
Accountable JavaScript Code Delivery

Ilkan Esiyok∗, Pascal Berrang†, Katriel Cohn-Gordon‡, Robert Künnemann∗
∗CISPA Helmholtz Center for Information Security {ilkan.esiyok, robert.kuennemann}@cispa.de

†University of Birmingham and Nimiq {p.p.berrang@bham.ac.uk}
‡Meta {me@katriel.co.uk}

Abstract—The Internet is a major distribution platform for
web applications, but there are no effective transparency and
audit mechanisms in place for the web. Due to the ephemeral
nature of web applications, a client visiting a website has no
guarantee that the code it receives today is the same as yesterday,
or the same as other visitors receive. Despite advances in web
security, it is thus challenging to audit web applications before
they are rendered in the browser. We propose Accountable JS,
a browser extension and opt-in protocol for accountable delivery
of active content on a web page. We prototype our protocol,
formally model its security properties with the TAMARIN Prover,
and evaluate its compatibility and performance impact with case
studies including WhatsApp Web, AdSense and Nimiq.

Accountability is beginning to be deployed at scale, with
Meta’s recent announcement of Code Verify available to all 2
billion WhatsApp users, but there has been little formal analysis
of such protocols. We formally model Code Verify using the
TAMARIN Prover and compare its properties to our Accountable
JS protocol. We also compare Code Verify’s and Accountable JS
extension’s performance impacts on WhatsApp Web.

I. INTRODUCTION

Over the years, the web has transformed from an informa-
tion system into a decentralised software distribution platform.
Websites are programs that are freshly fetched whenever
accessed and the web browsers are runtime environments. This
design implies that when a user opens a website, they have
no reason to trust it will run the same program that it did
yesterday or the same program that other users receive. Instead,
the application loaded may vary over time, and different users
may receive different codes.

The majority of web pages, and even web applications,
have neither specified security goals nor the need to estab-
lish them. Nevertheless, for some websites, maintaining trust
between developers and users is part of the business model:

• a private email provider might wish to reassure users that
it will always encrypt their messages,

• a cryptocurrency wallet might wish to guarantee that it has
no access to users’ funds, or

• a tracking pixel might wish to prove that it only receives
data that is explicitly sent to it.

Some academic proposals for secure protocols implemented
for browsers include TrollThrottle [1] and JavaScript Zero [2];

industry proposals include payment platforms such as Stripe
and Square, chat protocols such as WhatsApp Web, Facebook
Messenger and Matrix’s Hydrogen client, encrypted cloud
storage such as MEGA or SpiderOak. A concrete example
is Nimiq, an entirely web-based digital currency managing
private keys in the browser. It is challenging for such websites
to make verifiable guarantees to their users: a compromised
or malicious web server can precisely target classes of users:
the email provider might disable encryption on a specific IP
range, the cryptocurrency wallet might redirect payments made
in some countries, or the tracking pixel might exfiltrate data
only for certain users.

Auditing: A common risk mitigation strategy is auditing: a
developer who wishes to build trust appoints external auditors
to inspect the client code. This can include both vulnerability
research (e.g. via bug bounties) or commissioned security
audits. Audits work well where it is possible for a user to
verify that the code they are running is the same code that was
audited, for example when binaries are received via third party
package repositories or app stores that control the distribution
and targeting. App stores do not usually permit developers
to deliver different codes to different users for the same app,
except in a restricted set of circumstances such as for beta
testing new features.

However, auditing does not work for web applications: a
compromised or malicious web server can simply choose at
load time to deliver unaudited code to a user. No matter how
careful the audit or even verification of the web application,
users cannot know that they are receiving the audited code.
Large parts of modern web security thus depend on techniques
like sandboxing or access control to critical resources like
cameras, but fail to capture properties defined in the context of
the application (e.g. authorisation of transactions in a payment
system).

Accountability: A second risk mitigation strategy is ac-
countability, where developers can be held accountable for
applications which they publish. In curated software reposi-
tories such as Debian GNU/Linux or the Apple App Store,
developers’ code is reviewed and malicious or compromised
code is linked to their identities. Developers who repeatedly
publish malicious code may face consequences such as loss
of user trust or banning from the repositories. For example,
a package mirror which publishes malicious code may be
removed from future lists of mirrors, or a developer who takes
over a browser extension and publishes a malicious version [3]
may be blocked from publishing future code updates.

Again, web applications fail to have accountability. A
malicious or compromised web server may publish malicious
code to certain users, but there is no public record of the code

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24096
www.ndss-symposium.org

https://stripe.com
https://squareup.com/
https://web.whatsapp.com/
https://www.messenger.com/
https://www.messenger.com/
https://hydrogen.element.io/
https://mega.io/
https://spideroak.com/
https://www.nimiq.com

which it serves, and thus no way for users to hold the server
accountable.

Summarising, it is difficult to establish trust in the web as a
software distribution mechanism because it lacks auditability
(the means for anyone to inspect the code being distributed
to others) and accountability (the means to hold a developer
accountable for the code they publish).

In this paper, we propose an opt-in transparency protocol
that aims to establish more rigorous trust relations between
browsers and web applications, and provide the foundation for
a more secure web. Using our standard for accountable de-
livery of active content, efficient and easy-to-use code-signing
technique, and public transparency logs; websites can convince
the users that they are trustworthy in an economical way. At a
high level, we propose that web application developers, who
choose to opt-in, provide a signed manifest enumerating all
the active content in their applications.

The manifest files in our proposal are stored in publicly
readable transparency logs. When a browser requests a URL
and downloads the resulting HTML document from the web
server, the web server also provides the corresponding manifest
for this URL. The browser checks that the active content
provided by the server matches the manifest entry, that the
manifest is correctly signed, and that the provided manifest is
consistent with the transparency logs.

Moreover, our proposal aims to reinforce the communica-
tion between the browser and the web server by adding non-
repudiation to the HTTP request-response procedure. By itself,
Transport Layer Security (TLS) does not provide evidence that
what was delivered actually originated from the web server.
Using digital signatures, we show how HTTP requests can be
extended to provide a proof of origin.

From the signed manifest, the transparency logs, and the
non-repudiation mechanism, the protocol establishes that:

• The code a user executes is the same for the users of the
plugin within a certain timeframe depending on the validity
of the manifest and a new manifest is signed.

• On the client side, the code is bound to interact with third
party code according to how the developer declared in the
manifest. This includes the order of execution, the trust
relation to third party code, and the use of sandboxing.

• If the code’s execution is inconsistent with the manifest,
the browser can provide a claim that can be verified by the
public.

Our proposal can be implemented by changes in the server
configuration only, without the need to modify the served
web content (assuming that the web page already makes use
of Subresource Integrity hashes) and without changes to the
HTML standard.

To sum up, our contributions are as follows:

1) We propose Accountable JS, a protocol to enable auditabil-
ity and accountability for web apps.

2) We formally model Accountable JS with the TAMARIN
Prover and prove desired properties in the presence of active
adversary.

3) We implement Accountable JS in a browser extension that
obtains the signed manifest, verifies its signature, and both
statically and dynamically ensures that the active content
on a web page agrees with the manifest. We also provide
a code-signing mechanism for the developers.

4) We evaluate the deployment of this technology and the
performance overhead for the client in six case studies,
including real-world applications: Google AdSense, Nimiq
and WhatsApp.

5) We model Meta’s Code Verify protocol and compare its
properties with Accountable JS.

Relationship to Meta’s Code Verify protocol: In [4], Meta
(formerly Facebook) proposed Code Verify, likewise imple-
menting a mechanism to enforce accountability via trans-
parency for active content in the web. Our present proposal
goes beyond Code Verify and provides a superset of its
functionality, most notably the ability to delegate trust to
third parties. On the other hand, our browser extension is
an academic prototype and thus not ready for productive
use. The protocol has the same message flow, but chooses
a different signature scheme and encodings. We elaborate on
these differences in Section X-A. An initial draft of the present
proposal was shared with Meta’s WhatsApp team in 2022.
The protocol, manifest file format and browser extension we
present in this work are academic developments by the authors
and not endorsed by Meta in any way.

II. BACKGROUND

Web pages are delivered via HTTP or HTTPS. In the
latter case, a secure and authenticated TLS channel tunnels the
HTTP protocol. Typically, the initiator of the TLS connection,
i.e. the web browser, is not authenticated1, whereas the
responder, i.e. the web server, is identified with their public
key and a certificate linking the public key to the domain.

The authentication guarantees of TLS exclude non-repudia-
tion of origin, i.e. a communication party cannot prove to a
third party that they received a certain message. This property
is an important building block for accountability and can
be achieved, e.g. using digital signatures. After the shared
keys are established in TLS, any messages exchanged could
be produced by either party. Roughly speaking, the party
providing the evidence has enough information to forge it.
Ritzdorf et al. [5] proposed a TLS extension that provides
non-repudiation, but it has not been deployed in the wild.

Browsers typically parse the HTML document describing
the web page into a tree of HTML elements called Document
Object Model (DOM). Some HTML elements have active
content, which includes Flash or Silverlight, but we will focus
on JavaScript (JS) in this work. Active content can be inline,
i.e. hard-coded in <script>-tags or event handlers, external,
i.e. referring to an external JS file by URL, or via iframe, i.e.
the web page contains an iframe that refers to an HTML file
which, again, contains active content.

Like in the case of app stores, we distinguish the roles of
the website, which is distributing the web application, and the
developer, which is the author of the web application. This

1At the communication layer. Authentication may be implemented at the
application layer.

2

allows us to view the website as a distribution mechanism that
is necessarily online and publicly visible, as opposed to the
developer, who can be offline most of the time. We distinguish
the following roles:

• The web application developer (short: developer) creates
the active content and has a secure connection to the web
server. It is not active all the time.

• The web server (short: server) delivers code provided by
the developer to the client. The website and the developer
are associated with a domain, but the client is anonymous.

• The web browser (short: client) requests a URL from the
website.

A transparency log (short: ledger) provides a publicly
accessible database. It typically has the property of being
append-only (for consistency), auditable, verifiable, and it
hinders equivocation. Hence, for the data in the logs, all parties
are convinced that it is a public record and that everyone sees
the same version of it. We are using the ledger to store manifest
files for each URL. Having public records of the manifest files
allows us to reason about accountability.

A. Threat Model

Dolev-Yao attacker: We consider a Dolev-Yao style adversary,
i.e. cryptography is assumed perfect (i.e. cryptographic opera-
tions do not leak any information unless their secret keys are
exposed), but the attacker has full control over the network.
This is formalised in our SAPiC [6] model in Appendix A.
Informally, we assume hash function to behave like random
oracles, signature schemes to be unforgeable and TLS to im-
plement an authentic and confidential communication channel.
We also rely on an intact public-key infrastructure.

Corruption scenarios: We assume honest parties follow the
protocol specification and dishonest parties are controlled by
the attacker. The parties which considered honest are deter-
mined by the property of interest:

• Accountability and Authentication of Origin: An honest
client wants to be sure that code is executed only if it
was made public and transparent i.e. inserted into logs by
the developer; here developer and web server are assumed
dishonest.

• Non-repudiation of Reception A dishonest client may want
to present false evidence for having received some JS code.
Here we assume the public is trusted and run a specified
procedure2 to check the evidence, and the web server to
behave honestly, i.e. not to help the client provide false
claims of reception, which are against the web server’s
interest.

• Accountability of Latest Version An honest client that re-
ceives a version of the code and wants to ensure it is the
latest version. We assume an honest global clock that helps
comparing the time of the code reception and the latest
version at that time, and consider a dishonest developer
and web server.

Target websites: We target developers that aim at establishing
user trust or pretend to do so. Hence we assume, for honest

2Detailed in Appendix B.

developers, that active content changes infrequently, e.g. mul-
tiple times per day, and that their code facilitates the audit.
Dishonest developers may counteract, but, due to accountabil-
ity and authentication of origin, it is publicly recorded.

Therefore, while our formal security arguments make no
assumption on how often the code changes are or how obfus-
cated it is, we assume that, from accountability of authentica-
tion of origin, code obfuscation attacks or microtargeting are
practically disincentivised.

Browser features & Transparency log : We assume the current
browser security features, specifically the sandbox attribute
of the iframe tag, to be implemented correctly. Furthermore,
the transparency log is trusted, efficient, available, append-only
and provides non-equivocation (i.e. the same information is
served to everyone). Many strategies are available to imple-
ment such a log. For example, Trillian [7] and CONIKS [8] use
data structures that can be distributed over multiple parties and
allow to prove append operations efficiently. Misbehaviour can
thus be detected by trusted public auditors or by honest logs
distributing such proofs (called gossiping). See [9] for a survey
over different mechanisms.

III. USE CASES

We introduce several types of web applications that will
benefit from our protocol. We will revisit these examples later
and show how our approach can be applied to them.

A. Self-Contained Application

Perhaps the simplest possible web application is a one-
page HTML document with active content that simply prints
‘Hello World’ into the developer console. Upon loading this
website, a user can manually check that its sole behaviour
was to print ‘Hello World’, but they have no guarantees about
subsequent page loads: a server could easily decide to provide
different behaviour to certain users, or to insert malware based
on IP address or browser fingerprint. For this simple example,
the consequences of a malicious or compromised server are
relatively limited, although we remark that cryptojacking3 is a
growing trend [10].

WhatsApp Web is a large real-world self-contained web
application: its source code is bundled using WebPack and
served to all users; personalisation is implemented through
local storage and dynamic data fetching. We will show how
our protocol can be applied.

B. Trusted Third-Party Code

Many websites rely not just on their own content but on
resources served by a third party. This may be a Content Deliv-
ery Network (CDN) serving common JS libraries, embedded
content such as photos or videos, analytics and measurement
libraries, tracking pixels, fraud detection libraries, or many
other options. For example, the following code loads the
jQuery JS library from a CDN, and uses it to display a ‘Hello
World’ message.

3Malicious JS which secretly mines cryptocurrencies in unsuspecting users’
browsers.

3

<html><head>
<script src="https://googleapis../jquery-3.6.1.min
.js" integrity="sha384-i6..."/></head><body>
<script>$("body").html("Hello World")</script>

</body></html>

Listing 1: Trusted third party code

As before, users are supposed to always receive the same
code from the server. This time, there is an additional avenue
for compromise, though: even if the first-party server is honest,
it is possible for the CDN to perform targeted attacks. The
developer, however, wants to pin the third party code to the
precise version that they inspected or trust.

C. Delegate Trust to Third Parties

The application uses third party code that its developer
cannot vouch for. This can be the case if the code is too
complex to inspect or if the application developer wants
to always use the latest version. The third party developer,
however, is willing to vouch for their code. An example of this
is Nimiq’s Wallet, a web application for easy payment with
Nimiq’s crypto currency. This application can be embedded
by first-party applications that provide, e.g. a web shop, who
are willing to trust Nimiq, but only given that they make
themselves accountable for the code they deliver.
<html><body>
<script type="text/javascript">
function addTransaction () {
window.postMessage({’id’: ’123’, ’amount’: ’10n
’, ’from’:’abc’}, ’https://wallet.nimiq.com/’);}

</script>
<iframe src="https://wallet.nimiq.com/" onload="
addTransaction()"></iframe>
</body></html>

Listing 2: Delegate trust to third party

D. Untrusted Third-Party Code

For web technologies, consecutive deployability is a must.
Hence, in this use case, the application developer cannot audit
the code, but the third party does not use Accountable JS. The
application developer needs to blindly trust the third party, but
using sandboxing techniques, it can restrict the access that the
possibly malicious script provided by the third party can have.

A particularly important instance of this problem is ad
bidding. The third party is an ad provider that decides online
which ad is actually served. Because they cannot review the
ads that they distribute, which may contain active content, they
are not willing to vouch for the code they distribute. This is the
case for Google AdSense, used by over 38.3 million websites.
Cases where ads were misused to distribute malicious code are
well documented [11].

E. Code Compartmentalisation

The application that the developer provides can be compart-
mentalised so that the most sensitive information is guarded
by a component that is easy to review and changes rarely. The
other components that are user-facing and changing more often
are separated from this component using sandboxing. The
developer wishes to reflect this structure and make themselves
accountable for the whole code, but also separately commit

on keeping the secure core component small and auditable.
For example, Nimiq’s Wallet components follow a similar
structure.

IV. APPROACH: ACCOUNTABLE JS

We propose a cryptographic protocol between the client,
the server, the developer, and a distributed network of public
transparency logs. The protocol’s objective is to hold the
developer accountable for the code executed by the browser.
The protocol provides four main functionalities:

• The server provides a manifest declaring the active content
and trust relationships of the web application, which the
client compares with a published version on the trans-
parency logs.

• The client measures and compares the active content re-
ceived by collecting active elements, e.g. JS, in the HTML
document delivered by the web server.

• Developers and clients submit manifests to a public append-
only log to verify that everybody receives the same active
content.

• The server signs a nonce as non-repudiable proof of origin
for the JS that the client receives.

Website Manifests: Website developers may provide a signed
manifest for each publicly accessible URL in their website
(excluding the query string). The signed manifest comprises a
manifest and a signature block over it. A manifest describes
the webpage, including, besides the active content, its URL
and a version number. The active content is described in a
custom format. We elaborate on the manifest directives in
the supplementary material [12]. The developer’s identity
is distinct from the server’s, but their certificates must share
the same Common Name(CN) to restrain from unauthorised
manifest deployments. The browser validates the authenticity
of the developer’s public key in the same way, using the
existing Public Key Infrastucture (PKI) and its built-in root
Certificate Authority (CA) certificates.

Accountable JS is an opt-in mechanism. The website
declares the signed manifest using an experimental HTTP
response header field called x-acc-js-link. Henceforth,
the client, however, expects the website to provide a valid
manifest for this URL in any case.

Client Measurement: The client measures the active con-
tent inside the HTML document delivered in the response
body, collecting information about each active element in the
document and validating it with the corresponding manifest
block in a manifest file. Elements that cannot be matched
trigger an error and the user is warned about this error. The
current extension is not preventive, but in the future with
pervasive developer support, browsers may choose to halt the
execution if delivered code is inconsistent with the boundaries
drawn by manifest. The active content is measured with a
so-called mutation observer, starting with the first request.
The measurement procedure that we developed listens to the
observer’s collected mutations that regard active elements in a
list. In Section VII, we explain the process in more detail.

Manifest Logs: While a signed manifest may prove the
integrity and authenticity of the manifest, it cannot prevent
equivocation, i.e. it cannot prove the same signed manifest

4

is delivered to every request by the web server. To this end,
we propose to use transparency logs. A manifest file declares
a version number and the version number is unique per
manifest file. The developer publishes their signed manifest
in a publicly accessible, auditable, append-only log like the
Certificate Transparency (CT) protocol [13], which provides
logs for TLS certificates. Clients may verify that a version
they receive is the latest online, or use a mechanism like Online
Certificate Status Protocol (OCSP)-Stapling [14] to check that
a version they receive was the latest version a short time ago.
Any client that encounters a signed manifest that is not yet in
the log can submit it to the log. We discuss the transparency
log considerations in more detail in Section XI.

Non-Repudiation of Origin: We propose a simple non-
repudiation mechanism for the client’s web requests, so that in
case a developer distributes damaging active content, a client
can prove that they have received that content from a web
server. The client transmits a nonce via a request header and
the server signs this nonce along with the signed manifest (c.f.
Section IX).

V. MANIFEST FILE

In the manifest, the developer declares the active elements
a web application is bound to execute during its run time.
The run time starts from the web request and ends with
the window’s close or a new web request. For Single Page
Applications (SPA) (e.g. Nimiq), the run time for the web
page ends when page is refreshed, its URL is changed or the
window is closed.

The manifest file represents the active elements and their
relevant metadata as a collection of attribute-value pairs in
the JSON format. The metadata expresses the trust relations
w.r.t. third party content and settings for sandboxing. The top-
level properties in the manifest, also called manifest header,
contain descriptive information about the web page: its URL,
its version number, and optional metadata, e.g. the developer’s
email address. The domain within the URL determines which
keys can be used to sign the manifest, namely, the common
name of the signature key’s certificate has to match that
domain.4 The developer can decide for any numbering scheme
for the version, but they must be strictly increasing with each
new manifest published.

A manifest file is accepted if it is syntactically correct, i.e.
follows the schema (see manifest manual in the supplementary
material [12] for details), complete, i.e. it contains enough
information about the web application and its active elements
to enable evaluation, and, most importantly, consistent with the
delivered resource, i.e. that evaluation succeeds.

A. Execution Order

An active content is considered dynamic if it is added
after the window’s load event; otherwise, it is static. The
manifest specifies elements as either static or dynamic using
the dynamic attribute. SPAs in particular download or preload
resources during navigation, rewriting the DOM on the fly
depending on how the user navigates.

4The query component of the URL can be excluded, since the browser
extension discards that part in the measurement.

TABLE I: Trust Relationships by Type of Active Element

trust

type assert blind-trust delegate sandbox

inline • ◦ ◦ ◦
event handler • ◦ ◦ ◦
external • • • ◦
iframe with . . .
src type =external • • • •
src type =srcdoc • ◦ ◦ •
src type =script • ◦ ◦ •

For static elements, the sequence number seq specifies in
which order they must appear after browser renders the deliv-
ered HTML. It starts from 0 and repetitions are not allowed.
Dynamic content is only measured if they are present in the
web page, i.e. it is allowed to be injected, but not required to.
This mechanism can also be used to declare region-specific
active content. The order is ignored for dynamic content. The
measurement procedure will check if the list of the elements in
the manifest is in the same order except for elements that will
be dynamically added to the DOM. Elements may be removed
dynamically, but only if the attribute persistent is set to false.

B. Trust and Delegation

With the manifest, the developer provides assurance for
the active content in their application. Third-party components,
e.g. JS libraries, bootstrappers, advertisements or ad-analytics
tools play a significant role in most modern web applications,
which are thus a mixture of first-party code and code from
multiple third parties. In the manifest, we enable the developers
to decide the trust level on each active element imported
to their web applications. For instance, they can take the
responsibility and provide assurance (i.e. with a cryptographic
hash) on first party elements while for the external elements,
they may declare a valid source and delegate the trust on the
developers of those resources.

We thus require each block in the manifest to have a trust
declaration. There are three options to declare the trust level:

• assert : The developer provides the hash of the expected
active content and asserts it is behaving as intended. It
is computed using the standard Subresource Integrity hash
generation method [15], i.e. comprises the hash algorithm
used, followed by a dash and the base64-encoded hash
value.

• delegate: The developer refers the trust to the third party
providing this element. Now the third party is taking respon-
sibility for this code and provides a manifest whose location
is either declared in the first-party manifest, or delivered in
the headers of the third party’s response. The third party
manifest can likewise delegate trust, thereby constructing a
chain of trust delegations.

• blind -trust : The developer blindly trusts the third party,
without identifying the code they trust. This should only be
used with the sandbox attribute.

C. Types of Active Elements

The developer describes the manifest blocks for each active
element by their resource type type (e.g. javascript , iframe),
trust policy trust (e.g. assert , delegate, blind -trust), whether

5

they are dynamic or static and, in case they are static, their
sequence number seq . There are mandatory and optional direc-
tives for writing a manifest and these directives may depend
on the resource type. If the developer declared a manifest
section including an optional directive, that does not mean
this directive is ignored in the evaluation; this directive still is
part of the evaluation. For instance, the crossorigin directive
is optional for external resource type, but if the developer
declares a crossorigin attribute, then it has to match with the
active content information. Not all resource types support all
trust policies (see Table I). We will discuss them one by one:

• inline: Inline scripts are script elements without the
src attribute, i.e. the JS code is included in the HTML
document. Therefore, trust can only be assert and may
be omitted. The cryptographic hash covers the included JS
code, i.e. the textContent value of the script element.

• event handler : Event handlers are active content included
in attributes such as onClick that are executed on HTML
events. Like inline scripts, trust must be assert and can be
omitted.

• external : A script element can be outsourced by
specifying its URL in the src attribute. An external script
can originate from a different origin (cross-origin) or from
the same origin. Trust can be set to assert and delegate – as
sandboxing is not supported for external scripts, blind -trust
would give little assurance.

• iframe : An iframe embeds another document within the
current document. There are three ways this can hap-
pen, which the manifest file represents using the attribute
src type. The most common is to specify a URL (src type
= external). The other ways (src type = srcdoc and
src type = script) are explained in the full version [16].
This type of content can be declared with any trust value.

D. Sandboxing

Besides, iframes permit the use of sandboxing via the
attribute with the same name [17]. A sandboxed iframe is con-
sidered a cross-origin resource, even if its URL points to the
same-origin website. Hence, because of the browser’s same-
origin-policy, the parent window and the iframe are isolated,
and they cannot access the DOM of each other. Furthermore,
sandboxing blocks the execution of JS and the submission
of forms and more. These restrictions can, however, be lifted
using an allow list in the HTML tag.

As we will see in the next section, security-critical websites
need to use sandboxing to protect data from other browsing
contexts; hence we reflect the sandbox feature in the manifest
file. The measurement procedure ensures that the active ele-
ment has an equally strict or stricter sandboxing policy than
described in the manifest. An allow list is stricter if it is a
subset of the other.

VI. USE CASES, REVISITED

We come back to the use cases from Section III to illustrate
how Accountable JS applies to real-world web applications
with different trust assumptions.

A. ‘Hello World’ Application

We begin with the basic ‘Hello World’ website example,
and add a reference to the manifest in its meta tags.
<html><head>
<meta charset="utf-8" name="x-acc-js-link"
content="http://www.helloworld.com/manifest.sxg">

</head><body>
<script>console.log("Hello World")</script>

</body></html>

Listing 3: First example: Hello World.

Alternatively, the manifest can be provided as an HTTP
response header. The manifest file provides the URL and
version of the website and lists the base64-encoded SHA-256
hash of the inline script.
{ "url": "http://www.helloworld.com/",
"manifest_version": "v0",
"contents": [

{ "seq": 0,
"type": "inline",
"load": "sync",
"trust": "assert",
"hash": "sha256-AfuyZ600rk..."}]}

Listing 4: Manifest for first example.

B. Self-Contained Web Applications

Web applications can be completely self-contained. This
may be for security or because they follow the recent serverless
computing paradigm (e.g. Amazon Lambda). In serverless
computing, a web application developer may only write static
user-side code and delegate all the server-side logic to a cloud
service provider.

The application of Accountable JS is straightforward in this
case: as part of our prototype, we developed our deployment
tool generate manifest, which computes the hash values of
all active contents in the browser and produces a manifest file
that asserts their trustworthiness. The developer can then sign
this manifest file.

We tested this methodology on a popular example, the
WhatsApp Web client, and provide the manifest file in the
supplementary material [12]. It lists nine external and four
inline scripts.

C. Trusted Third-Party Code

The developer can use the manifest file to identify the in-
cluded third party code by hash and set the order of execution.
This expresses that the developer vouches for the third party
code. We add the following attribute to the header of ‘Hello
World’ example from Section III-B and we declare it in the
manifest file with trust = assert .
<script src="https://googleapis../jquery-3.6.1.min
.js" integrity="sha384-i6..."></script>

D. Delegate Trust to Third Parties

The first party can delegate trust to a third party by
embedding their code in an iframe (or linking their JS) and
setting trust to delegate. The extension will verify the third
party code based on a manifest file signed by its developer.

6

This expresses that the main developer vouches for the third
party to be trustworthy, but demands that the third party itself
can be held to account. This is in contrast with trusting a
concrete piece of code provided by the third party.

We tested this technique using Nimiq’s Wallet, which can
be embedded in third party web pages. These can now combine
the code that they control (e.g. for setting up a shopping cart)
with the code that Nimiq provides for signing transactions.

The website’s manifest below (Listing 5) specifies some
inline scripts with trust = assert (omitted) and an iframe
with trust = delegate. The browser now expects the response
to the query for the iframe’s content (https://wallet.nimiq.com)
to point to a URL with a signed manifest.

{ "url": "https://www.example-shop.com/",
"manifest_version": "v2",
"contents": [
[inline script manifests omitted]
{ "seq": 2,
"type": "iframe",
"src_type": "link",
"src": "https://wallet.nimiq.com/",
"sandbox": "allow-scripts",
"dynamic": false,
"trust": "delegate" }]}

Listing 5: Manifest is delegated to a trusted third party

E. Untrusted Third-Party Code

High-security applications may want to rely on third party
code they cannot vouch for, e.g. when including ads that are
dynamically chosen by an ad-bidding process. We developed
a small web application that uses Google AdSense and sand-
boxed this code, but noticed that AdSense and many other ad
providers require access to the top-level window [18] for fraud
detection, e.g. to detect invalid clicks.

We therefore needed to turn the relationship between the
secure code and the untrusted code around. We sandboxed the
secure code with trust set to assert , protecting it from the po-
tentially unsecure AdSense code, which is not sandboxed and
declared blind -trust . Now the AdSense code cannot access
the secure document in the iframe. The manifest file is shown
in List. 6. It includes thirteen active elements (six external ,
seven iframe) related to AdSense, along with Nimiq’s Wallet
(seq=’6’), for which trust is delegated.

{"url": "https://www.helloworld.com/",
"manifest_version": "v3",
"contents": [
[six external scripts for AdSense with trust=
blindtrust]
{ "seq": 6,
"type": "iframe",
"src_type": "link",
"src": "https://wallet.nimiq.com/",
"sandbox": "allow-same-origin allow-scripts",
"dynamic": false,
"trust": "delegate" // See Listing 7
},

[six more iframes for AdSense with blindtrust]]}
Listing 6: Untrusted AdSense and the Delegated Nimiq wallet
at manifest section sequence number ‘6’.

wallet.nimiq.com
or

example shopping site

hub.nimiq.com keyguard.nimiq.com

includes in
sandboxed iframe

Blockchain

accesses

origin:
keyguard.nimiq.com

private keys

redirects to

Fig. 1: Structure of Nimiq Ecosystem.

F. Compartmentalisation of Code and Development process

We further expand on Nimiq’s Wallet application, this time
as an example for compartmentalising the code and the signing
process. Nimiq’s Wallet application at no point has direct
access to the users’ private keys. It is treated the same way
as any other third party application interacting with the Nimiq
ecosystem (see Fig 1). It embeds the Hub which acts as an
interface to the user’s addresses and can trigger actions on the
private keys. Access to the users’ private keys is only possible
through the Hub and pre-specified APIs. The Hub will then
forward any request that needs to access the private keys to the
KeyGuard component, which upon user input can decrypt the
locally stored keys, perform the requested action, and return
the result to the Hub.

The procedure generate manifest produces the fol-
lowing manifest for Nimiq’s Wallet. Observe that it heavily
employs sandboxing. Both included iframes have the sandbox
attribute set empty, meaning no exceptions defined.

{"url": "https://wallet.nimiq.com/",
"manifest_version": "v0",
"contents": [
[five external scripts]
{ "seq": 3,
"type": "iframe",
"src_type": "link",
"src": "https://hub.nimiq.com/iframe.html",
"sandbox": "",
"dynamic": true,
"trust": "assert",
"manifest": [[seven external scripts],

{ "seq": 7,
"type": "iframe",
"src_type": "link",
"src": "https://keyguard.nimiq.com/",
"sandbox": "",
"dynamic": true,
"trust": "delegate"}]}]}

Listing 7: Delegated content Nimiq Wallet’s manifest.

The Wallet’s manifest includes hub.nimiq.com in an iframe,
containing, among other elements, the KeyGuard, which has a
separate origin and thus exclusive access to the user’s keys.
For transactions, the Hub redirects to the KeyGuard. The
KeyGuard is trusted, easy to audit, does not depend on any
third party code and changes rarely. The KeyGuard manifest
is as follows.

{"url": "https://keyguard.nimiq.com/",
"manifest_version": "v0",
"contents": [

{ "seq": 0,
"type": "external",
"link": "https://keyguard../web-offline.js",

7

https://wallet.nimiq.com
hub.nimiq.com

postMessage
iframe's
content script

top- level content script

...external

...externalMutation
ObserverDOM

HTML
nodes

active
content

monitor DOM
pass modifications

1.
2.

...inline

...external

...external

...external

generateMan
ifest

(developer
mode)

manifest

compliance
checker

(user mode)

signed
manifest

green / red
 signal

global active
content list

...external

...external

Fig. 2: Manifest file generation and metadata collection .

"hash": "sha256-L8NMxOGkIW...",
"load": "defer",
"dynamic": false,
"trust": "assert"

},
[two external scripts w/ same dynamic/trust.]]}

Listing 8: Nimiq Keyguard depends on its own content.

The Wallet manifest file reflects the web applications
compartmentalisation: every component – Wallet, Hub and
KeyGuard – runs on a different domain, hence locally stored
information like the wallet key is inaccessible to the Hub or
Wallet due to the same-origin policy.

With this setup, it is easy to compartmentalise the develop-
ment process, too. A separate developer key could be used for
the KeyGuard code given that it is already bound to a second
domain. New KeyGuard releases would need to be signed by
that key, which, internally, can be assigned additional oversight
requirements. Without requesting a new key from the PKI, any
bypassing of this procedure would either end up with code that
cannot access the user’s key or be provable with the signed
manifest for the Wallet.

VII. MEASUREMENT PROCEDURE

We present a practical active content measurement proce-
dure that can be used to identify active elements and collect
their metadata, allowing the client to check whether the web
application follows the provided manifest. In development
mode, the same procedure can be used to automatically gen-
erate a manifest file from an HTML document.

The measurement procedure is depicted in Fig. 2. The
browser’s rendering engine parses the raw HTML document
and creates the DOM, observing the DOM for mutations,
e.g. elements that are added at run time. Whenever an active
element is appended, edited or removed from the DOM, the
metadata agent will be triggered, which keeps a list of the
active elements and their metadata.

The extension obtains access to the DOM by defining a
content script, a script that runs in the context of the current
page. This includes all pages loaded in top-level browser
windows (e.g. Tabs), but also iframes within those. Content
scripts running at the top level are responsible for collecting
metadata on all active elements in their context. For nested
iframes, they can only collect the metadata about the iframe
like the attributes src type , src and sandbox , but not inspect

the document inside this iframe. The same-origin policy for-
bids this in many cases. We therefore use the iframe’s content
script to gather information: if the content script recognises
that it is not at the top-level, it runs statelessly, collecting
the metadata as usual, but reporting it to the parent window’s
content script via postMessage.

The metadata agent distinguishes script and iframe el-
ements by their HTML tags. A script that has src at-
tribute is external otherwise it is inline . For external scripts
Subresource Integrity (SRI) hashes, crossorigin and load at-
tributes are collected. For inline scripts, hash is computed on
the script and the load attribute is collected. Event handlers are
searched inside all DOM elements checking if their attributes
contain any of the global event attributes e.g. onclick in a
list [19]. For event handlers, the hash is computed on the
value of the event attribute. For iframes with src type =
external , the metadata agent in the parent window collects
the crossorigin and sandbox attributes and gathers the metadata
about the document inside the iframe from its content script.
Also, for each active element boolean dynamic and persistent
scores are assigned by the metadata agent. An active content
is considered dynamic if it is added after the window’s load
event; otherwise, it is static. Elements that get removed from
the DOM are marked to be non-persistent, but still kept in the
active content list for evaluation.

If the web page opted in, i.e. it has sent the
x-acc-js-link header in the past and provided a valid
manifest, then the metadata collector compares the metadata
list with the list of active elements in the manifest. If the web
page violates the protocol, the extension reports this to the
user.

In developer mode, a failure to comply triggers the manifest
generator to collect and generate metadata for the active
elements. The generate manifest procedure then produces
a manifest file with trust = assert for each active element
based on the collected information, which can be easily
adapted to other trust settings. This manifest represents the
most restrictive manifest functional for this web application.

VIII. SIGNING AND DELIVERING A MANIFEST

A valid signature on the manifest proves that the manifest
was created by a known origin, i.e. a developer publicly
associated with the website, and that it was not tampered
with in transit. To sign manifests, we adopt the Signed HTTP
Exchanges (SXG) standard. SXG is an emerging technology
that makes websites portable. With SXG, a website can be
served from others, by default untrusted, intermediaries (e.g. a
CDN or a cache server), whereas the browser can still assure
that its content was not tampered with and it originated from
the website that the client requested. This allows decoupling
the web developer from the web host and nicely fits our
view of websites as software distribution mechanisms. The
SXG scheme allows signing this exchange with an X.509
certificate that is basically a TLS certificate with the ‘CanSign-
HttpExchanges’ extension. Browsers will reject certificates
with this extension if they are used in a TLS exchange,
ensuring key separation. SXG certificates are validated using
the PKI, allowing Accountable JS to be used with the existing
infrastructure, although, currently, Digicert is the only CA that

8

provides SXG certificates. The lifespan of an SXG certificate
is at most 90 days, limiting the impact of key leaks.

An SXG signature includes the HTTP request, as well as
the corresponding response headers and body from the server.
The signature is thus bound to the requested URL, in our case,
the manifest file’s URL. It also includes signature validation
parameters like the start and end of the validity period and
the certificate URL. If the current time is outside the validity
period, SXG permits fetching a new signature from a URL.
This URL is also contained in the (old) signature’s validation
parameters. These features provide a solid foundation for
Accountable JS’s signed manifests, allowing manifests to be
cached during the validity period and enabling dynamic re-
fetching and safe key renewals.

A web application in compliance with Accountable JS
must deliver the signed manifest. If it is small enough, it can
be transmitted directly via the HTTP response header (using
the directive x-acc-js-man). Alternatively, the response
includes the URL of the SXG file, using the HTML meta-tag
or HTTP-response header x-acc-js-link. The signature
in this file includes the manifest file (as the HTTP response
body) and the manifest URL (part of the HTTP request). Also,
the browser needs to check that the URL value in the manifest
corresponds to the web application’s URL (excluding the query
part of the URL).

Providing a signed manifest indicates the website (i.e. the
URL) opted into the protocol. From now on, the extension
will expect an accountability manifest until the users explicitly
choses to opt out.

Apart from the manifest generation, the signing operation
and uploading the signature to the ledger can also be automated
thanks to existing tool support for SRI and SXG. We stress
that the signatures need only be computed if the JS code
changes. Techniques like microtargeting are disincentivised by
accountability (see Section II-A), hence the performance of the
signature generation is of secondary concern.

IX. PROTOCOL

In this section, we present the Accountable JS protocol. The
end-to-end goal is to hold the developer accountable for the
active content the client receives. Clients can compare this code
with the manifest, hence, for honest clients, we can reformulate
this task as follows:

• Clients should only run active content that follows the
manifest. This is a setup assumption.

• Any manifest the client accepts needs to originate from the
developer, even if the developer or server is dishonest. This
follows from the non-repudiation of origin property of the
signature scheme. A signed manifest was either signed by
the developer, or the developer leaked their key.

• Whenever two clients accept a manifest with the same
version number, that manifest must be the same, or they
can provide non-repudiable proof that this was not the case.
This is achieved by including a transparency log that gathers
all manifest files with valid signatures.

• Whenever a client accepts a manifest with some version
number, this version was the latest version in some client-
defined time frame. This is achieved by a timestamping
mechanism like OCSP-Stapling [20].

• A client can provide non-repudiable proof that they received
a manifest from the web server. This is achieved by signing
a client-provided nonce.

The developer of the website generates a manifest file for
the web page that is identified with a URL, signs the manifest
and publishes it in one or more public transparency logs (see
Fig. 3 before t). The signature proves to the client that the
developer takes responsibility of the manifest.

The CodeStapling protocol ensures that, whenever the
client accepted a manifest, the developer can be held account-
able for publishing it. Nevertheless, the developer cannot be
held accountable for delivering it to a client, as there is no
proof for that. We thus define the CodeDelivery protocol for
non-repudiable code delivery (in Fig. 3 after t). With the HTTP
GET request, the client C sends a nonce n signed with its
signing key skC . The web server W responds with a signature
on the HTTP response HTML, the client nonce n , and signed
log timestamp sigL. The client validates the log’s signature
and the developer’s signature within. Should one of these
checks fail, the client aborts and displays an error message.
Then, the client compares the active content in HTML with
the manifest; if they are consistent, the browser decides the
web page adheres to the protocol.

X. PROTOCOL VERIFICATION

We analysed Accountable JS with Tamarin [21], consid-
ering the protocol’s security w.r.t. a Dolev-Yao adversary
that can manipulate messages in the network and corrupt
other processes to impersonate them. Using Tamarin’s built-
in stateful applied-π calculus [6], we could model a global
state such as represented by the transparency log.

The protocol comprises five processes running in parallel:

!PDeveloper |!PWebserver |!PClient |!PLog | PPub

The first three processes model the role of the developer,
web server and client, outputting and accepting messages as
specified in Figure 3. The developer, web server and the client
are under replication to account for an unbounded number
of parties acting in each role. Any party except the log and
the public process can become dishonest. This is modelled
by giving control to the adversary, but only after emitting a
Corrupted event, which can be used to distinguish the party’s
corruption status in the security property. A corrupted party
remains dishonest for the rest of the protocol execution.

The process PLog models an idealised append-only log
using insert and lookup operations to a global store [6].
Moreover, the built-in lock and unlock commands are used to
ensure atomicity of the operations. Finally, the process PPub

makes the public’s ability to validate a client’s claim explicit.
Upon obtaining a claim (from the client), this process : (1)
reads, from the log, the information that concerns the URL
mentioned in the claim, (2) verifies the signatures in the claim
and (3) matches the signed values with those in the log.

Using Tamarin, we prove the following properties which
are detailed in Appendix A.

• Authentication of origin: The client executes active content
only if the corresponding manifest was generated by the

9

Client Web Server Developer Ledger

(φ, v) ··= measure(HTML)

com ··= sign(skD, ⟨φ, v ,URL⟩)
sigL

··= sign(skL, com)sigL

t
n

R← {0, 1}λ sign(skC , ⟨n,URL⟩)
sigW

··= sign(skW , ⟨HTML′,n, sigL⟩)

1) (φ′, v′) ··= measure(HTML′)
2) verif (pkW , sigW , ⟨HTML′,n, sigL⟩)
3) verif (pkL, sigL, ⟨φ′, v′,URL⟩))

Fig. 3: Protocol flow: CodeStapling (before t) and CodeDelivery (after t).

.

honest developer unless the adversary corrupts the devel-
oper.

• Transparency: If the client executes code then its manifest
is present in a transparency log in a sufficiently recent entry.

• Accountability: When the public accepts a claim, then even
if the client was corrupted, the code must exist in the logs
and the server must have sent that data (either honestly or
dishonestly via the adversary).

• End-to-end guarantee : Only by corrupting the developer
it is possible to distribute malicious code.

A. Code Verify Protocol

Meta’s Code Verify [4] was published in March 2022 and
made available as an extension. As of now, it is deployed only
by WhatsApp Web. Intuitively, WhatsApp Web (the developer)
submits a hash of their JavaScript along with a version number
to Cloudflare, which Cloudflare then publishes to the end user.
The end user’s browser extension computes a hash on the
JavaScript delivered from WhatsApp Web and compares it
against the hash published by the Cloudflare. Given that the
manifest is hashed instead of signed, Cloudflare is trusted for
authenticity and thus constitutes a trusted third party, replacing
the log. Moreover, users’ IP addresses are sent to Cloudflare
instead of to WhatsApp Web.

We likewise modelled Code Verify in Tamarin, considering
the following five processes:

!PDeveloper |!PWebserver |!PClient |!PCloudflare | PPub

Again, we assume the developer is separate from the web
server. The protocol does not have a public log and does
not include independent auditors. Instead, Cloudflare records
the hashes for each version. To our knowledge, Cloudflare
does not provide information about the history of submitted
versions or which is most recent. As the public cannot inspect
how often versions have changed, it relies on Cloudflare to
implement countermeasures against microtargeting. Publicly
available information [4] did not give information about such
measures in Meta’s deployment.

Under these considerations, we analysed the same prop-
erties, except for transparency, which, due to the lack of a

public log, could not apply. We highlight the differences to
our original properties below.

• Authentication of origin: The client executes active con-
tent only if the corresponding manifest was generated by
the honest developer unless the developer or Cloudflare is
corrupted.

• Non-Accountability: The data provided to the client is not
sufficient to prove they received certain content from the
web server, even if web server and Cloudflare are honest.

• End-to-end guarantee: Only by corrupting the developer
or Cloudflare it is possible to distribute malicious code. In
a separate lemma we show that, the developer by itself can
indeed distribute malicious content.

The latter property indicates that Cloudflare’s role as
trusted party is not fully exploited yet. At least as far
as we know [4], Cloudflare neither promises to ensure the
code is harmless, nor does it guarantee to collect informa-
tion to provide transparency or accountability. Nevertheless,
the current message flow can be extended to provide such
guarantees by having Cloudflare acts as a transparency log.
Accountability can likewise be achieved by simply deploying
signatures instead of a hashing scheme.

XI. LOGGING MECHANISM

We would like clients to verify they received the latest and
same version of the code as any other user. To this end, we
assume a public append-only log to provide a public record of
the software published and prevent equivocation attacks. The
log does not determine which JS is considered malicious, but
it provides proof of receipt and origin, and allows identifying
malicious versions.

Such a public log is realistic to deploy: CT Logs [13] are
used in the modern internet infrastructure. These logs store
certificates, which are signed by CAs. In contrast, our logs
need to store manifests signed by the developers. It is thus
impossible to reuse the existing CT infrastructure, but we can
closely follow the structure and properties of CT.

Websites that offer security-conscious services have an
incentive to retain their reputation. Similar to how CT logs

10

operate, our log can be run by a party that wants to support
such webpages. Third party monitors can keep the monitor
honest and we allow third parties to submit signed manifests
they observe in the wild.

When implemented naively, a logging mechanism can
bring significant privacy implications: To confirm that other
clients receive the same manifest, the client would need to
consult the log on each request and reveal the URL to the
log. We can mitigate these privacy issues by allowing the
web server, which learns each request anyway, to include
a signed and timestamped inclusion statement from the log
instead. This is similar to the OCSP-Stapling for certificate
revocation status requests [14]. While it mitigates the privacy
issues of consulting the log, it instead requires the user to trust
the specific log selected by the web server. We outline other
approaches to solve the trade-off between trust and privacy in
Section XIV.

Overall, our transparency log needs to provide interfaces
to at a minimum:

• store the signed manifest file (including its version number)
bound to a URL,

• query the latest signed manifest file for a URL in the logs,
• form a signed response for a query that can be pre-fetched

by the web server to staple it to each request from the
clients.

A possible implementation of this functionality could be based
on Verifiable Log-Based Maps [22]. An implementation of this
structure for Trillian [7], the software running Google’s CT
server, is currently in progress [23], with the goal of supporting
transparency in certificate revocation.

Availability, scalability and the size of the transparency logs
are other implications. Be it submitting a new manifest to the
log or collecting the latest version of manifest for a URL,
low latency to access the network of transparency logs can be
achieved by eliminating the single point of failure by adding
multiple logs that will provide load balancing. The mechanism
proposed for query privacy will also decrease the number of
requests to the logs since the web server will provide the
stapled result in most cases.

Websites that frequently update their active contents can
create significant burden on the log size. We calculate ap-
proximately how many times each log can be updated for a
limited time and space. We assume a non-leaf node overhead
is approximately 100 bytes and for the leaf nodes it is 700
bytes(signature 600 bytes + 100 bytes). If a log provider
has 100 TB of space for 5 years, it can contain 137 billion
signatures in total. To make sense of this number, take the
following example. We start with a log of 10M URLs with
eight updates per month on average. The number of URLs
also increases exponentially at a rate of 1% with each update
(i.e. also eight times per month). 5 This number would be well
below 137 billion signatures.

XII. EVALUATION

We implemented Accountable JS in a Chrome extension
[12, folder accjs-extension] for demonstration and pro-

5e.g. after the first update, 10M updates along with 100k new URLs are
appended to the existing 10M, resulting in a total of 20.1M.

totyping. Ideally, the measurement procedure should be part
of the browser’s rendering engine, since it can access the
response body and observe mutations to elements first-hand.
Our measurements here can thus be (promising) upper bounds.
We elaborate on the technical limitation imposed by the
extension SDK in Section XIII.

We come back to the use cases from Section VI and
measure how the extension affects the following metrics:
1) number of additional requests, 2) size of additional traffic,
3) time until the browser paints the first pixel / the largest
visible image or text block6 / until the web page is fully
responsive. 4) total blocking time, i.e. time during which web
page cannot process user input. We consider differences below
100 ms to be imperceptible to the users, differences of 100-300
ms barely noticeable and differences above 300 ms noticeable.7

Evaluation environment: Measurement took place on a Mac-
Book Pro with 2 GHz Intel Quad-Core i5, 16 GB RAM and
macOS Monterey 12.5.1 with Google Chrome 107.0.5304.121.
The results are compiled in Table II. We measured the number
of additional requests and traffic using Chrome’s developer
tools and the rendering metrics using Lighthouse (set to
‘desktop simulated throttling’). Unfortunately, WhatsApp Web
is incompatible with Lighthouse, so we instead computed the
combined duration of all tasks performed by the browser using
Puppeteer Page metrics [27]. We automated this process using
Puppeteer and NodeJS and perform n = 200 trials per website
and configuration to minimise the impact of network latency
on page loads.

Configurations: For performance evaluation, we compare
the CSP built into the browser with the Code Verify and
Accountable JS extensions as follows:

1) Baseline: disabled CSP and extensions.
2) CSP: CSP active, no extension.
3) Accountable JS: CSP inactive, only Accountable JS

extension active.
4) Code Verify: CSP inactive, only Code Verify extension

active. This configuration only applies to WhatsApp Web,
as Code Verify currently only supports Meta websites.

Experiments: We consider the examples from Section VI:
Hello World, WhatsApp Web, Trusted Third-Party, Delegate
Trust to Third Parties (Nimiq A), Untrusted Third Party
(Google AdSense and Nimiq B). For the compartmentalisation
experiment on Nimiq’s Wallet, we use a different baseline that
we will discuss below. For the CSP measurement, we defined
CSP headers for each website that listed all active content
in the Accountable JS manifest files. We collected all valid
sources of external scripts and hashes for the external and in-
line scripts in CSP’s script-src directive, hashes for event
handlers in script-src-attr and sources for iframes in
child-src. For the Accountable JS experiment, we first
navigate to the target website and wait for ten seconds for
the page to load. Thereafter, using the generate manifest

6More precisely: the ‘largest contentful paint’.
7We derive these performance categories from the RAIL model [24].

According to RAIL, users feel the result is immediate if < 100 ms and feel
they are freely navigating between 100-1000 ms (see also [25]). However, we
found this gap is too wide to ignore, and split the category at 300 ms for an
unusually common delay in web apps due to the ‘double tap to zoom’ feature
on iPhone Safari [26].

11

TABLE II: Evaluation results on case studies: The second and third columns show the number and total size of additional
requests made by the extension, i.e. the number of signed manifest and certificate. Each subsequent block provides Lighthouse
performance metrics for rendering time and the total time that the browser spends unresponsive. For each metric, we compare the
baseline (no Content Security Policy (CSP), no Accountable JS) with the overhead incurred by enabling CSP and enabling the
Accountable JS extension (leaving CSP disabled). For compartmentalisation, the baseline is with the extension activated but the
same signing key for all Nimiq components. All the time values are averages over n = 200 runs and given in milliseconds. The
additional traffic(kB) value is affected by the size of the signature and SXG certificate. Signatures are generated on uncompressed
manifest JSON files.

additional network . . . time to . . . baseline + CSP overhead + Accountable JS overhead

case study requests traffic (kB) first pixel largest element reactive blocking time

Hello World 2 2.06 196 +1 +20 197 +0 +23 196 +1 +24 0 +0 +0
Trusted Third-Party 2 2.46 462 +0 +21 462 +0 +21 462 +0 +21 0 +0 +0
Delegate Trust (Nimiq A) 3 9.93 262 +3 -10 262 +3 -10 5591 -29 -144 172 +4 +87
AdSense + Nimiq B 3 15.62 747 +2 +91 901 +5 +68 6034 +1 -82 159 +3 +77

Compartmentalisation 2 + 2 8.66 +1.10 2200 -17 4675 +20 5321 +115 212 +7

in the extension, we download the manifest file and self-sign
it using the gen-signedexchange command line tool [28]. For
Nimiq A+B and AdSense, we changed the trust attribute for
the external element(s) to delegate before signing. We publish
this signed manifest via a local web server and configure the
web server to provide a response header pointing to a URL. We
also ensure the website provides SRI tags for external scripts.
Evaluation procedures of each case study are elaborated in the
full version [16, Appendix C].

Results: The CSP configurations show an imperceptible over-
head in all case studies. This is hardly surprising, as CSP is
built into the browser built-in and can validate resources during
rendering. The Accountable JS configurations likewise have
an imperceptible overhead in all case studies. Moreover,
the traffic requirements are modest and incur only modest
blocking time. For Nimiq A, the traffic requirements are about
9.9 kB for the additional signature. In terms of performance,
CSP and Accountable JS’ overhead are comparable, except
the total blocking time is slightly higher than CSP. Besides,
the time to interactive value unexpectedly decreases more with
Accountable JS than CSP. However, the difference is minimal
and could possibly be explained by a) network latency, (b) side
effects of the browser’s just-in-time compilation or scheduling
or (c) a side effect of the former two on how Lighthouse eval-
uates the reactive metric. Nimiq is a complex web application
heavily dependent on external data, in particular the remote
blockchain it connects to.

Discussion: The Accountable JS configurations have an im-
perceptible overhead which is slightly higher than the CSP
configurations. Recall that the CSP is built in the rendering
engine whereas Accountable JS runs as a browser extension.
Accountable JS has to perform signature validation, meta
data collection and a final compliance check. The prototype
achieves good performance overheads by measuring all
elements simultaneously and combining their results. The
browser extension panel displays the results instantaneously,
while the evaluation is in progress, although the evaluation is
usually too quick for the user to notice. Moreover, the traffic
requirements are modest and incur little blocking time.

For AdSense + Nimiq B, the network overhead is slightly
higher than Nimiq A. This is due to the larger size of the
manifest, which now also includes AdSense. We again observe
an imperceptible impact on performance with Accountable JS.

The difference between Code Verify (220ms) and Ac-
countable JS (244ms) on WhatsApp Web is small. This is
remarkable, because Code Verify only applies SRI checks on
external scripts but not event handlers or iframes. In contrast
to Accountable JS, the order of active elements is ignored,
attributes are not checked (e.g. load=’async’ for scripts)
and a short hash value is downloaded from Cloudflare, rather
than a signature.

Compartmentalisation: For compartmentalisation, we evalu-
ate the impact of the additional signing key. We signed Nimiq
Keyguard, which is embedded in Nimiq Wallet, with a different
signing key and set the Keyguard’s trust attribute to delegate
in the Wallet’s manifest. The baseline therefore also has the
Accountable JS extension activated, but uses the same signing
key on all Nimiq components. The Wallet’s manifest includes
the Hub’s manifest inside and the Hub’s manifest declares the
Keyguard with trust = delegate in its manifest section. Thus a
separate manifest is required for the KeyGuard. Also, this time
a separate signing key is used for the KeyGuard manifest. For
the baseline performance, we inline the KeyGuard’s manifest
as an entry for its iframe in the Wallet’s manifest, thus having
one manifest and one signing key, and activate the extension.

In the compartmentalisation evaluation, we observe that
there are two more round trips and slightly higher traffic
overhead (about the overhead of Accountable JS, w.r.t. the
overall page traffic of 4.6 MB). This is due to downloading the
extra SXG certificate and manifest for Keyguard. The effect on
the rendering metrics is small; the barely noticeable increase
for time-to-reactive value can again be explained with network
latency and side effects described above. This is because the
delegated manifest can be validated in parallel to rendering,
while it is inlined in the baseline scenario and thus validated
in sequence.

Due to stapling, the overhead for clients to verify that they
received the latest version of the code (and thus the same as
any other user), is negligible. The web server staples a query
result, i.e. the log’s signature on the signed manifest, to each
request. The signatures use 2048-bit RSA keys and are 256
Byte long.

12

XIII. LIMITATIONS OF PROTOTYPE

The browser extension is a prototype to evaluate perfor-
mance and applicability of the approach. The advantage of an
extension (as opposed to modifying the browser’s source or
writing a developer plugin) is that users can easily experiment
with its code. On the other hand, extensions cannot interrupt
the browser’s rendering engine. Thus we inject a content script
that can apply the client-side operations of the protocol to the
browser window. The content script runs in the same context
as the web page; hence it can observe changes to the DOM via
the Mutation Observer. Since the extension cannot access to
the browser’s rendering engine, some active elements can be
added within a small time frame before the Mutation Observer
is registered. This race condition is a limitation of using the
extension and fixable by closer integration into the browser.

Another limitation is that other browser extensions may
interfere with the measurement by injecting active content to
the web page. Since extensions cannot distinguish website
code from the code that other extensions injected to the web
page, this can break the measurement. This is the correct
behaviour, as the website developer cannot attest to every
possible modification of the active content by other extensions,
however, there are various client-side solutions: (a) closer
integration into the browser could distinguish active content
injected by websites, (b) the extension could provide an API
for third party extensions to register modifications or (c) an
allowlisting for the most common extensions that gives a
warning to the user.

XIV.RELATED WORK

We first discuss how Accountable JS relates to other
(proposed) web standards with seemingly similar goals, before
discussing related academic proposals.

CSP was introduced to counter Cross-Site Scripting (XSS)
attacks. They specify runtime restrictions for the browser, typi-
cally the set of allowed sources for scripts, iframes, stylesheets,
etc., including eventual requirements for sandboxing. Like
accountability manifests, CSPs can specify which sources are
allowed and, combined with SRI, fix their content. This is
comparable to a manifest file that includes types with trust
set to either assert (if SRI is employed) or blind -trust
(otherwise). By contrast, CSPs do neither cover the order nor
possibly nested active contents (e.g. iframe within iframe).
Mixed ordering of active content may create malicious activity,
a site loading script A before script B may mean something
different from loading B before A. A site that only uses
CSP cannot catch that behaviour, whereas in Accountable
JS, we take the order into account. Most importantly, in
CSP, there is no means of delegating trust and no distinction
between web server and developer. Steffens et al. [29] show
that outsourced content is one of CSP’s major deployment
obstacles. Instability in third party inclusions (e.g. adbidding
code that delivers code from different resources) forces first
parties to continuously update the CSP. Techniques like in
Section VI-E allow developers to delegate trust to the third
party. Moreover, CSP tries to mitigate XSS attacks throughout
the web, whereas Accountable JS targets websites willing to
allow for an audit. The ability to identify the code that is
run is a key requirement for that. Overall, the goals of CSP

and Accountable JS are orthogonal and can be combined. It is
possible to generate a CSP from a manifest file.

The Web Package proposal (currently in draft status [30],
see Fig. 4) aims at packaging web applications for offline use.
Web packages provide a declaration of the web application’s
metadata via Web App Manifests [31], a serialisation of its
content via Web Bundles [32], and authenticity via SXG [33].
We likewise employ SXG to provide authenticity of origin
via signatures. SXG, like Accountable JS, decouples web
developer from website hoster. Web App Manifests, despite
their name, are only superficially related. They contain startup
parameters like language settings, entry points and application
icon, e.g. for ‘installable web application’ displayed in a
smartphone’s launcher. Web Bundles are a serialisation format
for pairs of URLs8 and HTTP responses. They represent a web
application as a whole, but a signature on a web bundle would
change with every modification of a web pages’ markup. Web
Packages are thus not competing with Accountable JS. Instead,
both standards are compatible. A web bundle can contain
x-acc-js-link in the header of its entry point’s HTTP
response, triggering the browser to validate the manifest. The
manifest is specified via a URL that also included in the web
bundle. This URL maps to an HTTP response that contains
the manifest in its content part.

Signature-based SRI [35] proposes easier maintainable SRI
tags to protect against script injections, by including signature
keys instead of hashes. These enable validating the provider
of the third party script, instead of their content, like the trust
relationships expressed with trust = delegate . The tags are
part of the HTML code, instead of the manifest file. Signing
the HTML files is impractical, as they are frequently changing.

Service Workers [36] are Network proxies programmable
via JavaScript, often used to perform URL response caching,
separate from the browser cache. Theoretically, a compliance
check like our measurement could be implemented in a service
worker, but (a) the service worker would need to be delivered
correctly and (b) service workers lack access to the DOM and
thus information about how active elements used.

We will now discuss related academic work. Accountability
in the web requires non-repudiable proof. For static assets,
this can, in principle, be provided by digital signatures (e.g.
via SXG and web bundles, see above), but recreating the
signature for each exchange is costly. We solve this via

8More precisely, HTTP representations [34].

Header

URL

CSP

Manifest

Web Bundle

Web App
Manifest

W
eb

 P
ac

ka
ge

SXG

HTTP responsemapped to

x- acc- js- link

HTML

Content

 contains

7

Fig. 4: Accountable JS in the context of other web technolo-
gies.

13

a simple challenge-response mechanism. Ritzdorf et al. [5]
provide a full-fledged solution, giving non-repudiation for the
entire communication, optionally hiding sensitive data. The
statement we prove is that the client has obtained certain active
content, not that they execute it. Ensuring a remote partner
runs certain software is the goal of remote code attestation
(e.g. [37]). Outside embedded systems, this is typically based
on a trusted execution environment (e.g. TPM, SGX). While
the browser (and for that matter, our extension) could provide
a trusted execution, establishing trust in the correctness of the
browser is the crux.

Our work relies on a transparency log. As mentioned
before, Trillian’s [7] verifiable log-based maps would fit the
bill, but there are many ways to implement such a store.
The most interesting aspect is privacy. We propose an ap-
proach based on stapling, an established method for revocation
management [20], but other techniques promise privacy, too.
CONIKS [8] provides a log mapping user identities to keys,
keeping the list of all user identities in the system private.
This is not useful in our case, as the URLs (the domain of
our mapping) are not secret, but which URL a user accesses.
Multiparty protocols for Private Information Retrieval [38],
Private Set Intersection (e.g. [39]) or ORAM [40] lack efficient
database updates, mechanisms to efficiently update precom-
putation steps, or only preserve k-anonymity for URLs. K-
anonymity is often not enough if we consider that an attacker,
e.g. a censor, tries to punish access to a few critical URLs,
each of which may end up in a bucket with uncritical, but
also not frequently visited URLs. Finally, Accountable JS may
be an enabler for formal verification of web applications, as
users are potentially able to link the code they receive to code
to published verification results. Various static and dynamic
analyses target JavaScript already [41], [42].

Although we showcased only a single approach to
code compartmentalisation (as it is being deployed by our
real-world example), other approaches are also compatible
with Accountable JS. Language-based isolation methods like
BrowserShield [43]) rewrite JavaScript into a safer version
preventing or mediating access to critical operations like
createElement or eval. If the code is rewritten on the
client (typically using JavaScript), the developer declares the
wrapper that fetches the code and deals with the code rewriting
in the manifest file. If the code is rewritten on the server, the
developer declares the transformed JavaScript code that will
be delivered to the user. Frame based isolation methods (e.g.
AdJail [44]) that isolate the third party code inside iframe
are also compatible with our proposal, see the use case for
untrusted third party code in Section VI-E.

XV. DISCUSSION

We provide a solution that allows users to detect if they are
microtargeted by developers and to prove this to the public if
it is the case. Sending different codes to classes of users might
not be outlawed in many countries, but sending malicious code
is. Our solution neither provides a code audit tool nor does it
propose a framework, legal or otherwise, for the punishment
of malicious code distribution. It provides, however, verifiable
data that authorities can use to evaluate which code was pub-
lished and whether that code was delivered to a user. Moreover,

the protocol provides users with a claim that includes the
delivered code and the identity of the developer.

The transparency logs can be used as a point of refer-
ence for the public code for auditing and evaluating. Honest
developers aim to make their code easy to audit; dishonest
developers thus risk loss of reputation if they microtarget users
(as frequent updates are visible on the transparency logs),
silently opt out of the system (as this will be caught by users
that received a previous opt-in), or provide obfuscated code
(due to the log).

Honest developer will benefit from a good reputation and
their ability to provide proofs for any efforts they make toward
independent audit or formal verification. Clients, who often
debate a website’s reputation in a public forum (e.g. the case
of ProtonMail or Lavabit) obtain data to substantiate positive
and negative claims.

We stress that accountable code delivery is necessary to
connect auditing results to the code users actually run, but does
not by itself guarantee the safety of this code. Realistically, it
will take some time until software analyses are mature enough
to handle this at scale. Assuming, however, that such analy-
ses may not necessarily run at each browser independently,
authentic code delivery appears to be a necessary first step.

Moreover, Accountable JS only authenticates the active
content, thereby exposing the active content to data-only
attacks, e.g. modified button labels or form URLs. A signature
on the content of a web application could be achieved by build-
ing on Web packages/Web bundles (which we discussed in
Section XIV), however, this approach would be too static and
inflexible for the requirements of the current web ecosystem.
Thanks to accountability, the developer would take responsi-
bility for the active content that they published, in this case, for
code that is vulnerable to data-only attacks. Realistically, there
would not be consequences, because they can plausibly point
to the dire state of verification of JavaScript—which is at least
partially because users could thus far not be sure to receive
the verified code anyway. Accountable JS choice to validate
the active content only is a compromise and possible starting
point for future work, as we discuss in the next section.

XVI. CONCLUSION

With Accountable JS, we provide a basis for the account-
able delivery of web applications, and thus a first step towards
re-establishing the trust between a user and the web application
code they run on their computers. How to achieve security –
via audit, code analysis or formal verification – is a question
that we left open intentionally. Accountable delivery is, nev-
ertheless, a requirement for any non-instantaneous analysis.

A key question for verification and audit is how to relate
the web page’s user interface to the active content. As some
desirable security properties concern user input, we would like
to give guarantees about, e.g. form fields. We can account
for the JavaScript code that address them by ID, but those
are invisible to the user. Future work may investigate how
to establish stronger ties between the manifest and the user
interface.

14

Acknowledgements: This project was partially funded by the
ERC Synergy Grant IMPACT (with grant agreement number
610150) and a research award for privacy-preserving technolo-
gies from Meta research, specifically for the ”Transparency.js,
transparency for active content” initiative.

REFERENCES

[1] I. Esiyok, L. Hanzlik, R. Künnemann, L. M. Budde,
and M. Backes, “TrollThrottle —Raising the Cost of
Astroturfing,” in Applied Cryptography and Network
Security, 2020. (visited on 05/19/2021).

[2] M. Schwarz, M. Lipp, and D. Gruss, “JavaScript Zero:
Real JavaScript and Zero Side-Channel Attacks,” in Pro-
ceedings 2018 Network and Distributed System Security
Symposium, 2018. (visited on 05/19/2021).

[3] C. Cimpanu, Chrome extension caught hijacking users’
search engine results, 2019. [Online]. Available: https:
/ / www. zdnet . com / article / chrome - extension - caught -
hijacking-users-search-engine-results/.

[4] R. Hansen and V. Silveira. “Code verify : An open
source browser extension for verifying code authenticity
on the web.” (2022), [Online]. Available: https : / /
engineering.fb.com/2022/03/10/security/code- verify/
(visited on 03/10/2022).

[5] H. Ritzdorf, K. Wust, A. Gervais, G. Felley, and S.
Capkun, “TLS-N: Non-repudiation over TLS Enabling
Ubiquitous Content Signing,” in Proceedings 2018 Net-
work and Distributed System Security Symposium, 2018.
(visited on 06/17/2021).

[6] S. Kremer and R. Künnemann, “Automated analysis of
security protocols with global state,” in Proceedings of
the 2014 IEEE Symposium on Security and Privacy,
2014.

[7] “Trillian.” (2021), [Online]. Available: https : / /github.
com/google/trillian (visited on 09/20/2021).

[8] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Fel-
ten, and M. J. Freedman, “CONIKS: Bringing key
transparency to end users,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015.

[9] S. Meiklejohn, J. DeBlasio, D. O’Brien, C. Thompson,
K. Yeo, and E. Stark, “SoK: SCT Auditing in Certifi-
cate Transparency,” PoPETs, no. 3, 2022. (visited on
11/21/2022).

[10] D. Carlin, J. Burgess, P. O’Kane, and S. Sezer, “You
could be mine(d): The rise of cryptojacking,” IEEE
Secur. Priv., no. 2, 2020.

[11] “Adsense program policies.” (2021), [Online]. Avail-
able: https://support.google.com/adsense/answer/48182?
amp;stc=aspe-1pp-en (visited on 07/19/2021).

[12] I. Esiyok, P. Berrang, K.-C. Gordon, and R.
Künnemann, Supplementary material, 2023. [Online].
Available: https://github.com/iesiyok/accountable-js.

[13] B. Laurie, A. Langley, and E. Kasper, Certificate Trans-
parency, RFC Editor, 2013. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc6962.txt.

[14] Y. N. Pettersen, The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension, 2013.
[Online]. Available: https://rfc-editor.org/rfc/rfc6961.txt.

[15] “Using subresource integrity.” (2021), [Online]. Avail-
able: https://developer.mozilla.org/en- US/docs/Web/
Security / Subresource Integrity # using subresource
integrity (visited on 11/03/2021).

[16] I. Esiyok, P. Berrang, K.-C. Gordon, and R.
Künnemann, Accountable js full version, 2023. [Online].
Available: https://arxiv.org/abs/2202.09795.

[17] A. Eicholz, S. Moon, A. Danilo, T. Leithead,
and S. Faulkner, “Sandboxing,” W3C Recommenda-
tion, 2021, https://www.w3.org/TR/2021/SPSD-html52-
20210128/browsers.html.

[18] “Is it allowed to use iframe.” (2020), [Online]. Avail-
able: https : / / support . google . com / adsense / thread /
24384322/is-it-allowed-to-use-iframe?hl=en (visited on
11/05/2021).

[19] Html living standard: Event handlers on elements, docu-
ment objects, and window objects. [Online]. Available:
https : / / html . spec . whatwg . org / #event - handlers - on -
elements,-document-objects,-and-window-objects.

[20] D. Eastlake et al., “Transport layer security (tls) exten-
sions: Extension definitions,” RFC 6066, 2011. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6066.txt.

[21] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The
tamarin prover for the symbolic analysis of security
protocols,” in Computer Aided Verification, 2013.

[22] A. Eijdenberg, B. Laurie, and A. Cutter. “Verifi-
able Data Structures.” (2015), [Online]. Available:
https : / / github . com / google / trillian / blob /
b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580 / docs /
papers / VerifiableDataStructures . pdf (visited on
11/05/2021).

[23] “Trillian – experimental Beam Map Gen-
eration.” (2021), [Online]. Available: https :
/ / github . com / google / trillian / tree /
b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580 /
experimental/batchmap (visited on 11/05/2021).

[24] Measure performance with the rail model, 10, 2020.
[Online]. Available: https://web.dev/rail/.

[25] J. Nielsen, Response times: The 3 important limits, 1,
1993. [Online]. Available: https://www.nngroup.com/
articles/response-times-3-important-limits/.

[26] T. VanToll, What exactly is..... the 300ms click delay,
21, 2013. [Online]. Available: https://www.telerik.com/
blogs/what-exactly-is.....-the-300ms-click-delay.

[27] Page.metrics method. [Online]. Available: https://pptr.
dev/api/puppeteer.page.metrics/.

[28] “Signed exchange generation.” (2021), [Online]. Avail-
able: https://github.com/WICG/webpackage/tree/master/
go/signedexchange (visited on 11/05/2021).

[29] M. Steffens, M. Musch, M. Johns, and B. Stock, “Who’s
Hosting the Block Party? Studying Third-Party Block-
age of CSP and SRI,” in Proceedings 2021 Network and
Distributed System Security Symposium, 2021. (visited
on 09/20/2021).

[30] J. Yasskin, Use Cases and Requirements for Web Pack-
ages. [Online]. Available: https : / /datatracker. ietf .org/
doc/draft-yasskin-wpack-use-cases/.

[31] Marcos Cáceres, Kenneth Rohde Christiansen, Mounir
Lamouri, Anssi Kostiainen, Matt Giuca, and Aaron
Gustafson, Web App Manifest. [Online]. Available:
https://www.w3.org/TR/appmanifest/.

15

https://www.zdnet.com/article/chrome-extension-caught-hijacking-users-search-engine-results/
https://www.zdnet.com/article/chrome-extension-caught-hijacking-users-search-engine-results/
https://www.zdnet.com/article/chrome-extension-caught-hijacking-users-search-engine-results/
https://engineering.fb.com/2022/03/10/security/code-verify/
https://engineering.fb.com/2022/03/10/security/code-verify/
https://github.com/google/trillian
https://github.com/google/trillian
https://support.google.com/adsense/answer/48182?amp;stc=aspe-1pp-en
https://support.google.com/adsense/answer/48182?amp;stc=aspe-1pp-en
https://github.com/iesiyok/accountable-js
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.rfc-editor.org/rfc/rfc6962.txt
https://rfc-editor.org/rfc/rfc6961.txt
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity#using_subresource_integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity#using_subresource_integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity#using_subresource_integrity
https://arxiv.org/abs/2202.09795
https://support.google.com/adsense/thread/24384322/is-it-allowed-to-use-iframe?hl=en
https://support.google.com/adsense/thread/24384322/is-it-allowed-to-use-iframe?hl=en
https://html.spec.whatwg.org/#event-handlers-on-elements,-document-objects,-and-window-objects
https://html.spec.whatwg.org/#event-handlers-on-elements,-document-objects,-and-window-objects
https://www.rfc-editor.org/rfc/rfc6066.txt
https://github.com/google/trillian/blob/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/experimental/batchmap
https://github.com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/experimental/batchmap
https://github.com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/experimental/batchmap
https://github.com/google/trillian/tree/b7ea8d2ca870e5b8ae1c05e9d2a33c4fdcca4580/experimental/batchmap
https://web.dev/rail/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.telerik.com/blogs/what-exactly-is.....-the-300ms-click-delay
https://www.telerik.com/blogs/what-exactly-is.....-the-300ms-click-delay
https://pptr.dev/api/puppeteer.page.metrics/
https://pptr.dev/api/puppeteer.page.metrics/
https://github.com/WICG/webpackage/tree/master/go/signedexchange
https://github.com/WICG/webpackage/tree/master/go/signedexchange
https://datatracker.ietf.org/doc/draft-yasskin-wpack-use-cases/
https://datatracker.ietf.org/doc/draft-yasskin-wpack-use-cases/
https://www.w3.org/TR/appmanifest/

[32] J. Yasskin, Web Bundles. [Online]. Available: https :
/ / wicg . github. io / webpackage / draft - yasskin - wpack -
bundled-exchanges.html#name-semantics.

[33] J. Yasskin. “Signed http exchanges.” (2021), [Online].
Available: https : / / wicg . github. io / webpackage / draft -
yasskin-http-origin- signed- responses.html (visited on
04/13/2021).

[34] R. Fielding, M. Notthingham, and J. Reschke, HTTP
Semantics. [Online]. Available: https://datatracker.ietf.
org / doc / html / draft - ietf - httpbis - semantics - 15 . txt #
section-8.

[35] M. West, Mikewest/signature-based-sri, 13, 2020. [On-
line]. Available: https://github.com/mikewest/signature-
based-sri (visited on 07/20/2021).

[36] A. Russell, J. Song, J. Archibald, and M. Kruisselbrink,
Service Workers 1. [Online]. Available: https://www.w3.
org/TR/service-workers/.

[37] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei,
“Remote attestation on program execution,” in Proceed-
ings of the 3rd ACM Workshop on Scalable Trusted
Computing, 31, 2008. (visited on 07/21/2021).

[38] L. Fortnow, “Private information Retrieval Survey,”
[39] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “SpOT-

Light: Lightweight Private Set Intersection from Sparse
OT Extension,” in Advances in Cryptology – CRYPTO
2019, 2019.

[40] O. Goldreich and R. Ostrovsky, “Software protection
and simulation on oblivious RAMs,” J. ACM, no. 3, 1,
1996. (visited on 07/20/2021).

[41] D. Park, A. Stefănescu, and G. Roşu, “KJS: A complete
formal semantics of JavaScript,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 3, 2015. (visited on
07/20/2021).

[42] J. F. Santos, P. Maksimović, T. Grohens, J. Dolby,
and P. Gardner, “Symbolic Execution for JavaScript,”
in Proceedings of the 20th International Symposium on
Principles and Practice of Declarative Programming, 3,
2018. (visited on 07/20/2021).

[43] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir, “Browsershield: Vulnerability-driven filtering
of dynamic HTML,” ACM Trans. Web, no. 3, 2007.

[44] M. T. Louw, K. T. Ganesh, and V. Venkatakrishnan,
“AdJail: Practical enforcement of confidentiality and in-
tegrity policies on web advertisements,” in 19th USENIX
Security Symposium (USENIX Security 10), 2010.

APPENDIX A: VERIFICATION OF SECURITY PROPERTIES

By default, Tamarin assumes that the adversary controls
the network. Our model allows the adversary to impersonate
the untrusted parties in the protocol and thereby access their
secrets. This is logged with a Corrupted(p) event in the trace
with p an identifier for the corrupted principal.

We model the principals in the following structure using
applied-π calculus.

in($p);
(

(event Corrupted($p);
out(sk($p)))

| out(pk(sk($p)))
| (

/* process goes here */
)

)

The shortcut $p denotes that the term p is a public value.
The attacker, by inputting the public value $p can pick some
identifier for the party. Then, if the attacker corrupts the party,
a corruption event is emitted and the attacker gets access to
the secret key. The public (verification) key is emitted so that
other parties can use it to verify the signed messages of p.
We exemplify the process with the example of PDeveloper as
follows:

in($D);
(

[..]
| (

in(<$manifest, $url, $v>);
event DUploads($D, $url, φ);
out(<’update’, $D, $manifest, $url, $v, φ>)
...

)
)

This code snippet includes the interaction with the network
via in and out, which is represented by the attacker. The
attacker hence inputs the public values manifest , url and
version number v, then the developer process computes a
signature φ from these values and sends an update message to
the log including all that information. Events are annotations
associated with the parts of the processes that enable to define
restrictions and security properties. In this example, before
sending the update message to the log, the developer logs a
DUploads event in the trace, annotating the developer’s new
code update request to the transparency logs.

The process PLog represents the transparency log as a
protocol party that can receive and send messages, and in
addition apply insert and lookup operations to an append-only
global store. The applied-π calculus provides constructs for
modelling the manipulation of a global store. The code snippet
below includes an insert and a lookup operation.

insert <$D, $L, ’version’, $url>, $v;
...
lookup <$D, $L, ’manifest’, $url> as $manifest

in P else Q

The insert construct associates the value $v to the
key which is a tuple < $D, $L, ‘version‘, $url > and
successive inserts overwrite the old values. The lookup
construct retrieves the value associated with the key <
$D, $L, ‘manifest ‘, $url > and assigns it to $manifest
variable. If the lookup was successful, it proceeds with process
P , otherwise with Q. $D stands for the developer’s identity,
whereas $L stands for the log’s identity. Since there are
unbounded number of developers and logs; we associate the
values that are stored in the global store with the URL and the
identities of the related developer and log for uniqueness.

Our model also includes lock and unlock, which the stateful
applied-π calculus defines for exclusive access to the global
store in the concurrent setting. The code snippet below shows
an example of lock and unlock operations used in our protocol.

lock $url;
insert <..., $url>, ...;

16

https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html#name-semantics
https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html#name-semantics
https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html#name-semantics
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-15.txt#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-15.txt#section-8
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-15.txt#section-8
https://github.com/mikewest/signature-based-sri
https://github.com/mikewest/signature-based-sri
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/service-workers/

...
unlock $url;

When a $url is locked, any subsequent attempt to lock the
same $url will be blocked until it is unlocked. We provide
exclusive accesses based on the $url, when the log attempts
to insert a new value to the global store. This is an over
approximation: if a lock requires exclusive access independent
for every write (independent of the URL) our model correctly
captures this behavior too. We do not require locks for other
reads, which also increases generality.

Security properties and restrictions are first-order formulas
over the annotated events and time points. Universal quantifica-
tion (meaning: for all) and existential quantification (meaning:
there exists) are used to check if the security property formula
(lemma) holds for all examples in the domain or there exists
at least one example that satisfies the formula respectively. If
the lemma holds for the former case then the Tamarin Prover
shows that it is proven, whereas for the latter case a satisfying
example is presented to the user. The time points enable to
account for event order in the trace, where e.g. E@i means
that event E was emitted at index i in the trace. We prove that
the following security properties hold in our protocol:

Theorem 1 (Authentication of origin). Intuitively, the client
will only execute active content code (signified by the event
CExec with url and manifest φ) if the code was uploaded by
the honest developer D (logged the event DUploads), or the
developer was corrupted. The KU event is emitted whenever
the attacker (who is acting on behalf of the corrupted party
D) constructs a message. We simplify the formula as follows:

CExec($D, $url, φ) =⇒ DUploads($D, $url, φ) ∨
(Corrupted($D) ∧KU($url) ∧KU(φ))

Formally, the lemma is: for all CExec events there exists either
an earlier DUploads event or there exists a Corrupted($D)
event and KU events before CExec event.

Theorem 2 (Transparency). If the client executes JS code c for
url with timestamp ts (CExec′), then there is a corresponding
log entry (Log) and it was deemed recent (CRecent) by the
client. The session identifier sid binds the moment when the
client checks the timestamp is recent (CRecent) to the moment
it executes (CExec′) the code.

CExec′($url, sid , c, ts) ⇒
Log($url, c, ts) ∧ CRecent(sid , ts)

Authentication of origin and transparency describe the
proactive behaviour of the extension. The following theorems
cover the reactive behaviour. We first establish that a claim
that a client submits to the public is non-repudiable, i.e. that a
corrupted client cannot forge false evidence to implicate honest
parties.

Theorem 3 (Accountability). When the public accepts a claim
(identified with server id, url, manifest, client nonce and log
timestamp) then, even if the client was corrupted, the code
must exist in the logs (Log ′), and the server must have sent

that data, either honestly, or dishonestly via the adversary.

PAccept($W, $url, φ, n, ts) =⇒ Log ′($url, φ, ts) ∧
(WSend($W, $url, φ, n) ∨
(Corrupted($W) ∧KU ($W, $url, φ, n))

Here, the event WSend is emitted by W (who is honest) right
before it sends the signed tuple sigW to C in Fig. 3.

Theorem 4 (End to end guarantee). When the client executes
a malicious code, then a corrupted developer is necessary to
distribute it.

CExec($D, $url, ‘malicious‘) =⇒ Corrupted($D)

Theorem 5 (End to end non-guarantee). When the client
executes a malicious code, then a corrupted developer is
sufficient to distribute it.

Ex. CExec($D, $url, ‘malicious‘) =⇒
(All x. Corrupted(x) =⇒ (x =$D))

Tamarin reports these results within 3 hours on a 16-core
computer with 2.6 GHz Intel Core i5 processors and 64 GB
of RAM. The proof is fully automatic, but relies on a so-
called ‘sources’ lemma to specify were certain messages can
originate from. We specified this lemma manually, but it is
verified automatically. The full protocol can be found in the
supplementary material [12].

APPENDIX B: CLAIM VERIFICATION

The public runs a procedure to verify the claim generated
by a client that was allegedly targeted by a website. As shown
in the Appendix A Theorem 3, a claim is identified with
server name, URL, manifest, request nonce and the timestamp
that was set for the manifest by the ledger. The signatures
on the request and the response data are verified, and the
request nonce is asserted with the server nonce for authenticity.
Next, the delivered content behaviours are checked against the
manifest using the measurement procedure. Then, the public
evaluates if the manifest is the latest version on the ledger
using the timestamp. If the evaluation fails in any of these
steps, then the claim is accepted.

APPENDIX C: GLOSSARY

CA Certificate Authority
CDN Content Delivery Network
CSP Content Security Policy
CT Certificate Transparency
DOM Document Object Model
JS JavaScript
OCSP Online Certificate Status Protocol
PKI Public Key Infrastucture
SPA Single Page Applications
SRI Subresource Integrity
SXG Signed HTTP Exchanges
TLS Transport Layer Security
XSS Cross-Site Scripting

17

	I Introduction
	Auditing
	Accountability
	Relationship to Meta's Code Verify protocol

	II Background
	II-A Threat Model
	Dolev-Yao attacker
	Corruption scenarios
	Target websites
	Browser features & Transparency log

	III Use Cases
	III-A Self-Contained Application
	III-B Trusted Third-Party Code
	III-C Delegate Trust to Third Parties
	III-D Untrusted Third-Party Code
	III-E Code Compartmentalisation

	IV Approach: Accountable JS
	Website Manifests
	Client Measurement
	Manifest Logs
	Non-Repudiation of Origin

	V Manifest File
	V-A Execution Order
	V-B Trust and Delegation
	V-C Types of Active Elements
	V-D Sandboxing

	VI Use Cases, Revisited
	VI-A `Hello World' Application
	VI-B Self-Contained Web Applications
	VI-C Trusted Third-Party Code
	VI-D Delegate Trust to Third Parties
	VI-E Untrusted Third-Party Code
	VI-F Compartmentalisation of Code and Development process

	VII Measurement procedure
	VIII Signing and Delivering a Manifest
	IX Protocol
	X Protocol Verification
	X-A Code Verify Protocol

	XI Logging Mechanism
	XII Evaluation
	Evaluation environment
	Configurations
	Experiments
	Results
	Discussion
	Compartmentalisation

	XIII Limitations of Prototype
	XIV Related Work
	XV Discussion
	XVI Conclusion
	Acknowledgements

	Appendix A: Verification of Security Properties
	Appendix B: Claim Verification
	Appendix C: Glossary

