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Abstract

We propose Anticipative Video Transformer (AVT), an
end-to-end attention-based video modeling architecture
that attends to the previously observed video in order to
anticipate future actions. We train the model jointly to pre-
dict the next action in a video sequence, while also learn-
ing frame feature encoders that are predictive of succes-
sive future frames’ features. Compared to existing tempo-
ral aggregation strategies, AVT has the advantage of both
maintaining the sequential progression of observed actions
while still capturing long-range dependencies—both crit-
ical for the anticipation task. Through extensive experi-
ments, we show that AVT obtains the best reported per-
formance on four popular action anticipation benchmarks:
EpicKitchens-55, EpicKitchens-100, EGTEA Gaze+, and
50-Salads; and it wins first place in the EpicKitchens-100
CVPR’21 challenge.

1. Introduction

Predicting future human actions is an important task for
AI systems. Consider an autonomous vehicle at a stop sign
that needs to predict whether a pedestrian will cross the
street or not. Making this determination requires modeling
complex visual signals—the past actions of the pedestrian,
such as speed and direction of walking, or usage of devices
that may hinder his awareness of the surroundings—and us-
ing those to predict what he may do next. Similarly, imag-
ine an augmented reality (AR) device that observes a user’s
activity from a wearable camera, e.g. as they cook a new
dish or assemble a piece of furniture, and needs to antici-
pate his next steps to provide timely assistance. In many
such applications, it is insufficient to recognize what is hap-
pening in the video. Rather, the vision system must also
anticipate the likely actions that are to follow. Hence, there
is a growing interest in formalizing the activity anticipation
task [24, 45, 49, 64, 73, 82] along with development of mul-
tiple challenge benchmarks to support it [13, 14, 49, 55, 82].

Compared to traditional action recognition, anticipation
tends to be significantly more challenging. First of all, it re-
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Figure 1: Anticipating future actions using AVT involves en-
coding video frames with a spatial-attention backbone, followed
by a temporal-attention head that attends only to frames before the
current one to predict future actions. In this example, it sponta-
neously learns to attend to hands and objects without being su-
pervised to do so. Moreover, it attends to frames most relevant
to predict the next action. For example, to predict ‘wash tomato’
it attends equally to all previous frames as they determine if any
more tomatoes need to be washed, whereas for ‘turn-off tap’ it fo-
cuses most on the current frame for cues whether the person might
be done. Please see § 5.3 for details and additional results.

quires going beyond classifying current spatiotemporal vi-
sual patterns into a single action category—a task nicely
suited to today’s well-honed discriminative models—to in-
stead predict the multi-modal distribution of future activi-
ties. Moreover, while action recognition can often side-step
temporal reasoning by leveraging instantaneous contextual
cues [31], anticipation inherently requires modeling the pro-
gression of past actions to predict the future. For instance,
the presence of a plate of food with a fork may be sufficient
to indicate the action of eating, whereas anticipating that
same action would require recognizing and reasoning over
the sequence of actions that precede it, such as chopping,
cooking, serving, etc. Indeed, recent work [23, 77] finds
that modeling long temporal context is often critical for
anticipation, unlike action recognition where frame-level
modeling is often enough [43, 50, 81]. These challenges are
also borne out in practice. For example, accuracy for one of
today’s top performing video models [77] drops from 42%
to 17% when treating recognition versus anticipation on the



same test clips [13]—predicting even one second into the
future is much harder than declaring the current action.

The typical approach to solving long-term predictive rea-
soning tasks involves extracting frame or clip level features
using standard architectures [12, 86, 91], followed by ag-
gregation using clustering [32, 62], recurrence [23, 24, 42],
or attention [28, 59, 77, 95] based models. Except the recur-
rent ones, most such models merely aggregate features over
the temporal extent, with little regard to modeling the se-
quential temporal evolution of the video over frames. While
recurrent models like LSTMs have been explored for antici-
pation [2, 23, 96], they are known to struggle with modeling
long-range temporal dependencies due to their sequential
(non-parallel) nature. Recent work mitigates this limitation
using attention-based aggregation over different amounts
of the context to produce short-term (‘recent’) and long-
term (‘spanning’) features [77]. However, it still reduces
the video to multiple aggregate representations and loses its
sequential nature. Moreover, it relies on careful and dataset-
specific tuning of the architecture and the amounts of con-
text used for the different aggregate features.

In this work, we introduce Anticipative Video Trans-
former (AVT), an alternate video modeling architecture that
replaces “aggregation” based temporal modeling with a an-
ticipative1 architecture. Aiming to overcome the tradeoffs
described above, the proposed model naturally embraces
the sequential nature of videos, while minimizing the lim-
itations that arise with recurrent architectures. Similar to
recurrent models, AVT can be rolled out indefinitely to pre-
dict further into the future (i.e. generate future predictions),
yet it does so while processing the input in parallel with
long-range attention, which is often lost in recurrent archi-
tectures.

Specifically, AVT leverages the popular transformer ar-
chitecture [89, 92] with causal2 masked attention, where
each input frame is allowed to attend only to frames that
precede it. We train the model to jointly predict the next
action while also learning to predict future features that
match the true future features and (when available) their
intermediate action labels. Figure 1 shows examples of
how AVT’s spatial and temporal attention spreads over pre-
viously observed frames for two of its future predictions
(wash tomato and turn-off tap). By incorporating interme-
diate future prediction losses, AVT encourages a predictive
video representation that picks up patterns in how the vi-
sual activity is likely to unfold into the future. This facet
of our model draws an analogy to language, where trans-

1We use the term “anticipative” to refer to our model’s ability to pre-
dict future video features and actions.

2Throughout we use the term “causal” to refer to the constraint that
video be processed in a forward, online manner, i.e. functions applied at
time t can only reference the frames preceding them, akin to Causal Lan-
guage Modeling (CLM) [51]. This is not to be confused with other uses of
“causal” in AI where the connotation is instead cause-and-effect.

formers trained with massive text corpora are now powerful
tools to anticipate sequences of words (cf. GPT and vari-
ants [8, 69, 70]). The incremental temporal modeling aspect
has been also been explored for action recognition [53], al-
beit with convolutional architectures and without interme-
diate self-supervised losses.

While the architecture described so far can be applied on
top of various frame or clip encoders (as we will show in
experiments), we further propose a purely attention-based
video modeling architecture by replacing the backbone with
an attention-based frame encoder from the recently intro-
duced Vision Transformer [18]. This enables AVT to at-
tend not only to specific frames, but also to spatial features
within the frames in one unified framework. As we see
in Figure 1, when trained on egocentric video, the model
spontaneously learns to attend to spatial features corre-
sponding to hands and objects, which tend to be especially
important in anticipating future activities [57].

In summary, our contributions are: 1) AVT, a novel
end-to-end purely attention based architecture for predic-
tive video modeling; 2) Incorporation of a self-supervised
future prediction loss, making the architecture especially
applicable to predictive tasks like action anticipation; 3) Ex-
tensive analysis and ablations of the model showing its ver-
satility with different backbone architectures, pre-trainings,
etc. on the most popular action anticipation benchmarks,
both from first and third person viewpoints. Specifically,
we outperform all published prior work on EpicKitchens-
553 [13], EpicKitchens-1003 [14], EGTEA Gaze+ [55], and
50-Salads [82]. Most notably, our method outperforms all
submissions to the EpicKitchens-100 CVPR’21 challenge4,
and is ranked #1 on the EpicKitchens-55 leaderboard5 for
seen (S1) and #2 on unseen (S2) test sets.

2. Related Work

Action anticipation is the task of predicting future ac-
tions given a video clip. While well explored in third-
person video [2, 26, 38, 39, 47, 49, 82, 90], it has re-
cently gained in popularity for first-person (egocentric)
videos [13, 14, 16, 24, 57, 64, 77], due to its applicabil-
ity on wearable computing platforms. Various approaches
have been proposed for this task, such as learning represen-
tations by predicting future features [90, 96], aggregating
past features [24, 77], or leveraging affordances and hand
motion [57, 64]. Our work contributes a new video archi-
tecture for anticipation, and we demonstrate its promising
advantages on multiple popular anticipation benchmarks.
Self-supervised feature learning from video methods
learn representations from unlabeled video, often to be fine-

3EpicKitchens-55/100 datasets are licensed under the Creative Com-
mons Attribution-NonCommercial 4.0 International License.

4competitions.codalab.org/competitions/25925
5competitions.codalab.org/competitions/20071



tuned for particular downstream tasks. Researchers ex-
plore a variety of “free” supervisory signals, such as tem-
poral consistency [21, 41, 44, 94, 99], inter-frame pre-
dictability [36, 37, 40, 83], and cross-modal correspon-
dence [3, 48, 83, 84]. AVT incorporates losses that en-
courage features predictive of future features (and actions);
while this aspect shares motivation with prior [25, 36, 37,
58, 60, 75, 78, 83, 84, 90] and concurrent work [96], our
architecture to achieve predictive features is distinct (trans-
former based rather than convolutional/recurrent [25, 36,
37, 78, 96]), it operates over raw frames or continuous video
features as opposed to clustered ‘visual words’ [84], as-
sumes only visual data (rather than vision with speech or
text [83, 84]), and is jointly trained for action anticipation
(rather than pre-trained and then fine-tuned for action recog-
nition [36, 37, 83]).
Language modeling (LM) has been revolutionized with
the introduction of self-attention architectures [89]. LM ap-
proaches can generally be classified in three categories: (1)
encoder-only [17, 67], which leverage bidirectional atten-
tion and are effective for discriminative tasks such as clas-
sification; (2) decoder-only [8, 69], which leverage a causal
attention [51] attending on past tokens, and are effective for
generative tasks such as text generation; and (3) encoder-
decoder [52, 71], which incorporate both a bidirectional en-
coder and causal decoder, and are effective for tasks such
as machine translation. Capitalizing on the analogy be-
tween action prediction and generative language tasks, we
explore causal decoder-only attention architectures in our
model. While language models are typically trained on
discrete inputs (words), AVT trains with continuous video
features. This distinction naturally influences our design
choices, such as an L2 loss for generative training as op-
posed to a cross entropy loss for the next word.
Self-attention and transformers in vision. The general
idea of self-attention in vision dates back to non-local
means [9], and is incorporated into contemporary network
architectures as non-local blocks [10, 56, 93, 95] and gat-
ing mechanisms [30, 46, 62, 97]. While self-attention ap-
proaches like transformers [89, 92] offer strong results for
high-level vision reasoning tasks [11, 101], more recently,
there is growing interest in completely replacing convolu-
tional architectures with transformers for image recogni-
tion [18, 85]. For video, prior work has mostly leveraged
attention architectures [28, 93, 95] on top of standard spa-
tiotemporal convolutional base architectures [12, 86, 88]. In
contrast, AVT is an end-to-end transformer architecture for
video—to our knowledge the first (concurrent with [4, 7, 19,
54, 65]). Unlike the concurrent methods [4, 7, 19, 54, 65],
which are bidirectional and address traditional action recog-
nition, AVT has a causal structure and tackles predictive
tasks (anticipation). AVT yields the best results to date for
several well-studied anticipation benchmarks.
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Figure 2: Action anticipation problem setup. The goal is to use
the observed video segment of length ⌧o to anticipate the future
action ⌧a seconds before it happens.

3. Anticipation Problem Setup

While multiple anticipation problem setups have been
explored in the literature [45, 64, 73], in this work we follow
the setup defined in recent challenge benchmarks [13, 14]
and illustrated in Figure 2. For each action segment labeled
in the dataset starting at time ⌧s, the goal is to recognize it
using a ⌧o length video segment ⌧a units before it, i.e. from
⌧s � (⌧a + ⌧o) to ⌧s � ⌧a. While methods are typically
allowed to use any length of observed segments (⌧o), the
anticipation time (⌧a) is usually fixed for each dataset.

4. Anticipative Video Transformer

We now present the AVT model architecture, as illus-
trated in Figure 3. It is designed to predict future actions
given a video clip as input. To that end, it leverages a two-
stage architecture, consisting of a backbone network that
operates on individual frames or short clips, followed by a
head architecture that operates on the frame/clip level fea-
tures to predict future features and actions. AVT employs
causal attention modeling—predicting the future actions
based only on the frames observed so far—and is trained
using objectives inspired from self-supervised learning. We
now describe each model component in detail, followed by
the training and implementation details.

4.1. Backbone Network

Given a video clip with T frames, V = {X1, · · · ,XT }
the backbone network, B, extracts a feature representa-
tion for each frame, {z1, · · · , zT } where zt = B(Xt).
While various video base architectures have been pro-
posed [12, 20, 87, 91] and can be used with AVT as we
demonstrate later, in this work we propose an alternate ar-
chitecture for video understanding based purely on atten-
tion. This backbone, which we refer to as AVT-b, adopts
the recently proposed Vision Transformer (ViT) [18] archi-
tecture, which has shown impressive results for static image
classification.

Specifically, we adopt the ViT-B/16 architecture. We
split each input frame into 16⇥16 non-overlapping patches.
We flatten each patch into a 256D vector, and linearly
project them to 768D, which is the feature dimension used
throughout the encoder. While we do not need to clas-
sify each frame individually, we still prepend a learnable
[class] token embedding to the patch features, whose



Linear Projections Linear Projections Linear Projections Linear Projections

1 2 3*0 9… 1 2 3*0 9… 1 2 3*0 9… 1 2 3*0 9…

[CLASS]
token

Patch 
features + 

spatial 
position 

embedding

Input Video Frames

Causal Transformer Decoder

Unwrap 
Pizza

Plate 
Pizza

Take 
Wrapper

Crumple 
Wrapper

Throw 
wrapper

Linear Linear Linear Linear Linear

ℒ!"#

Transformer 
Encoder

Transformer 
Encoder

Transformer 
Encoder

Transformer 
Encoder

0 1 2 3

Past frame 
features + 
temporal 
position 

embedding

Ba
ck
bo
ne

H
ea
d

ℒ!"# ℒ!"# ℒ!"# ℒ$%&'

ℒ(%)' ℒ(%)' ℒ(%)'

"* "+

!!

!!

!" !# !$

"!" "!#"!! "!$

LayerNorm

Masked 
multi-head 
attention

Past frame 
embeddings

+

LayerNorm

MLP

+

Future frame 
embeddings

LayerNorm

L <latexit sha1_base64="NjGIR+4adDImgJVPgwBhEg5se9g=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd2g6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEG CpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXRQJt71S2a/4c5BVEuSkDDnqvdJXt69ZlnCFTFJrO4GfYjihBgWTfFrsZpanlI3ogHccVdQtCSfza6fk3Cl9EmvjSiGZq78nJjSxdpxErjOhOLTL3kz8z+tkGN+EE6HSDLlii0VxJglqMnud9IXhDOXYEcqM cLcSNqSGMnQBFV0IwfLLq6RZrQRXFf/+slyr5nEU4BTO4AICuIYa3EEdGsDgEZ7hFd487b14797HonXNy2dO4A+8zx+yrY8o</latexit>⇥<latexit sha1_base64="NjGIR+4adDImgJVPgwBhEg5se9g=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd2g6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEG CpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXRQJt71S2a/4c5BVEuSkDDnqvdJXt69ZlnCFTFJrO4GfYjihBgWTfFrsZpanlI3ogHccVdQtCSfza6fk3Cl9EmvjSiGZq78nJjSxdpxErjOhOLTL3kz8z+tkGN+EE6HSDLlii0VxJglqMnud9IXhDOXYEcqM cLcSNqSGMnQBFV0IwfLLq6RZrQRXFf/+slyr5nEU4BTO4AICuIYa3EEdGsDgEZ7hFd487b14797HonXNy2dO4A+8zx+yrY8o</latexit>⇥

Figure 3: (Left) AVT architecture. We split the T input frames into non-overlapping patches that are linearly projected. We add a learned
[CLASS] token, along with spatial position embeddings, and the resulting features are passed through multiple layers of multi-head
attention, with shared weights across the transformers applied to all frames. We take the resulting features corresponding to the [CLASS]
token, append a temporal position encoding and pass it through the Causal Transformer Decoder that predicts the future feature at frame t,
after attending to all features from 1 · · · t. The resulting feature is trained to regress to the true future feature (Lfeat) and predict the action
at that time point if labeled (Lcls), and the last prediction is trained to predict the future action (Lnext). (Right) Causal Transformer

Decoder. It follows the Transformer architecture with pre-norm [92], causal masking in attention, and a final LayerNorm [70].

output will be used as a frame-level embedding input to
the head. Finally, we add learned position embeddings to
each patch feature similar to [18]. We choose to stick to
frame-specific spatial position encodings, so that the same
backbone model with shared weights can be applied to each
frame. We will incorporate the temporal position informa-
tion in the head architecture (discussed next). The result-
ing patch embeddings are passed through a standard Trans-
former Encoder [89] with pre-norm [92]. We refer the
reader to [18] for details of the encoder architecture.

AVT-b is an attractive backbone design because it makes
our architecture purely attentional. Nonetheless, in addi-
tion to AVT-b, AVT is compatible with other video back-
bones, including those based on 2D CNNs [80, 91], 3D
CNNs [12, 20, 87], or fixed feature representations based
on detected objects [5, 6] or visual attributes [63]. In § 5
we provide experiments testing several such alternatives.
For the case of spatiotemporal backbones, which operate
on clips as opposed to frames, we extract features as zt =
B(Xt�L, · · · ,Xt), where the model is trained on L-length
clips. This ensures the features at frame t do not incorporate
any information from the future, which is not allowed in the
anticipation problem setting.

4.2. Head Network

Given the features extracted by the backbone, the head
network, referred to as AVT-h, is used to predict the future
features for each input frame using a Causal Transformer
Decoder, D:

ẑ1, · · · , ẑT = D(z1, · · · , zT ). (1)

Here ẑt is the predicted future feature corresponding to
frame feature zt, after attending to all features before and
including it. The predicted features are then decoded into
a distribution over the semantic action classes using a lin-
ear classifier ✓, i.e. ŷt = ✓(ẑt). The final prediction, ŷT ,
is used as the model’s output for the next-action anticipa-
tion task. Note that since the next action segment (T + 1)
is ⌧a seconds from the last observed frame (T ) as per the
problem setup, we typically sample frames at a stride of ⌧a

so that the model learns to predict future features/actions at
that frame rate. However, empirically we find the model is
robust to other frame rate values as well.

We implement D using a masked transformer decoder
inspired from popular approaches in generative language
modeling, such as GPT-2 [70]. We start by adding a tempo-
ral position encoding to the frame features implemented as
a learned embedding of the absolute frame position within



the clip. The embedded features are then passed through
multiple decoder layers, each consisting of masked multi-
head attention, LayerNorm (LN) and a multi-layer percep-
tron (MLP), as shown in Figure 3 (right). The final output
is then passed through another LN, akin to GPT-2 [70], to
obtain the future frame embeddings.

Aside from being visual rather than textual, this model
differs from the original Transformer Decoder [89] in terms
of the final LN and the masking operation in the multi-head
attention. The masking ensures that the model only attends
to specific parts of the input, which in the case of predictive
tasks like ours, is defined as a ‘causal’ mask. That is, for the
output corresponding to the future after frame t, i.e. ẑt, we
set the mask to only attend to z1 · · · zt. We refer the reader
to [70] for details on the masking implementation.

This design differs considerably from previous applica-
tions of language modeling architectures to video, such as
VideoBERT [84]. It operates directly on continuous clip
embeddings instead of first clustering them into tokens, and
it leverages causal attention to allow for anticipative train-
ing (discussed next), instead of needing masked language
modeling (MLM) as in BERT [17]. These properties make
AVT suited for predictive video tasks while allowing for the
long-range reasoning that is often lost in recurrent architec-
tures. While follow-ups to VideoBERT such as CBT [83]
operate on raw clip features, they still leverage a MLM ob-
jective with bidirectional attention, with the primary goal of
representation learning as opposed to future prediction.

4.3. Training AVT

To sample training data, for each labeled action segment
in a given dataset, we sample a clip preceding it and ending
⌧a seconds before the start of the action. We pass the clip
through AVT to obtain future predictions, and then super-
vise the network using three losses.

First, we supervise the next-action prediction using a
cross-entropy loss with the labeled future action, cT+1:

Lnext = � log ŷT [cT+1]. (2)

Second, to leverage the causal structure of the model, we
supervise the model’s intermediate future predictions at the
feature level and the action class level. For the former, we
predict future features to match the true future features that
are present in the clip, i.e.

Lfeat =
T�1X

t=1

||ẑt � zt+1||22. (3)

This loss is inspired from the seminal work by Vondrick
et al. [90] as well as follow ups [36, 37] that show that
anticipating future visual representations is an effective
form of self-supervision, though typically for traditional ac-
tion recognition tasks. Concurrent and recent work adopts

similar objectives for anticipation tasks, but with recur-
rent architectures [25, 78, 96]. Whereas recent meth-
ods [36, 37, 96] explore this loss with NCE-style [66] ob-
jectives, in initial experiments we found simple L2 loss to
be equally effective. Since our models are always trained
with the final supervised loss, we do not suffer from poten-
tial collapse during training that would necessitate the use
of contrastive losses.

Third, as an action class level anticipative loss, we lever-
age any action labels available in the dataset to supervise the
intermediate predictions, i.e., when the input clip overlaps
with any labeled action segments that precede the segment
to be anticipated.6 Setting ct = �1 for any earlier frames
for which we do not have labels, we incur the following
loss:

Lcls =
T�1X

t=1

Lt
cls; Lt

cls =

(
� log ŷt[ct+1] if ct+1 � 0

0 otherwise.
(4)

We train our model with

L = Lnext + Lcls + Lfeat (5)

as the objective, and refer to it as the anticipative [a] train-
ing setting. As a baseline, we also experiment with a model
trained solely with L = Lnext, and refer to it as the naive

[n] setting, as it does not leverage our model’s causal atten-
tion structure, instead supervising only the final prediction
which attends to the full input. As we will show in Table 7,
the anticipative setting leads to significant improvements.

4.4. Implementation Details

We preprocess the input video clips by randomly scaling
the height between 248 and 280px, and take 224px crops at
training time. We sample 10 frames at 1FPS for most ex-
periments. We adopt network architecture details from [18]
for the AVT-b backbone. Specifically, we use a 12-head,
12-layer transformer encoder model that operates on 768D
representations. We initialize the weights from a model pre-
trained on ImageNet-1K (IN1k), ImageNet-21K (IN21k)
or ImageNet-1K finetuned from ImageNet-21K (IN21+1k),
and finetune end-to-end for the anticipation tasks. For AVT-
h, we use a 4-head, 6-layer model that operates on a 2048D
representation, initialized from scratch. We employ a lin-
ear layer between the backbone and head to project the fea-
tures to match the feature dimensions used in the head. We
train AVT end-to-end with SGD+momentum using 10�6

weight decay and 10�4 learning rate for 50 epochs, with a
20 epoch warmup [33] and 30 epochs of cosine annealed de-
cay. At test time, we employ 3-crop testing, where we com-
pute three 224px spatial crops from 248px input frames, and

6For example, this would be true for each frame for densely labeled
datasets like 50-Salads, and a subset of frames for sparsely labeled datasets
like EpicKitchens-55.



Dataset Viewpoint Segments Classes ⌧a (s) Metric(s)

EK100 [14] 1st 90.0K 3,807 1.0 [14] recall
EK55 [13] 1st 39.6K 2,513 1.0 [13] top-1/5, recall
EGTEA Gaze+ [55] 1st 10.3K 106 0.5 [57] top-1, cm top-1
50S [82] 3rd 0.9K 17 1.0 [2] top-1

Table 1: Datasets used for evaluation. We use four popular bench-
marks, spanning first and third person videos. Class-mean (‘cm’)
=) evaluation is done per-class and averaged over classes. Recall
refers to class-mean recall@5 from [22]. For all, higher is better.

average the predictions over the corresponding three clips.
The default backbone for AVT is AVT-b, based on the ViT-
B/16 architecture. However, to enrich our comparisons with
some baselines [23, 24, 77], below also we report perfor-
mance of only our head model operating on fixed features
from 1) a frame-level TSN [91] backbone pre-trained for
action classification, or 2) a recent spatiotemporal convo-
lutional architecture irCSN-152 [87] pre-trained on a large
weakly labeled video dataset [27], which has shown strong
results when finetuned for action recognition. We fine-
tune that model for action classification on the anticipation
dataset and extract features that are used by the head for
anticipation. In these cases, we only train the AVT-h lay-
ers. For all datasets considered, we use the validation set or
split 1 to further optimize the hyperparameters, and use that
setup over multiple splits or the held out test sets. Code and
models will be released for reproducibility.

5. Experiments

We empirically evaluate AVT on four popular action an-
ticipation benchmarks covering both first- and third-person
videos. We start by describing the datasets and evaluation
protocols (§ 5.1), followed by key results and comparisons
to the state of the art (§ 5.2), and finally ablations and qual-
itative results (§ 5.3).

5.1. Experimental Setup

Datasets and metrics. We test on four popular action antic-
ipation datasets summarized in Table 1. EpicKitchens-100
(EK100) [14] is the largest egocentric (first-person) video
dataset with 700 long unscripted videos of cooking activi-
ties totalling 100 hours. EpicKitchens-55 (EK55) [13] is an
earlier version of the same, and allows for comparisons to
a larger set of baselines which have not yet been reported
on EK100. For both, we use the standard train, val, and test
splits from [14] and [23] respectively to report performance.
The test evaluation is performed on a held-out set through a
submission to their challenge server. EGTEA Gaze+ [55]
is another popular egocentric action anticipation dataset.
Following recent work [57], we report performance on the
split 1 [55] of the dataset at ⌧a = 0.5s. Finally, 50-Salads
(50S) [82] is a popular third-person anticipation dataset, and

Head Backbone Init Verb Noun Action

RULSTM [14] TSN IN1k 27.5 29.0 13.3
AVT-h TSN IN1k 27.2 30.7 13.6
AVT-h irCSN152 IG65M 25.5 28.1 12.8
AVT-h AVT-b IN1k 28.2 29.3 13.4
AVT-h AVT-b IN21+1k 28.7 32.3 14.4
AVT-h AVT-b IN21k 30.2 31.7 14.9

RULSTM [14] Faster R-CNN IN1k 17.9 23.3 7.8
AVT-h Faster R-CNN IN1k 18.0 24.3 8.7

Table 2: EK100 (val) using RGB and detected objects (OBJ)
modalities separately. AVT outperforms prior work using the ex-
act same features, and further improves with our AVT-b backbone.
Performance reported using class-mean recall@5.

we report top-1 accuracy averaged over the pre-defined 5
splits following prior work [77]. Some of these datasets
employ top-5/recall@5 criterion to account for the multi-
modality in future predictions, as well as class-mean (cm)
metrics to equally weight classes in a long-tail distribution.
The first three datasets also decompose the action annota-
tions into verb and nouns. While some prior work [77]
supervises the model additionally for nouns and verbs, we
train all our model solely to predict actions, and estimate
the verb/noun probabilities by marginalizing over the other,
similar to [23]. In all tables, we highlight the columns show-
ing the metric used to rank methods in the official challenge
leaderboards. Unless otherwise specified, the reported met-
rics correspond to future action (act.) prediction, although
we do report numbers for verb and nouns separately where
applicable. Please see Appendix A for further details.
Baselines. We compare AVT to its variants with differ-
ent backbones and pretrained initializations, as well as to
the strongest recent approaches for action anticipation, i.e.
RULSTM [23, 24], ActionBanks [77], and Forecasting HOI
(FHOI) [57]. Please see Appendix B for details on them.
While FHOI trains the model end-to-end, RULSTM and
ActionBanks operate on top of features from a model pre-
trained for action classification on that dataset. Hence, we
report results both using the exact same features as well as
end-to-end trained backbones to facilitate fair comparisons.

5.2. Comparison to the state-of-the-art

EK100. We first compare AVT to prior work using individ-
ual modalities (RGB and Obj [23]) in Table 2 for apples-to-
apples comparisons and to isolate the performance of each
of our contributions. First, we compare to the state-of-the-
art RULSTM method using only our AVT (head) model
applied to the exact same features from TSN [91] trained
for classification on EK100. We note this already improves
over RULSTM, particularly in anticipating future objects
(nouns). Furthermore, we experiment with backbone fea-



Overall Unseen Kitchen Tail Classes

Split Method Verb Noun Act Verb Noun Act Verb Noun Act

Va
l

chance 6.4 2.0 0.2 14.4 2.9 0.5 1.6 0.2 0.1
RULSTM [14] 27.8 30.8 14.0 28.8 27.2 14.2 19.8 22.0 11.1
AVT+ (TSN) 25.5 31.8 14.8 25.5 23.6 11.5 18.5 25.8 12.6
AVT+ 28.2 32.0 15.9 29.5 23.9 11.9 21.1 25.8 14.1

Te
st chance 6.2 2.3 0.1 8.1 3.3 0.3 1.9 0.7 0.0

RULSTM [14] 25.3 26.7 11.2 19.4 26.9 9.7 17.6 16.0 7.9
TBN [100] 21.5 26.8 11.0 20.8 28.3 12.2 13.2 15.4 7.2
AVT+ 25.6 28.8 12.6 20.9 22.3 8.8 19.0 22.0 10.1

C
ha

lle
ng

e IIE MRG 25.3 26.7 11.2 19.4 26.9 9.7 17.6 16.0 7.9
NUS CVML [76] 21.8 30.6 12.6 17.9 27.0 10.5 13.6 20.6 8.9
ICL+SJTU [35] 36.2 32.2 13.4 27.6 24.2 10.1 32.1 29.9 11.9
Panasonic [98] 30.4 33.5 14.8 21.1 27.1 10.2 24.6 27.5 12.7
AVT++ 25.2 32.0 16.5 20.4 27.9 12.8 17.6 23.5 13.6

Table 3: EK100 val and test sets using all modalities. We split
the test comparisons between published work and CVPR’21 chal-
lenge submissions. We outperform prior work including all chal-
lenge submissions, with especially significant gains on tail classes.
Performance is reported using class-mean recall@5. AVT+ and
AVT++ late fuse predictions from multiple modalities; please see
text for details.

tures from a recent state-of-the-art video model, irCSN-
152 [87] pretrained on a large weakly supervised dataset,
IG65M [27]. We finetune this backbone for recognition on
EK100, extract its features and train AVT-h same as before,
but find it to not be particularly effective at the EK100 antic-
ipation task. Next, we replace the backbone with our AVT-b
and train the model end-to-end, leading to the best perfor-
mance so far, and outperforming RULSTM by 1.6%. We
make the same comparison over features from an object-
detector [72] trained on EK100 provided by RULSTM (re-
ferred to as OBJ modality, details in Appendix A), and simi-
larly find our method outperforms RULSTM on this modal-
ity as well.

Note that the fixed features used above can be thought of
as a proxy for past recognized actions, as they are trained
only for action recognition. Hence, AVT-h on TSN or
irCSN152 features is comparable to a baseline that trains
a language model over past actions to predict future ones.
As the later experiments show, end-to-end trained AVT is
significantly more effective, supporting AVT’s from-pixels
anticipation as opposed to label-space anticipation.

Finally, we compare models using all modalities on the
EK100 val and the held-out test set in Table 3. While RUL-
STM fuses models trained on RGB, Flow, and OBJ features
using an attention based model (MATT [23]), we simply
late fuse predictions from our best RGB and OBJ models
(resulting model referred to as AVT+), and outperform all
reported work on this benchmark, establishing a new state-
of-the-art. Note we get the largest gains on tail classes, sug-
gesting our model is particularly effective at few-shot antici-
pation. Finally, AVT++ ensembles multiple model variants,
and outperforms all submissions on the EK100 CVPR’21

Head Backbone Init Top-1 Top-5 Recall

RULSTM [24] TSN IN1k 13.1 30.8 12.5
ActionBanks [77] TSN IN1k 12.3 28.5 13.1

AVT-h TSN IN1k 13.1 28.1 13.5
AVT-h AVT-b IN21+1k 12.5 30.1 13.6

AVT-h irCSN152 IG65M 14.4 31.7 13.2

Table 4: EK55 using only RGB modality for action anticipation.
AVT performs comparably, and outperforms when combined with
a backbone pretrained on large weakly labeled dataset.

Top-1 acc. Class mean acc.

Method Verb Noun Act. Verb Noun Act.

I3D-Res50 [12] 48.0 42.1 34.8 31.3 30.0 23.2
FHOI [57] 49.0 45.5 36.6 32.5 32.7 25.3

AVT-h (+TSN) 51.7 50.3 39.8 41.2 41.4 28.3
AVT 54.9 52.2 43.0 49.9 48.3 35.2

Table 5: EGTEA Gaze+ Split 1 at ⌧a =
0.5s. AVT outperforms prior work by sig-
nificant margins, especially when trained
end-to-end with the AVT-b backbone.

Head Top-1

DMR [90] 6.2
RNN [2] 30.1
CNN [2] 29.8
ActionBanks [77] 40.7

AVT 48.0

Table 6: 50-Salads.

AVT outperforms
prior work even in
3rd person videos.

challenge leaderboard. Please refer to the workshop pa-
per [29] for details on AVT++.
EK55. Since EK100 is relatively new and has few baseline
methods reported, we also evaluate AVT on EK55. As be-
fore, we start by comparing single modality methods (RGB-
only) in Table 4. For AVT-h models, we found a slightly
different set of (properly validated) hyperparameters per-
formed better for top-1/5 metrics vs. the recall metric, hence
we report our best models for each set of results. Here we
find AVT-h performs comparably to RULSTM, and outper-
forms another attention-based model [77] (one of the win-
ners of the EK55 2020 challenge) on the top-1 metrics. The
gain is more significant on the recall metric, which aver-
ages performance over classes, indicating again that AVT-h
is especially effective on tail classes which get ignored in
top-1/5 metrics. Next, we replace the backbone with AVT-
b, and find it to perform comparably on top-1/5 metrics, and
outperforms on the recall metric. Finally, we experiment
with irCSN-152 [87] pretrained using IG65M [27] and fine-
tuned on EK55, and find it to outperform all methods by
a significant margin on top-1/5. We show further compar-
isons with the state-of-the-art on EK55 in Appendix C.
EGTEA Gaze+. In Table 5 we compare our method at
⌧a = 0.5s on the split 1 as in recent work [57]. Even us-
ing fixed features with AVT-h on top, AVT outperforms the
best reported results, and using the AVT-b backbone further
improves performance. Notably, FHOI leverages attention
on hand trajectories to obtain strong performance, which, as
we see in Figure 1, emerges spontaneously in our model.
50-Salads. Finally, we show that our approach is not lim-



Losses Backbones

Setting Lcls Lfeat TSN AVT-b

naive [n] - - 10.1 13.1
3 - 11.5 14.4
- 3 13.7 13.0

anticipative [a] 3 3 13.6 14.4

Table 7: Anticipative training.

Employing the anticipative train-
ing losses are imperative to obtain
strong performance with AVT.
Reported on EK100/cm recall@5.

Figure 4: Temporal con-

text. AVT effectively lever-
ages longer temporal context,
especially in the [a] setting.

ited to egocentric videos and is also effective in third-person
settings. In Table 6, we report top-1 performance on 50-
Salads averaged over standard 5 splits. We observe it out-
performs previous RNN [2] and attention [77] based ap-
proaches by a significant 7.3% absolute improvement, again
establishing a new state-of-the-art.

5.3. Ablations and Analysis

We now analyze the AVT architecture, using the RGB
modality and EK100 validation set as the test bed.

Anticipative losses. In Table 7, we evaluate the contribu-
tion of the two intermediate prediction losses that leverage
the causal structure of AVT. We find using those objectives
leads to significant improvements for both backbones. We
find Lcls is more effective for TSN, and Lfeat for AVT-b.
Given that both combined work well in both settings, we
use both for all experiments. Note that the naive setting
also serves as a baseline with AVT-b backbone followed by
simple aggregation on top, and shows our proposed losses
encouraging the predictive structure are imperative to ob-
tain strong performance. We analyze per-class gains in Ap-
pendix D.1 and find classes like ‘cook’, which require un-
derstanding the sequence of actions so far to anticipate well,
obtain the largest gains in the anticipative setting.

Temporal context. Next, we analyze the effect of tem-
poral context. In Figure 4, we train and test the model
with different lengths of temporal context, ⌧o. We no-
tice that the performance improves as we incorporate more
frames of context, with more consistent gains for AVT-b.
The gains are especially pronounced when trained using the
anticipative setting (11.2 ! 14.9 = 3.5 ") vs. the naive
(11.0 ! 13.1 = 2.1 "). This suggests end-to-end trained
AVT using anticipative losses is better suited at modeling
sequences of long-range temporal interactions.
Attention visualization. To better understand how AVT
models videos, we visualize the learned attention in the
backbone and head. For the backbone, following prior
work [18], we use attention rollout [1] to aggregate atten-
tion over heads and layers. For the head, since our causal
modeling would bias aggregated attention towards the first
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Figure 5: Long-term anticipation. AVT can also be used to pre-
dict further into the future by rolling out predictions autoregres-
sively. The text on top represents the next action predicted at pro-
vided frames, followed by subsequently predicted actions, with the
number representing how long that action would repeat.

few frames, we visualize the last layer attention averaged
over heads. As shown in Figure 1, the model spontaneously
learns to attend to hands and objects, which has been found
beneficial for egocentric anticipation tasks [57]—but re-
quired manual designation in prior work. The temporal at-
tention also varies between focusing on the past or mostly
on the current frame depending on the predicted future ac-
tion. We show additional results in Appendix D.2.

Long-term anticipation. So far we have shown AVT’s ap-
plicability in the next-action anticipation task. Thanks to
AVT’s predictive nature, it can also be rolled out autore-
gressively to predict a sequence of future actions given the
video context. We append the predicted feature and run the
model on the resulting sequence, reusing features computed
for past frames. As shown in Figure 5, AVT makes reason-
able future predictions—‘wash spoon’ after ‘wash knife’,
followed by ‘wash hand’ and ‘dry hand’—indicating the
model has started to learn certain ‘action schemas’ [68],
a core capability of our causal attention and anticipative
training architecture. We show additional results in Ap-
pendix D.3.

6. Conclusion and Future Work

We presented AVT, an end-to-end attention-based archi-
tecture for anticipative video modeling. Through extensive
experimentation on four popular benchmarks, we show its
applicability in anticipating future actions, obtaining state-
of-the-art results and demonstrating the importance of its
anticipative training objectives. We believe AVT would be a
strong candidate for tasks beyond anticipation, such as self-
supervised learning [37, 90], discovering action schemas
and boundaries [68, 79], and even for general action recog-
nition in tasks that require modeling temporal ordering [34].
We plan to explore these directions in future work.
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