determined simultane-
ously. Typical global SfM methods rely on two-view pose estimates to initially
solve for absolute image rotations, followed by a second stage to solve for ab-
solute image positions. Recent work by Kasten et al. [25] has also suggested
a one-step global approach by averaging essential matrices. While our neural
network architecture does not leverage two-view relationships directly, it does
employ a global representation of all images when deriving latent representations
at different stages of the network.

It is also worth noting that many active-capture applications, for example
object reconstruction pipelines that run on a smartphone [42, 53], augment the
camera pose estimates with inertial measurement unit readings available on the
device, which provide a strong prior for the differential motion of the camera. In
our work, we assume a different capture scenario, where the object of interest may
be moved between different frames, or even where the collection of object images
is derived from different locations at different times. Moreover, all SfM-type
methods heavily depend on the reconstructibility of the object of interest. For
objects with low texture or complex appearance, these methods often fail because
the photometric assumptions underlying keypoint detection and description are
violated.

Learning-based methods for 3D object reasoning. A litany of meth-
ods have been proposed for camera pose detection for known objects, especially
in single-view contexts. Early methods leveraged deformable parts models for
discrete viewpoint prediction [13, 32, 40]. Related work [16] achieved 6DOF pose
estimation via view synthesis with brute-force evaluation of geometry priors.
With the advent of deep learning, numerous approaches have advanced single-
view object detection and pose estimation, including for discrete prediction, 3D
bounding box estimation, direct pose regression, and direct 2D-to-3D point cor-
respondence regression [41, 62, 27, 43, 63, 54, 5, 2]. One recent extension to these
works is HybridPose [51], which combines object pose regression with learned
feature extraction and subsequent pose refinement. Also relevant to our work is
SilhoNet [1], an object pose regressor that is trained to predict occlusion-aware
and occlusion-agnostic object silhouette masks as an intermediate output. The
silhouette is used as the primary cue for rotation, which allows the rotation
regression submodule to train entirely on synthetic data.
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Reconstruction-focused approaches have emphasized learning shape priors
for object classes, especially for single-view geometry prediction. Choy et al.
[4] trained a recurrent neural network for volumetric 3D reconstruction of mul-
tiple object classes. Beyond single-view shape estimation, this network is able
to iteratively aggregrate multiple images to refine the output, resulting in a
coarse 3D model for instances of the trained-for classes. While this and related
methods [10, 6, 61, 35] penalize errors in 3D geometry, prior work leveraging de-
formable shapes [3, 24] and subsequent works in differentiable projection and
rendering have used object masks directly. Several methods [44, 65, 14, 56, 58, 26]
train single-view volumetric or mesh reconstruction models by reprojecting vox-
els into other views and optimizing the predicted voxel occupancy against the
ground-truth object mask. Some such methods have also reported results on 2
to 5 input views [44, 14, 58].

Several learning-based reconstruction methods exist that estimate camera
pose for canonical object frames [70] or between image pairs [55, 20] with a
silhouette-based loss. In the latter cases, a network is shown pair of images and
jointly predicts (1) the relative pose between them and (2) a 3D geometry (a vox-
elization or a point cloud) for the object. The models are trained by reprojecting
the predicted geometry into the first image and penalizing disagreements with
the associated object mask. Each input image is independently processed, al-
lowing for single-view applications of geometry and pose estimation at inference
time.

A number of recent works learn a neural radiance field (NeRF) [36] while op-
timizing camera parameters [57, 30, 22, 67]. These methods either require camera
initialization, or can only handle roughly forward-facing scenes. Very recently,
[34] used a generative adversarial training strategy without input camera poses in
a general camera setup with a known camera distribution. For each scene, they
train from scratch a (NeRF, discriminator) network pair by sampling camera
poses according to the distribution and training the NeRF to fool the discrim-
inator for whether a patch is fake (rendered) or real. This training process is
heavy, on the order of hours, and must be done separately for each scene with-
out any generalizability to new scenes. While the majority of the work focuses
on color image processing, the authors do present a single proof-of-concept result
taking in a large collection of silhouette images as input. In contrast to NeRF
methods, our approach trains a neural network that holistically processes image
sets in a single pass and generalizes to unseen objects and object classes.

Pose from silhouettes of an unknown object. Methods for camera
pose estimation from silhouettes date back more than two decades. Classical
approaches utilize epipolar mapping constraints, where all epipolar silhouette
lines mapped from one view must intersect the silhouette in another. For two
views, epipolar constraints yield corresponding 2D object contour points with
tangent epipolar lines. For multiple views, the constraints amount to finding a
consistent visual hull for all images. Many early approaches optimized pose by
identifying corresponding silhouette frontier points, either as single-take meth-
ods under controlled capture (e.g.a turntable or using mirrors) [59, 60, 7, 18, 19]
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Fig. 2. Our permutation-equivariant network architecture. Starting from the N input
silhouettes, five groups of three convolutional DSS layers are sequentially applied, inter-
spersed by max-pooling operations. Then, three deep sets (fully-connected) layers are
applied to finally obtain 10 output values per image, representing the image’s rotation,
translation, and pose confidence. Each convolution is followed by a batch normalization
layer (not shown), and we use ELU activations throughout the network.

or by optimizing a camera rig configuration under repeated observations [23, 8,
49]. Visual hull optimization [17] has also been proposed for controlled capture
scenarios.

One similar work to ours is that of Littwin et al. [31], which aims to estimate
the rotation distance between cameras using a handcrafted measure of silhouette
contour similarity. While this two-view measure is quite noisy, the authors show
that, given a sufficiently large source image set, an inlier set of relative rotation
measurements can be determined via a robust fitting procedure. In contrast, our
network considers all available images jointly when making its predictions, and
it additionally can reason about camera translations and pose confidence.

Finally, Xiao et al. [64] trained a neural network to regress 6DOF pose for
an novel object in an image under the assumption that the object geometry
is known at inference time. Their approach first computes separate shape and
appearance encodings and then feeds these to a pose regression sub-network.
While the authors did not analyze the network’s activations, it is quite possible
that their network learns to encode object contours in the input image and
compare these to possible projections of the 3D shape.

3 Method

We assume an input set of N images taken by N cameras capturing the same
3D object at different viewpoints. We further assume that the object silhouette
masks are pre-extracted from the input images. In practice, this can be done
either by classical or learning-based approaches [15] for 2D object segmentation.
Our goal is to regress the camera poses solely from the silhouette masks.

To tackle this problem, we introduce a deep neural network architecture
that learns to infer a set of 6DOF camera poses and pose confidences from
silhouettes using a large training set of general 3D objects. To improve robust-
ness against two-view ambiguities, our network considers all N input silhouettes
jointly. While we directly optimize pose error during training, we observe that
our network outputs poses that respect the silhouette constraints leveraged by
earlier non-learning-based methods (see supplementary).
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3.1 Network Architecture

Our network architecture (Fig. 2) is based on the recently introduced “deep sets
of symmetric elements” (DSS) layers [33], which have shown to be effective across
a variety of learning tasks involving inputs of unordered image sets. The input
for each DSS layer is a set of N images with the same number of channels. Two
learnable convolutional filters are then applied: a Siamese filter that is applied on
each input image independently, and an aggregation module filter that is applied
on the sum of all input images. The output of the second filter is then added
to each output of the first filter, resulting in a new set of N images with a pos-
sibly different number of channels. Since summation is a permutation-invariant
operation, it follows that a DSS layer is permutation-equivariant, meaning that
applying a permutation to the N input images results in permuted outputs.

In our case, since the multi-view input silhouettes are unordered, we de-
sign our network to be permutation-equivariant. The inputs to the network are
N , one-channel {0, 1} silhouette binary masks, and the outputs are the corre-
sponding N camera poses, each represented by 10 coordinates: 6 for the world-
to-camera rotation using the 6D parameterization of [69], 3 for the world-to-
camera translation, and another scalar to represent the confidence of the net-
work in the estimated pose. We use a sequence of 5 DSS blocks, each consisting
of 3 DSS layers with max-pooling operations between each block, followed by
permutation-equivariant fully connected (“deep sets”) layers as in [68].

3.2 Confidence-based Loss Function

We use ground-truth camera poses (available at training time) for training the
network. Let (R1, t1), . . . , (RN , tN ) denote the output camera poses from the
deep network and (R̄1, t̄1), . . . , (R̄N , t̄N ) the respective ground-truth (GT) cam-
era poses. For each input silhouette image, we predict a single pose confidence
κ ∈ R corresponding to the scale parameter of a von Mises-Fisher (vMF) distri-
bution [52].

First, it is worth taking a moment to discuss possible formulations for the
network loss function and confidence prediction. On one hand, we could forego
confidence estimation entirely and directly penalize the rotation and translation
errors using, e.g., an L2 penalty. We empirically found this approach to give
similar accuracy to our formulation, with the caveat that the network no provides
quality ratings for individual pose estimates. Alternatively, we could adopt a
complete probability distribution like the Bingham distribution on rotation [11],
which can properly model uncertainty directions in the tangent space of SO(3).
In practice, however, we found that introducing more confidence parameters for
rotation made the network more difficult to train. This may be caused in part
by the fact that the full space of SO(3) is much larger than that of our assumed
input viewpoints, which are generally upright and always object-centric. As such,
we have chosen to model a single confidence parameter for rotation alone, and
we show in our experiments that this approach is effective in separating good-
quality pose estimates from those that are less certain.
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To model 3DOF camera rotation and its confidence, we adopt a maximum-
likelihood formulation where we predict a 2DOF probability distribution mean
and scale for each axis of the local camera frame. We define three vMF distri-
butions that share the same scale parameter κ, each with a probability density
function of

fi(x; ri, κ) = C3(κ)e
κri

Tx, (1)

where ri ∈ S2 for i ∈ {1, 2, 3} are the (unit) row vectors of the predicted rotation
matrix for the image, and C3(κ) =

κ
2π(eκ−e−κ) forms a normalization factor.

We aim to predict distributions that explain the GT rotation axes with as
high of a probability as possible. Denoting the GT row as r̄i ∈ S2, the log-
likelihood for this vector to be sampled from the corresponding distribution is

li(R0) = log (C3(κ)) + κrTi (R0r̄i), (2)

where R0 is a global rotation ambiguity of our solution relative to the GT cam-
eras.

For log-likelihood lji of camera j, we can compute R0 as

R∗
0 = argmax

R0

N∑
j=1

3∑
i=1

lji (R0). (3)

In the supplementary material, we show that this can simply done by weighted
relative rotation averaging:

q̃∗
0 =

1

N

N∑
j=1

κjq
−1
j q̄j , q∗

0 =
q̃∗
0

∥q̃∗
0∥

, (4)

where qi, q̄i, and q∗
0 are the quaternions corresponding to Ri, R̄i, and R∗

0,
respectively. The final loss function for the rotation and confidence outputs is

LR,κ =
1

3N

N∑
j=1

3∑
i=1

−lji (R
∗
0). (5)

For our predicted translation vectors, a camera-center loss is applied by consid-
ering global translation and scaling ambiguities. Denoting ci = −R∗

0
TRT

i ti and
c̄i = −R̄T

i t̄i as predicted and GT camera centers, respectively, the camera-center
loss is defined by

Lc =
1

N

N∑
i=0

∥∥∥∥ci − c

s
− c̄i − c̄

s̄

∥∥∥∥ , (6)

where the mean vectors c = 1
N

∑N
j=1 cj , c̄ = 1

N

∑N
j=1 c̄j account for the global

translation ambiguity, and we divide by the mean distance between each camera
center and the average center: s = 1

N

∑N
j=1 ∥c− cj∥ , s̄ = 1

N

∑N
j=1 ∥c̄− c̄j∥. Our

total loss function is:
L = βLc + LR,κ (7)

with scalar weight β balancing the two loss parts. In our experiments, we use
β = 2, which was chosen based on examining the validation set error. Lc values
are in [0, 1], and values of LR,k are typically around −10.
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3.3 Training

For training our network, we use a collection of synthetic object models from
multiple object categories. For each training iteration, we render N 256 × 256
px silhouettes with random camera poses around the given object. Each input
set of N images is generated with azimuth and elevation sampled uniformly in
the range [−30◦, 30◦], while the camera roll from the scene vertical is sampled
from a normal distribution with a standard deviation of 5◦. This viewing range
is selected to approximate a typical set of casually captured viewpoints of one
side of an object; for example, the DTU dataset [21] used in our experiments
has a similar range of viewing angles. Each camera is initially positioned to
look at the object origin (defined as the median vertex), with a distance from
the origin sampled uniformly within the range [3.2r, 6r], where r is the object
radius. The camera translations are then perturbed by an offset sampled from
N (0, (0.005r)I3×3). The object itself is rotated randomly around its origin.

In all experiments, we use N = 10 input views for training. This number
was reported by [31] to be a large-enough support set in the multi-view setting.
We trained the network by minimizing Eq. (7) on a training split of 15 object
categories. We used the ADAM optimizer [28] with a learning rate of 0.001. To
improve initial training acceleration, we began with a batch size of 5 (i.e., 5
groups of 10 random poses) with all images coming from the same object. To
better maintain training acceleration in later epochs, we switched to a batch size
of 1 after ∼ 60 epochs, and we trained overall for ∼ 250 epochs.

4 Experiments

4.1 Datasets

We evaluated our trained network on 3D objects from a validation split of object
models from 3DWarehouse. We tested unseen objects and camera configurations
from our 15 training classes, plus 5 unseen object classes.

In addition to manually created models, we further evaluated the network on
a new dataset, RealScan, that consists of 30 high-resolution scans of a variety
of real 3D objects ranging from stuffed animals to office supplies. We projected
these scans with the same sampling described in Sec. 3.3 for 100 sets of 20 random
views, with each set of views coming from either the front, back, top, sides, or
bottom of the object. These high-polygon meshes, as well as their projected
contours, are very different from the ones that are used for training the network.

We further applied our method to real images from (1) the DTUMVS dataset
[21] and (2) a new “Glass Figurines” dataset containing objects that are difficult
to reconstruct using traditional SfM methods. For DTU, we evaluated the 15
back-row cameras (available for scans with id number > 80) whose cameras are
far enough from the object such that most of the object is visible in the image.
For the 8 scans, we used the input masks that were extracted manually by [66,
39]. The Glass Figurines dataset consists of 11 objects with 10 images each, plus
manually extracted objects masks and ground-truth camera poses computed
using ArUco Tags [45, 9]. We plan to publicly release the dataset.
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Table 1. Camera pose accuracy and reprojection IOU for the 3D Warehouse dataset.

Metrics R [◦] ts [ratio] td [◦] R [IOU] t [IOU] ts [IOU] td [IOU] R + t [IOU]

Average per-class validation statistic over all 15 training classes

v
a
li
d
. Mean (Med.) 6.40 (4.59) 0.03 (0.02) 2.36 (1.50) 0.84 (0.88) 0.70 (0.73) 0.92 (0.94) 0.70 (0.74) 0.46 (0.47)

↑ 5 (Oracle) 5.17 (3.88) 0.03 (0.03) 2.17 (2.23) 0.86 (0.87) 0.71 (0.71) 0.93 (0.93) 0.72 (0.71) 0.49 (0.48)

↓ 5 (Oracle) 7.63 (8.92) 0.04 (0.04) 2.55 (2.48) 0.82 (0.81) 0.68 (0.69) 0.91 (0.91) 0.69 (0.69) 0.42 (0.44)

Unseen test classes

b
a
t
h
t
u
b

Mean (Med.) 6.61 (4.69) 0.03 (0.02) 2.07 (1.33) 0.92 (0.95) 0.86 (0.88) 0.95 (0.96) 0.87 (0.89) 0.67 (0.74)

↑ 5 (Oracle) 5.33 (4.13) 0.03 (0.03) 1.90 (1.92) 0.94 (0.94) 0.87 (0.87) 0.95 (0.96) 0.88 (0.88) 0.70 (0.69)

↓ 5 (Oracle) 7.89 (9.09) 0.03 (0.04) 2.23 (2.22) 0.91 (0.90) 0.85 (0.85) 0.94 (0.94) 0.87 (0.87) 0.64 (0.65)

c
a
r

Mean (Med.) 6.12 (4.53) 0.03 (0.02) 2.27 (1.45) 0.92 (0.94) 0.84 (0.86) 0.94 (0.96) 0.85 (0.87) 0.62 (0.69)

↑ 5 (Oracle) 4.92 (3.81) 0.03 (0.03) 1.99 (2.13) 0.93 (0.94) 0.85 (0.85) 0.95 (0.95) 0.86 (0.86) 0.66 (0.64)

↓ 5 (Oracle) 7.32 (8.43) 0.03 (0.03) 2.55 (2.40) 0.90 (0.90) 0.83 (0.83) 0.94 (0.94) 0.84 (0.84) 0.58 (0.60)

c
h
a
ir Mean (Med.) 6.79 (4.96) 0.03 (0.02) 2.67 (1.70) 0.83 (0.87) 0.74 (0.78) 0.91 (0.94) 0.75 (0.79) 0.49 (0.51)

↑ 5 (Oracle) 5.38 (4.14) 0.03 (0.03) 2.38 (2.52) 0.85 (0.87) 0.76 (0.75) 0.92 (0.92) 0.76 (0.76) 0.53 (0.51)

↓ 5 (Oracle) 8.19 (9.43) 0.04 (0.04) 2.97 (2.83) 0.80 (0.78) 0.73 (0.73) 0.90 (0.91) 0.74 (0.74) 0.45 (0.47)

la
m

p Mean (Med.) 10.60 (7.26) 0.04 (0.03) 3.57 (2.24) 0.77 (0.83) 0.63 (0.68) 0.89 (0.93) 0.64 (0.69) 0.32 (0.27)

↑ 5 (Oracle) 9.19 (6.57) 0.04 (0.04) 3.48 (3.51) 0.79 (0.80) 0.65 (0.65) 0.90 (0.90) 0.66 (0.66) 0.34 (0.33)

↓ 5 (Oracle) 12.00 (14.62) 0.05 (0.05) 3.66 (3.63) 0.75 (0.73) 0.61 (0.62) 0.88 (0.88) 0.62 (0.63) 0.30 (0.31)

m
a
il
b
o
x

Mean (Med.) 11.15 (5.13) 0.06 (0.03) 3.98 (2.12) 0.82 (0.88) 0.73 (0.78) 0.93 (0.95) 0.74 (0.78) 0.36 (0.30)

↑ 5 (Oracle) 8.98 (7.56) 0.05 (0.05) 3.49 (3.42) 0.84 (0.86) 0.74 (0.75) 0.94 (0.93) 0.75 (0.76) 0.38 (0.38)

↓ 5 (Oracle) 13.32 (14.73) 0.07 (0.07) 4.47 (4.54) 0.81 (0.79) 0.72 (0.71) 0.93 (0.93) 0.73 (0.71) 0.33 (0.33)

4.2 Results

Camera pose accuracy results are presented for the 3D Warehouse dataset in
Table 1 and for the RealScan dataset in Table 2. For both, we evaluate on 10
random views of the object per test instance. Due to space limitations, we only
show a representative subset of the RealScan results, and for 3D Warehouse, we
show the average per-class validation result across all 15 training classes, and
for our 5 unseen testing classes. See our supplementary material for complete
results. In each row, we show mean and median errors, plus a confidence-ordered
breakdown of the mean error, for a variety of metrics. All “Top 5” and “Bottom
5” metrics are taken using our confidence ranking from highest to lowest; we
also show “Oracle” rankings for these that that consider the ordering of lowest
rotation error to higher rotation error. (The oracle ordering is the same for all
columns.) The oracle provides a lower bound on the Top-5 error and thus can
be used to assess the effectiveness of our confidence predictions.

When our confidence output is near to or better than the oracle, this indicates
that our network has learned a reasonable confidence for pose. We also report
intersection-over-union (IOU), computed by rerendering the test object using
our predicted poses after global alignment to the GT poses. An example IOU
result is shown in Fig. 3, along with a visualization of the visual hull for our
estimated poses.

In Tables 1 and 2, we report our mean rotation (R), translation-scale (ts),
and translation-direction (td) error. ts is the absolute value of: one minus the
magnitude ratio of the predicted and GT translation vectors. td is the angle
between the predicted and GT translation vectors. Also in of Table 1, we isolate
the different network outputs: the sixth column shows our rotation combined
with GT translation, the next our translation with GT rotation, and so on.
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Table 2. Pose accuracy for a representative subset
of RealScan.

Metrics R [◦] ts [ratio] td [◦]
C
h
e
e
t
a
h

Mean (Med.) 8.78 (6.43) 0.04 (0.03) 3.37 (2.57)

↑ 5 (Oracle) 7.14 (5.50) 0.03 (0.03) 2.80 (3.13)

↓ 5 (Oracle) 10.42 (12.06) 0.04 (0.04) 3.94 (3.62)

C
h
e
s
s

K
n
ig

h
t

Mean (Med.) 10.29 (8.01) 0.04 (0.03) 4.84 (3.61)

↑ 5 (Oracle) 8.12 (5.99) 0.04 (0.04) 4.97 (4.64)

↓ 5 (Oracle) 12.47 (14.60) 0.05 (0.04) 4.70 (5.03)

G
la

s
s
e
s

Mean (Med.) 9.15 (7.57) 0.05 (0.03) 4.39 (3.00)

↑ 5 (Oracle) 7.45 (5.95) 0.04 (0.04) 3.91 (4.23)

↓ 5 (Oracle) 10.85 (12.35) 0.05 (0.06) 4.87 (4.56)

P
la

s
t
ic

C
u
p

Mean (Med.) 15.33 (12.96) 0.05 (0.04) 6.45 (5.41)

↑ 5 (Oracle) 12.84 (9.70) 0.05 (0.05) 6.50 (6.75)

↓ 5 (Oracle) 17.82 (20.96) 0.05 (0.05) 6.41 (6.16)

S
t
a
p
le

r

Mean (Med.) 8.88 (4.68) 0.03 (0.02) 2.77 (1.81)

↑ 5 (Oracle) 7.44 (5.50) 0.03 (0.03) 2.43 (2.70)

↓ 5 (Oracle) 10.31 (12.25) 0.03 (0.03) 3.10 (2.83)

T
o
y

B
u
n
n
y Mean (Med.) 8.29 (5.92) 0.03 (0.02) 2.92 (1.95)

↑ 5 (Oracle) 6.06 (4.51) 0.03 (0.03) 2.78 (2.80)

↓ 5 (Oracle) 10.52 (12.08) 0.03 (0.03) 3.06 (3.04)

W
o
o
d
e
n

S
p
o
o
n Mean (Med.) 10.04 (8.18) 0.05 (0.03) 3.52 (2.57)

↑ 5 (Oracle) 7.68 (5.76) 0.04 (0.04) 3.51 (3.65)

↓ 5 (Oracle) 12.40 (14.32) 0.05 (0.05) 3.53 (3.40)

Table 3. Camera pose accuracy
for the DTU dataset.

Id R [◦] ts [ratio] td [◦]

mean median mean median mean median

83 4.69 4.11 0.02 0.02 3.63 3.73

97 16.44 16.73 0.11 0.08 9.54 8.72

105 4.35 4.16 0.01 0.01 2.57 2.37

106 6.20 5.08 0.02 0.02 1.78 1.84

110 4.59 3.43 0.02 0.01 0.68 0.68

114 3.13 3.12 0.02 0.02 0.78 0.66

118 7.17 6.34 0.03 0.02 5.55 4.89

122 9.76 8.74 0.03 0.03 6.23 5.43

Concerning the results themselves, we observe that we obtain consistent gen-
eralization from our training data to our unseen test classes and more realistic
object scans. For many objects, rotation error is around 8◦ on average, with a
substantially lower median error, and we observe a similar error distribution for
validation and test instances (Fig. 4). We also observe generally low translation
errors, and that our confidence ranking is consistently able to achieve rotation
errors within a few degrees of the oracle. This ranking is also on par with the
oracle in the IOU metrics. From the IOU metrics, we also see that our rotation
estimates are generally high quality, achieving 80-90% IOU for nearly all test
cases. Translation fares slightly worse, especially for the direction estimate, for
which the IOU metric is very sensitive. We observe lower IOUs for both rotation
and translation (rightmost column), which is expected since it reflects the full
network output. See the supplementary for additional RealScan visualizations.

Qualitatively, our network understandably performs worse for objects with
rotational symmetry, for example the 3D Warehouse lamps and the RealScan
plastic cup. In the latter case, while the cup has a handle, this handle is not
always visible in the input images, and so an unambiguous pose estimate cannot
be determined. IOU is also a conservative metric for pose estimation, especially
for thin structures like the RealScan eyeglasses and spoon, because even with
a perfect rotation estimate, a small amount of translation error can cause the
reprojection to shift considerably.

As for real-world datasets, results for the DTU and Glass Figurines datasets
are presented in Tables 3 and 4, respectively. Different from the previous experi-
ments, we provided our network with all 15 DTU images as input. We observe low
rotation and translation errors for the majority of the objects in both datasets.
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Fig. 3. Estimated poses for 10 silhouette masks of an airplane. Left: Object reprojec-
tions by our cameras (red) versus the original input masks (green), ordered from from
greatest confidence (top left) to least (bottom right). Middle: Visual hull projection for
our method (yellow) versus the original input masks (green), with the same ordering.
Right: Predicted poses (blue frusta) relative to GT poses (red frusta), with the target
object mesh in red.
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Fig. 4. Histogram of rotation errors for all test instances of airplanes (left, training
class) and cars (right, unseen class).

Comparison to reconstruction methods. For the Glass Figurines dataset,
we also compare our method to GNeRF [34], a recent deep method that can op-
timize per-scene camera poses without accurate initialization. While GNeRF is
built for color images, the authors also showed an example result on silhou-
ettes. We evaluate both masked color images and silhouettes in Table 4. For this
dataset, GNeRF performs much worse in pose estimation. This is understand-
able due to the limited size (10 images) and pose distribution of each image set.
The NeRF is accordingly unable to generalize to novel viewpoints, especially for
silhouettes where cross-view occupancy constraints must be leveraged. GNeRF
also must train on a single image set at a time and takes hours to converge. In
contrast, our network runs in a single pass without any additional training.

We also note in Table 4 whether COLMAP’s SfM algorithm [48] could process
the masked color images. When COLMAP succeeded, its poses tended to be very
accurate (see supplementary). However, due to the lack of a consistent object
appearance or background, COLMAP failed to reconstruct 5 of the 11 objects.

Pairwise angular distances.We conducted a small experiment to compare
our method against the method of Littwin et al. [31], which is the only method
we are aware of that can jointly estimate multi-view camera poses (albeit only
relative rotations) for a collection of causally captured object silhouettes. We
unfortunately were unable to obtain a copy of their implementation or data, and
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Fig. 5. Predicted versus ground-truth two-view angular distances for a validation class
instance (airplane, left two columns) and an unseen class instance (car, right two
columns), both from top-down viewpoints. Each point represents an image pair from
100 total images of the object, colored according to the image in the pair with the
higher uncertainty (vMF angular spread at 95% of the vMF CDF). Top row: Example
silhouettes. Second row: (1, 3) Result from running our network on 2000 samples of 10
images, showing the average error and lowest confidence per pair. (2, 4) Result from
running our network once with all 100 images as input.

so we instead provide a qualitative comparison of Fig. 5 versus Fig. 2 in [31]. In
the first and third graphs in Fig. 5, we have rendered 100 images of an object
and from this sampled 2000 sets of 10 images. We plot the average estimated
angular distance over all samples in which that pair appeared together, and we
compare this to the ground-truth distance. Compared to [31], our estimates are
much less noisy, and they match the ground truth with at least as much accuracy
as [31] for a novel class.

We also show our confidence estimates in Fig. 5 and observe that they corre-
late to prediction accuracy and ground-truth distance, with nearer relative poses
having higher confidence. Although confidence κ (Eq. (1)) is difficult to interpret
directly in our loss formulation, we provide a rough sense of its scale by con-
verting to an angular “spread” of the vMF distribution. Specifically, we consider
the vMF CDF and, for a given value of κ, compute the angle arccos

(
ri

Tx
)
that

covers 95% of the distribution over the surface of the sphere. Put more simply,
a darker color in the plot indicates a tighter distribution and higher confidence.

Many network inputs. As evidenced by our DTU experiments, our net-
work generalizes to more inputs than it was trained on. In second and fourth
graphs in Fig. 5, we take this to the extreme and provide our network with all 100
views of the object. Surprisingly, our network easily handles this configuration,
producing similar error distributions to our 10-image samples. Our confidence
predictions also have a qualitatively higher sensitivity in this scenario.

Additional results. We include a number of experiments in our supple-
mentary, including complete results on the 3D Warehouse, RealScan, and Glass
Figurines datasets; images of the RealScan IOU errors; and a visualization of the
network satisfying epipolar constraints even for a failure case. We also include
qualitative results on two real-world scenarios of a single object photographed
in different environments: (1) a transparent swan sculpture with manually seg-
mented masks, and (2) a chair with masks segmented via Mask R-CNN [15]. The
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Table 4. Example images and mean camera pose accuracy for the Glass Figurines
dataset. We compare our method to GNeRF [34] with color images and with silhouette
inputs ([34]-S), and we note if SfM [48] succeeded or failed for the dataset. GNeRF
failures are marked with dashes. See the supplementary for more information.

Object SfM R [◦] ts [ratio] td [◦]
[48] [34] [34]-S Ours [34] [34]-S Ours [34] [34]-SOurs

brown sq. ✓ 18.71 – 3.74 0.04 – 0.03 7.12 – 2.59
dog (c.) ✓ 14.00 18.43 6.92 0.13 0.12 0.04 3.02 2.19 4.88
dog (p.) ✗ 17.56 – 8.14 0.05 – 0.02 9.36 – 7.32
dolphin ✗ 24.70 – 5.10 0.03 – 0.03 7.52 – 3.01
flamingo ✓ 21.05 – 6.13 0.10 – 0.05 2.97 – 2.02
flower ✗ – 17.27 3.94 – 0.06 0.02 – 16.79 3.33
frog ✓ 21.66 15.48 3.59 0.02 0.07 0.02 2.40 11.41 0.91
parrot ✓ 27.40 11.92 21.16 0.05 0.04 0.03 7.24 8.98 1.46
penguin ✗ 20.04 – 9.09 0.03 – 0.04 3.38 – 1.97
rabbit ✗ 25.32 20.75 5.38 0.02 0.05 0.02 6.38 1.96 3.21
snake ✓ 29.85 24.59 11.29 0.05 0.05 0.02 7.85 4.24 1.90

latter case is a promising example of providing automatically extracted masks
to our network. Finally, we include three proof-of-concept results of IDR [66]
applied to our pose estimates for DTU. These results indicate that our approach
has sufficient accuracy to initialize state-of-the-art reconstruction methods.

5 Conclusion

The experimental results above support our hypothesis that neural networks
can be trained to regress relative pose information, as well as pose confidences,
for a given set of silhouette images of an unknown object. Our network model
generalizes well to novel object classes and from the synthetic to the real domain.
Although we train on a fixed number of 10 images, we observe that our network
can capably regress poses for many more inputs at a time.

While the benefit of silhouette constraints for pose estimation has long been
recognized, our work shows that silhouette cues on their own can effectively ini-
tialize pose estimates for state-of-the-art 3D reconstruction methods on untex-
tured objects. Our work also suggests that permutation-equivariant processing
may prove to be an invaluable tool in many-view object reconstruction pipelines,
and that multi-view reasoning in neural networks (e.g., aggregating features over
all inputs in our pipeline) can yield more-robust estimates compared to two-view
methods for 6DOF pose regression, particularly if confidence is also captured.

One limitation of our current work is its reliance on pre-segmented masks.
Since our network takes masks as input, however, it could be integrated into
an end-to-end pipeline that starts with an object segmentation network, applies
a silhouette-based pose estimation, and then performs additional color-image-
based pose refinement. Other future work includes leveraging symmetries and
texture to resolve silhouette ambiguities when they arise. Also, while we show
promising results on medium-baseline views, more work is needed to achieve
full generalization w.r.t rotation, e.g., in scenarios where object is viewed from
opposite sides, or where the images have substantial relative roll.
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