
Predicting Remediations for Hardware Failures in
Large-Scale Datacenters

Fred Lin, Antonio Davoli, Imran Akbar, Sukumar Kalmanje, Leandro Silva,
John Stamford, Yanai Golany, Jim Piazza, Sriram Sankar

Facebook Inc.

Abstract—Large-scale service environments rely on au-
tonomous systems for remediating hardware failures efficiently.
In production, the autonomous system diagnoses hardware fail-
ures based on the rules that the subject matter experts put in
the system. This process is increasingly complex given new types
of failures and the increasing complexity in the hardware and
software configurations.

In this paper, we present a machine learning framework
that predicts the required remediations for undiagnosed failures,
based on the similar repair tickets closed in the past. We explain
the methodology in detail for setting up a machine learning
model, deploying it in a production environment, and monitoring
its performance with the necessary metrics. We also demonstrate
the prediction performance on some of the repair actions.

I. INTRODUCTION

Efficient hardware failure remediation is the foundation for
sustaining a fleet of hardware at high availability for a large-
scale service environment. Autonomous systems such as Borg
from Google [1], Autopilot from Microsoft [2], and FBAR
from Facebook [3], have been deployed in datacenters to
diagnose and remediate the hardware failures. The goal of
these autonomous systems is to triage the hardware failures
quickly and accurately, so the servers can be released back
to production in a healthy state without the same failure
reoccurring in the near future.

However, due to the high complexity in the hardware fail-
ures introduced from new hardware, firmware, and software,
there are sometimes new failure modes for which we do
not have remediation rules in the autonomous remediation
system. These new failure modes therefore become undi-
agnosed failures, which require human investigation for the
required remediation. The human investigation could be time-
consuming, leading to lower server availability and lower
server-to-administrator ratio at the datacenters [4]. Given the
geographically distributed nature of the datacenters, it is also
challenging for the engineers to be fully synchronized on the
most effective remediations for each undiagnosed issue.

In [3], a machine learning framework that predicts the
resolutions for undiagnosed and misdiagnosed failures was
briefly discussed. In this paper, we extend the discussion by
presenting the details about model development, prediction
deployment criteria, and the continuous operational support
required for the framework in production. We also demonstrate
the prediction performance for some of the repair actions.
Using natural language processing (NLP) techniques, the ma-
chine learning model learns from how past hardware failures

have been remediated given the failure signals from the server
and tooling logs, and predicts the required remediation for a
new undiagnosed failure. With the predicted diagnoses, we
can shorten the server downtime from manual investigation,
and analyze the patterns the model finds to learn about how
failures are commonly resolved across all datacenters.

Given the dynamic and complex nature of a large-scale
service environment, the machine learning model needs to
be retrained periodically and its performance needs to be
monitored in production to detect regressions. In addition to
the prediction accuracy, i.e. whether the predicted repair could
bring the server back to a healthy state, we monitor the repeat
offender rate to make sure the remediation actually fixes the
underlying failures, instead of temporarily masking them by
actions such as server reboots.

The rest of the paper is organized as the following: We
introduce the hardware failure detection and remediation flow
in a production environment in Section II. The machine
learning model, its input data, and an accuracy upper bound are
discussed in Section III, while a practical flow for deploying
the machine learning framework in production is illustrated
in Section IV. The prediction performance is presented in
Section V, and the conclusion is presented in Section VI.

II. HARDWARE FAILURE REMEDIATION IN A
LARGE-SCALE SERVICE ENVIRONMENT

Hardware fails in datacenters for various reasons, such as
material degradation from use (e.g. the mechanical parts of a
spinning hard drive or the flash cells of a solid state drive), en-
vironmental impacts (e.g. corrosion due to humidity or damage
from electrostatic discharge), and manufacturing defects [5]. In
this section we introduce an autonomous flow for remediating
hardware failures across distributed datacenters.

A. Failure Detection

The first step for fixing a broken hardware is to detect the
failure. As illustrated in [3], a tool named MachineChecker [6]
runs a collection of checks on each server periodically to check
for server failures. Examples of the checks are host and out-of-
band (OOB) ping, power supply check, sensor check, network
interface card (NIC) speed, memory error check, and hard disk
drive (HDD) or solid state drive (SSD) S.M.A.R.T. check.

The frequency of MachineChecker runs is decided based
on the trade-off between the time-to-detect of the failures and
the overhead on the servers when running the checks. At a



lower level, we can also adjust the hardware interrupt handling
mechanism and polling frequency for detecting machine errors
while minimizing the CPU stalls [5].

B. Failure Remediation

Once a hardware failure is detected by MachineChecker,
Facebook Auto-Remediation (FBAR) [7] and Cyborg [6]
would try to auto-remediate the failure [3]. If neither FBAR
or Cyborg could auto-remediate the hardware failure, a repair
ticket will be created.

Repair tickets are created for two main reasons: 1) a
physical repair is required or 2) the remediation system does
not have a rule for the failure signals. In the second case,
an undiagnosed repair ticket is created. The repair actions
can be categorized as component or non-component repairs. A
component repair requires actions on a hardware component,
e.g. swapping or reseating a motherboard. A non-component
repair is done without interacting with a hardware component,
e.g. reimage, firmware upgrade, or a reboot. To sustain the
hardware fleet at high availability, our goal is to create as few
undiagnosed tickets as possible, and execute as many required
non-component repairs in auto-remediation as possible.

Note that although non-component repairs do not incur com-
ponent cost, they are not free. The associated overhead from
non-component repairs include additional server downtime and
the potential to lose the failure signals. We will illustrate this
with an example in Section IV-C.

III. THE MACHINE LEARNING FRAMEWORK

A. Input Data

For the machine learning model to learn about the sim-
ilarities between repair tickets, each ticket is characterized
with a set of features. The features include the failure sig-
nals collected from the MachineChecker checks and server
attributes such as the model of the server. Other potentially
useful server information, including the hardware and software
configurations, environmental variables, resource utilizations,
and the repair history of the server, are potentially useful and
are being incorporated to the dataset.

Another aspect of the input data is the time window of the
repair tickets that we want the model to learn from. Including
tickets from a longer time window as the training set provides
more samples per repair action for the machine learning
model to learn from. However, the production environment
is very dynamic with new failures modes and evolving repair
behaviors, therefore it is also important to have the model
focus more on the recent samples. We have found a training
window of 6 months to be practical, and we implemented a
supplementary mechanism to detect new failure modes and
blacklist them when the prediction accuracy is low.

Since the server failure signals collected from the server
logs are largely free-form texts, we need to first convert the
text to a vector representation before the machine learning
model could consume them. Common techniques for the
conversion include word frequency based approaches such as
Term Frequency-Inverse Document Frequency (TF-IDF) [8]

and word embedding such as fastText [9]. While TF-IDF
represents the text by the relative frequency of the exact
words seen in the training data, text embedding could map
related words to vectors that are close in the embedding
feature space. In our setting, since the vocabulary found in
the server failure logs is relatively small and it is rare to
see new or ambiguous words, we have found that TF-IDF
and fastText word embedding would perform similarly on our
dataset. For simplicity, we productionized the model using TF-
IDF vectorization.

B. The Machine Learning Model

After the free-form texts are vectorized, the features can
be concatenated with the vectors representing the server at-
tributes and repair history. The categorical features need to be
presented as binary vectors through one-hot encoding [10]. We
chose to use Gradient Boosted Decision Tree (GBDT) [11] as
the classifier for its simplicity and comparable performance
with the other state-of-the-art methods. Fig. 1 shows the data
flow of the model. With the compatibility for text, categorical,
and parametric features, the framework can be easily extended
to incorporate more features in the future.

Server 
Failure Logs

(Structured) 
Tooling Logs

Gradient Boosted Decision Tree

Server 
Attributes

Text 
Embedding

Predicted Probability For Each Repair Action

free-form text categorical or parametric features

Post Filtering

Final Prediction

Fig. 1. Data flow for the machine learning framework.

C. The Upper Bound on Prediction Accuracy

As the machine learning model learns from how similar
repair tickets have been closed for new undiagnosed tickets,
many similar tickets in the training dataset would be undiag-
nosed tickets closed with human investigation and remediation.
There is typically a higher variance in the repair actions from
human remediation, because the engineers can be unfamiliar
with the failures, and the diagnosis practice could slightly
vary across different datacenters. As a result, given exactly
the same feature values, repair tickets could have been closed
with different remediations. When calculating the prediction
accuracy against the actual ticket resolutions, this variation in
ticket resolutions, which we measure with a metric repair con-
sistency, imposes an upper bound to the prediction accuracy,



because the machine learning model would always make the
same prediction given the same signals. Without additional
information to model the variation, the predictions cannot
match all the actual ticket resolutions. The repair consistency
can be weighted based on the quality of the historical repairs
on groups of tickets and engineers.

IV. DEPLOYING THE PREDICTIONS IN PRODUCTION

A. Confidence Thresholds

The machine learning model makes predictions with a score,
a value between 0 and 1. The prediction score does not directly
indicate the probability of the prediction being correct, but
shows the relative confidence the model has about the predic-
tion. In practice, we can set a threshold on this confidence
score to act only on the predictions with higher confidence.
Different confidence thresholds would result in different values
of precision and recall, or similarly, true positive rate (TPR)
and false positive rate (FPR) [12]. Precision measures the
correctness of the positive predictions, and recall measures
the coverage of positive samples by the correct predictions. In
other words, precision is a constraint, and recall is the gain
given the constraint. Fig. 2 is an example of the precision-
recall curve for motherboard swap predictions.

For hardware remediation, the cost of an incorrect repair
action includes wasted parts, unnecessary human labor, ship-
ping and engineering cost for testing the returned device,
and additional server downtime. Once the saved and incurred
resources from correct and incorrect predictions are derived
based on these factors, we can normalize the values and
convert the precision-recall curve into a cost-saving curve,
and pick an operation point with a reasonable pair of cost
and saving values. While it is intuitive to find the operation
point with maximized total saving, sometimes there can be
additional constraints on the incurred cost, e.g. a limit on the
number of parts we are willing to throw away due to incorrect
predictions.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

SWAPMOTHERBOARD

Fig. 2. The precision-recall curve for swap motherboard predictions.

B. Executing the Predictions

The repair flow incorporating the predicted repairs is il-
lustrated in Fig. 3. The repair handler is a new step in the
remediation flow, right before when repair tickets are created.

The repair handler sends the collected features about the
failure to the machine learning model, and retrieves the most
confident predictions along with their confidence scores. The
repair handler then tries the high-confidence non-component
predicted repairs by descending order of their confidence
scores. If the hardware issue remains after the list of non-
component repairs is exhausted, depending on whether there
is a high-confidence predicted component repair, the repair
handler would create either a diagnosed or undiagnosed repair
ticket for human remediation.

Repair 
Handler

Repair 
Prediction 

Model

failure features

predictions 
and scores

detected hardware failure

Try Non-Component 
Repairs

Create Diagnosed 
Ticket Based on 

Prediction

predictions that pass 
confidence filter

Create an 
Undiagnosed 

Ticket

Release Server 
to Production

server is fixedno predicted 
component repair

there is a predicted 
component repair

there is at least one predicted 
non-component repair not tried 

Fig. 3. Repair prediction execution flow.

For each repair type, we set a confidence threshold and a
switch to turn the prediction off in case an emerging issue in
production needs to be left untouched for investigation. The
configuration can be specified at finer granularity to include
other constraints such as server model and datacenters.

C. Performance Monitoring

The precision and recall of the model are continuously mon-
itored and evaluated for replacing the prodiction model with
a retrained model candidate based on more recent data. For
the framework built with TF-IDF and GBDT, each retraining
takes less than an hour to finish.

In addition to the precision and recall per repair type, we
monitor the repeat offender rate of the hardware failures for
evaluating the quality of the repairs that close the repair
tickets. In some cases, a hardware failure is transient and
can be temporarily alleviated by resetting program states or
rebooting the server. For example, PROCHOT is a signal
that could indicate CPU overheating and would throttle CPU
frequency [3], [13]. One common reason for PROCHOT is
that the thermal compound has worn out over time, and it
is more likely to be triggered when the server is running
heavy production load. Rebooting the server can naturally
clear the PROCHOT condition because the CPU temperature
drops when the server stops serving production traffic during
the reboot. However, a reboot does not fix the underlying issue



about the thermal compound, and PROCHOT is likely to be
triggered again in production. Therefore, the repeat offender
rate of the failures is an important metric for capturing how
the failures are properly fixed, instead of being temporarily
remediated.

V. PREDICTION PERFORMANCE

Table I presents the precision and recall of some of the
most accurately predicted repair actions for undiagnosed repair
tickets. The result is based on a high volume of representative
repair tickets that were sampled from the production repair
tickets in 2019. In this setting, we take the prediction with
the highest confidence score per failure without a confidence
threshold, or equivalently, a confidence threshold at 0.

Without a confidence threshold, the predictions for some
repair types such as SWAP FLASH show lower precision
but very high recall. If we execute all the predicted SWAP
FLASH repairs without checking the prediction confidence,
we will cover more actual SWAP FLASH repairs at the cost
of additional unnecessary SWAP FLASH repairs. For this type
of repairs, we need to raise the confidence threshold to move
the operation point towards higher precision and lower recall
to arrive at a practical operation point, based on the discussion
in Section IV-A. SWAP CABLE, on the other hand, has perfect
precision at a relatively lower recall. This means that the model
predicts SWAP CABLE less frequently, but when it does the
predictions are all correct. If we simply follow all of these
predictions, we can correctly diagnose 33% of the undiagnosed
repair tickets that require SWAP CABLE repairs.

Similar to Table I, we can also analyze the precision and
recall by different failure signals. This analysis would give us
hints about which failure signals are of less quality, i.e. less
specific for pointing to an effective repair, and we can improve
the failure signal logging accordingly.

TABLE I
PRECISION AND RECALL OF THE MOST ACCURATELY PREDICTED REPAIR

TYPES.

Repair Action Precision Recall
SWAP CABLE 1.00 0.33
SWAP CPU 0.35 0.39
SWAP HDD 0.53 0.95
SWAP FLASH 0.44 1.00
SWAP MEMORY 0.28 0.69
SWAP MOTHERBOARD 0.57 0.33
RAID CONFIG 1.00 0.50
RESEAT RAID CARD 0.33 0.50

VI. CONCLUSION

As the hardware fleet scales and the complexity in the
hardware and software configuration increases, rule-based
diagnosis can be lagging for the new failure modes. In this
paper, we present a machine learning framework that bridges
the gap by predicting the proper repair actions based on the
human repair behaviors observed at the datacenters.

In addition to providing diagnoses to undiagnosed repair
tickets, this framework can also correct misdiagnosed repair

tickets when the predicted repair is different from the rule-
based diagnosis but has very high confidence. For improving
the prediction performance, we are exploring other state-of-
the-art text embedding techniques as well as incorporating
more features including the hardware and software configu-
rations, environmental variables, relative rack positions, and
resource utilities.

While broader issues such as software configurations would
be captured and escalated as repeat offenders, we prefer to
capture these issues as early as possible. We have deployed
the dimensional analysis presented in [14] on the undiagnosed
and misdiagnosed tickets, when they are created and closed
respectively, for the first time instead of waiting for them to
become repeat offenders. Out of hundreds of server configura-
tion variables, the dimensional analysis finds combinations of
variable values associated with the target tickets automatically.

ACKNOWLEDGEMENT

The authors would like to thank Matt Beadon, Stuart
Cannon, George Chewning, Preston Connor, Pavan Daggubati,
Ricardo Delfin, Harish Dattatraya Dixit, Brian Fredericks,
Xiang Gao, Anna Jacobi, Ranjith Meka, Michał Naruniec,
Varun Nirantar, Eoin O’Kane, Sathia Pitchai, Olivier Raginel,
Joao Rechena, Lakhwinder Singh, Amandeep Singla, Gianni
Vialetto, Seth Weidman, and Chi Zhou for their contribution
to this work.

REFERENCES

[1] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
European Conference on Computer Systems (EuroSys), Apr. 2015.

[2] M. Isard, “Autopilot: Automatic data center management,” in ACM
SIGOPS Operating System Review, Apr. 2007.

[3] F. F. Lin, M. Beadon, H. D. Dixit, G. Vunnam, A. Desai, and S. Sankar,
“Hardware remediation at scale,” in IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, Jun. 2018.

[4] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” in ACM SIGCOMM
Computer Communication Review, Jan. 2009.

[5] H. D. Dixit, F. Lin, B. Holland, M. Beadon, Z. Yang, and S. Sankar,
“Optimizing interrupt handling performance for memory failures in
large scale data centers,” in ACM/SPEC International Conference on
Performance Engineering, 2020.

[6] R. Komorn. (2016) Python in production engineering. [Online].
Available: https://engineering.fb.com/production-engineering/python-in-
production-engineering/

[7] (2011) Making facebook self-healing. [Online]. Avail-
able: https://www.facebook.com/notes/facebook-engineering/making-
facebook-self-healing/10150275248698920/

[8] K. S. Jones, “A statistical interpretation of term specificity and its
application in retrieval,” in Journal of Documentation, vol. 28, no. 1,
1972.

[9] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in arXiv:1607.01759, 2016.

[10] D. Harris and S. Harris, Digital design and computer architecture,
2nd ed. Morgan Kaufmann, 2012.

[11] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” in The Annals of Statistics, vol. 29, no. 5, 2001.

[12] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Internation Conference on Machine Learning, 2006.

[13] Intel, “Intel 64 and ia-32 architectures software developer manuals,”
2016.

[14] F. Lin, K. Muzumdar, N. P. Laptev, M.-V. Curelea, S. Lee, and S. Sankar,
“Fast dimensional analysis for root cause investigation in a large-scale
service environment,” in Proceedings of the ACM on Measurement and
Analysis of Computing Systems (POMACS), 2020.

4


