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Abstract

Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the
development of challenging environments that test the limits of current meth-
ods. While existing RL environments are either sufficiently complex or based on
fast simulation, they are rarely both. Here, we present the NetHack Learning
Environment (NLE), a scalable, procedurally generated, stochastic, rich, and chal-
lenging environment for RL research based on the popular single-player terminal-
based roguelike game, NetHack. We argue that NetHack is sufficiently complex to
drive long-term research on problems such as exploration, planning, skill acquisi-
tion, and language-conditioned RL, while dramatically reducing the computational
resources required to gather a large amount of experience. We compare NLE and
its task suite to existing alternatives, and discuss why it is an ideal medium for
testing the robustness and systematic generalization of RL agents. We demon-
strate empirical success for early stages of the game using a distributed Deep
RL baseline and Random Network Distillation exploration, alongside qualitative
analysis of various agents trained in the environment. NLE is open source at
https://github.com/facebookresearch/nle.

1 Introduction

Recent advances in (Deep) Reinforcement Learning (RL) have been driven by the development of
novel simulation environments, such as the Arcade Learning Environment (ALE) [9], StarCraft [64,
69], BabyAI [16], Obstacle Tower [38], Minecraft [37, 29, 35], and Procgen Benchmark [18]. These
environments introduced new challenges for state-of-the-art methods and demonstrated their failure
modes. For example, Montezuma’s Revenge highlighted that methods performing well on other ALE
tasks were not able to successfully learn in this sparse-reward environment. This sparked a long line
of research on novel methods for exploration [e.g., 8, 66, 53] and learning from demonstrations [e.g.,
31, 62, 6]. However, this progress has limits: the current best approach on this environment, Go-
Explore [22, 23], overfits to specific properties of ALE and Montezuma’s Revenge. While Go-Explore
is an impressive solution for Montezuma’s Revenge, it exploits the determinism of environment
transitions, allowing it to memorize sequences of actions that lead to previously visited states from
which the agent can continue to explore.

We are interested in surpassing the limits of deterministic or repetitive settings and seek a simulation
environment that is complex and modular enough to test various open research challenges such as
exploration, planning, skill acquisition, memory, and transfer. However, since state-of-the-art RL
approaches still require millions or even billions of samples, simulation environments need to be fast
to allow RL agents to perform many interactions per second. Among attempts to surpass the limits
of deterministic or repetitive settings, procedurally generated environments are a promising path
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towards testing systematic generalization of RL methods [e.g., 39, 38, 60, 18]. Here, the environment
observation is generated programmatically in every episode, making it extremely unlikely for an
agent to visit the exact state more than once. Existing procedurally generated RL environments are
either costly to run [e.g., 69, 37, 38] or are, as we argue, of limited complexity [e.g., 17, 19, 7].

To address these issues, we present the NetHack Learning Environment (NLE), a procedurally
generated environment that strikes a balance between complexity and speed. It is a fully-featured
Gym [11] environment around the popular open-source terminal-based single-player turn-based
“dungeon-crawler” NetHack [43] game. Aside from procedurally generated content, NetHack is an
attractive research platform as it contains hundreds of enemy and object types, it has complex and
stochastic environment dynamics, and there is a clearly defined goal (descend the dungeon, retrieve
an amulet, and ascend). Furthermore, NetHack is difficult to master for human players, who often rely
on external knowledge to learn about strategies and NetHack’s complex dynamics and secrets.1 Thus,
in addition to a guide book [58, 59] released with NetHack itself, many extensive community-created
documents exist, outlining various strategies for the game [e.g., 50, 25].

In summary, we make the following core contributions: (i) we present NLE, a fast but complex and
feature-rich Gym environment for RL research built around the popular terminal-based NetHack
game, (ii) we release an initial suite of tasks in the environment and demonstrate that novel tasks can
be added easily, (iii) we introduce baseline models trained using IMPALA [24] and Random Network
Distillation (RND) [13], a popular exploration bonus, resulting in agents that learn diverse policies
for early stages of NetHack, and (iv) we demonstrate the benefit of NetHack’s symbolic observation
space by presenting in-depth qualitative analyses of trained agents.

2 NetHack: a Frontier for Reinforcement Learning Research

In traditional so-called roguelike games (e.g., Rogue, Hack, NetHack, and Dungeon Crawl Stone
Soup) the player acts turn-by-turn in a procedurally generated grid-world environment, with game
dynamics strongly focused on exploration, resource management, and continuous discovery of entities
and game mechanics [IRDC, 2008]. These games are designed to provide a steep learning curve and
a constant level of challenge and surprise to the player. They are generally extremely difficult to win
even once, let alone to master, i.e., win regularly and multiple times in a row.

As advocated by [39, 38, 18], procedurally generated environments are a promising direction for
testing systematic generalization of RL agents. We argue that such environments need to be both
sufficiently complex and fast to run to serve as a challenging long-term research testbed. In Section 2.1,
we illustrate that NetHack contains many desirable properties, making it an excellent candidate for
driving long-term research in RL. We introduce NLE in Section 2.2, an initial suite of tasks in
Section 2.3, an evaluation protocol for measuring progress towards solving NetHack in Section 2.4,
as well as baseline models in Section 2.5.

2.1 NetHack

NetHack is one of the oldest and most popular roguelikes, originally released in 1987 as a successor
to Hack, an open-source implementation of the original Rogue game. At the beginning of the game,
the player assumes the role of a hero placed into a dungeon and tasked with finding the Amulet of
Yendor to offer it to an in-game deity. To do so, the player has to descend to the bottom of over
50 procedurally generated levels to retrieve the amulet and then subsequently escape the dungeon,
unlocking five extremely challenging final levels (the four Elemental Planes and the Astral Plane).

Many aspects of the game are procedurally generated and follow stochastic dynamics. For example,
the overall structure of the dungeon is somewhat linear, but the exact location of places of interest (e.g.,
the Oracle) and the structure of branching sub-dungeons (e.g., the Gnomish Mines) are determined
randomly. The procedurally generated content of each level makes it highly unlikely that a player
will ever experience the exact same situation more than once. This provides a fundamental challenge
to learning systems and a degree of complexity that enables us to more effectively evaluate an
agent’s ability to generalize. It also disqualifies current state-of-the-art exploration methods such as
Go-Explore [22, 23] that are based on a goal-conditioned policy to navigate to previously visited

1“NetHack is largely based on discovering secrets and tricks during gameplay. It can take years for one to
become well-versed in them, and even experienced players routinely discover new ones.” [26]
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Figure 1: Annotated example of an agent at two different stages in NetHack (Left: a procedurally
generated first level of the Dungeons of Doom, right: Gnomish Mines). A larger version of this figure
is displayed in Figure 10 in the appendix.

states. Moreover, states in NetHack are composed of hundreds of possible symbols, resulting in an
enormous combinatorial observation space.2 It is an open question how to best project this symbolic
space to a low-dimensional representation appropriate for such methods. For example, the heuristic
of downsampling images of states to measure their similarity and define an exploration bonus will not
work in a large symbolic and procedurally generated environment. NetHack provides further variation
by different hero roles (e.g., monk, valkyrie, wizard, tourist), races (human, elf, dwarf, gnome, orc)
and random starting inventories (see Appendix A for details). Consequently, NetHack poses unique
challenges to the research community and requires novel ways to determine state similarity and likely
new exploration frameworks.

To provide a glimpse into the complexity of NetHack’s environment dynamics, we present the
excellent example given by “Mr Wendal” on YouTube.3 At a specific point in the game, the hero has
to get past Medusa’s Island. Medusa’s Island is surrounded by water } that the agent has to cross.
Water can rust and corrode the hero’s metallic weapons ) and armor [. Applying a can of grease (
prevents rusting and corrosion. Furthermore, going into water will make a hero’s inventory wet,
erasing scrolls ? and spellbooks + that they carry. Applying a can of grease to a bag or sack ( will
make it a waterproof container for items. However, the sea can also contain a kraken ; that can grab
and drown the hero, leading to instant death. Applying a can of grease to a hero’s armor prevents
the kraken from grabbing the hero. However, applying a cursed can of grease will grease the hero’s
hands instead and they will drop their weapon and rings. One can use a towel ( to wipe off grease.
To reach Medusa @, the hero can alternatively use magic to freeze the water and turn it into walkable
ice .. Wearing snow boots [ will help the hero not to slip. When Medusa is in the hero’s line of sight,
her gaze will petrify and instantly kill. However, one can use a towel to cover the hero’s eyes to fight
Medusa and even apply a mirror ( to petrify Medusa with her own gaze.

There are many other entities a hero must learn to face, many of which appear rarely even across
multiple games, especially the most powerful monsters. These entities are often compositional, for
example a monster might be a wolf d, which shares some characteristics with other in-game canines
such as coyotes d or hell hounds d. To help a player learn, NetHack provides in-game messages
describing many of the hero’s interactions (see the top of Figure 1).4 Learning to capture these
interesting and somewhat realistic albeit abstract dynamics poses challenges for multi-modal and
language-conditioned RL [46].

NetHack is an extremely long game. Successful expert episodes usually last tens of thousands of
turns, while average successful runs can easily last hundreds of thousands of turns, spawning multiple

2Information about the over 450 items and 580 monster types, as well as environment dynamics involving
these entities can be found in the NetHack Wiki [50] and to some extent in the NetHack Guidebook [59].

3youtube.com/watch?v=SjuTyJlgLJ8
4An example interaction after applying a figurine of an Archon: “You set the figurine on the ground and

it transforms. You get a bad feeling about this. The Archon hits! You are blinded by the Archon’s radiance!
You stagger. . . It hits! You die. . . But wait. . . Your medallion feels warm! You feel much better! The medallion
crumbles to dust! You survived that attempt on your life.”
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days of play-time. Compared to testbeds with long episode horizons such as StarCraft and Dota 2,
NetHack’s “episodes” are one or two orders of magnitude longer, and they wildly vary depending
on the policy. Moreover, several official conducts exist in NetHack that make the game even more
challenging, e.g., by not wearing any armor throughout the game (see Appendix A for more).

Finally, in comparison to other classic roguelike games, NetHack’s popularity has attracted a larger
number of contributors to its community. Consequently, there exists a comprehensive game wiki [50]
and many so-called spoilers [25] that provide advice to players. Due to the randomized nature of
NetHack, this advice is general in nature (e.g., explaining the behavior of various entities) and not a
step-by-step guide. These texts could be used for language-assisted RL along the lines of [72]. Lastly,
there is also a large repository of replay data hosted on the NetHack Alt.org (NAO) servers, with
hundreds of finished games per day on average [47]. This extensive dataset could enable advances in
imitation learning, inverse RL, and learning from demonstrations [1, 3].

2.2 The NetHack Learning Environment

The NetHack Learning Environment (NLE) is built on NetHack 3.6.6, the latest available version
of the game. It is designed to provide a standard, turn-based (i.e., synchronous) RL interface around
the standard terminal interface of NetHack. We use the game as-is as the backend for our NLE
environment, leaving the game dynamics unchanged. We added to the source code more control over
the random number generator for seeding the environment, as well as various modifications to expose
the game’s internal state to our Python frontend, which in turn implements the featurization.

By default, the observation space is a tuple of four elements (glyphs, stats,message, inventory),
where glyphs is a tensor representing the (batched) 2D symbolic observation of the level, stats is
a vector of agent coordinates and other character attributes (e.g., health points, strength, dexterity,
hunger level; normally displayed in the bottom area of the GUI), message is a tensor representing the
current message shown to the player (normally displayed in the top area of the GUI), and inventory
is a list of padded tensors representing inventory items (normally displayed when requested by the
player). Additional observations such as ASCII symbols and their colors or non-permanent game
windows can be enabled with slight code modifications. More details about the default observation
space and possible extensions can be found in Appendix B.

The environment has 93 available actions, corresponding to all the actions a human player can take in
NetHack. More precisely, the action space is composed of 77 command actions and 16 movement
actions. The movement actions are split into eight “one-step” compass directions (i.e., the agent
moves a single step in a given direction) and eight “move far” compass directions (i.e., the agent
moves in the specified direction until it runs into some entity). The 77 command actions include
eating, opening, kicking, reading, praying as well as many others. We refer the reader to Appendix C
as well as to the NetHack Guidebook [59] for the full table of actions and NetHack commands.

NLE comes with a Gym interface [11] and includes multiple pre-defined tasks with different reward
functions and action spaces (see next section for details). We designed the interface to be lightweight,
achieving competitive speeds with Gym-based ALE (see Appendix D for a rough comparison).
Finally, NLE also includes a dashboard to analyze NetHack runs recorded as terminal tty recordings.
This allows NLE users to analyze replays of the agent’s behavior at an arbitrary speed and provides
an interface to visualize action distributions and game events (see Appendix H for details). NLE is
available under an open source license at https://github.com/facebookresearch/nle.

2.3 Tasks

NLE aims to make it easy for researchers to probe the behavior of their agents by defining new tasks
with only a few lines of code, enabled by NetHack’s symbolic observation space as well as its rich
entities and environment dynamics. To demonstrate that NetHack is a suitable testbed for advancing
RL, we release a set of initial tasks for tractable subgoals in the game: navigating to a staircase
down to the next level, navigating to a staircase while being accompanied by a pet, locating and
eating edibles, collecting gold, maximizing in-game score, scouting to discover unseen parts of
the dungeon, and finding the oracle. These tasks are described in detail in Appendix E, and, as we
demonstrate in our experiments, lead to unique challenges and diverse behaviors of trained agents.

4

https://github.com/facebookresearch/nle


That door is closed.

--------------- ----------

|........|....| |...=....|

------ |.............| #################*####.........|

|<...| |.............| |..!.?...|

|...=-###%#+ . |.%...........| -------.--

|....| # --+-------.---- ############ #

|@...| ### # # ## #----- # #

-+---- # ##################### # ###....| 0 #

# # # # # ### #|...| ###

## ######## # |...| ###

## --|--- ....-### -.----.--

# |.(..| |...| # |(......|

# |.....#0##----- ## |.......|

# |....| ########### ### |.......|

# |.....### #### |.......|

# |....| ###........|

# ------ |.....).|

+# ---------

Agent6850 the Candidate St:18/03 Dx:11 Co:12 In:8 Wi:13 Ch:11 Neutral S:

Dlvl:1 $:7 HP:14(14) Pw:5(5) AC:4 Xp:1/17 T:835 Hungry

1

CNN

CNN

MLP

MLP

ot

LSTM

ht

st−1

st

πMLP
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baseline models released with NLE. A larger version
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2.4 Evaluation Protocol

We lay out a protocol and provide guidance for evaluating future work on NLE in a reproducible
manner. The overall goal of NLE is to train agents that can solve NetHack. An episode in the full
game of NetHack is considered solved if the agent retrieves the Amulet of Yendor and offers it to its
co-aligned deity in the Astral Plane, thereby ascending to demigodhood. We declare NLE to be solved
once agents can be trained to consecutively ascend (ten episodes without retry) to demigodhood
given a random role, race, alignment, and gender combination. Since we believe that this goal is out
of reach for machine learning in the foreseeable future, we recommend comparing models on the
score task for now. Using NetHack’s in-game score as the measure for progress has caveats. For
example, expert human players can solve NetHack while minimizing the score [see 50, “Score” entry
for details]. As of May 2020, NAO reports ascension scores for NetHack 3.6.x ranging from the
low hundreds of thousands to tens of millions. Although we believe training agents to maximize the
in-game score is likely insufficient for solving the game, the in-game score is still a sensible proxy
for incremental progress on NLE as it is a function of, among other things, the dungeon depth that
the agent reached, the number of enemies it killed, the amount of gold it collected, as well as the
knowledge it gathered about potions, scrolls, and wands.

When reporting results on NLE, we require future work to state the full character specifica-
tion (e.g., mon-hum-neu-mal), all NetHack options that were used (e.g., whether or not autopickup
was used), which actions were allowed (see Table 1), which actions or action-sequences were hard-
coded (e.g., engraving [see 50, “Elbereth” as an example]) and how many different seeds were used
during training. We ask to report the average score obtained on 1000 episodes of randomly sampled
and previously unseen seeds. We do not impose any restrictions during training, but at test time any
save scumming (i.e., saving and loading previous checkpoints of the episode) or manipulation of the
random number generator [e.g., 2] is forbidden.

2.5 Baseline Models

For our baseline models, we encode the multi-modal observation ot as follows. Let the observation
ot at time step t be a tuple (gt, zt) consisting of the 21 × 79 matrix of glyph identifiers and a 21-
dimensional vector containing agent stats such as its (x, y)-coordinate, health points, experience
level, and so on. We produce three dense representations based on the observation (see Figure 2).
For every of the 5991 possible glyphs in NetHack (monsters, items, dungeon features, etc.), we learn
a k-dimensional vector embedding. We apply a ConvNet (red) to all visible glyph embeddings as
well as another ConvNet (blue) to the 9× 9 crop of glyphs around the agent to create a dedicated
egocentric representation for improved generalization [32, 71]. Furthermore, we use an MLP to
encode the hero’s stats (green). These vectors are concatenated and processed by another MLP to
produce a low-dimensional latent representation ot of the observation. Finally, we employ a recurrent
policy parameterized by an LSTM [33] to obtain the action distribution. For baseline results on the
tasks above, we use a reduced action space that includes the movement, search, kick, and eat actions.

For the main experiments, we train the agent’s policy for 1B steps in the environment using IM-
PALA [24] as implemented in TorchBeast [44]. Throughout training, we change NetHack’s seed for
procedurally generating the environment after every episode. To demonstrate NetHack’s variability
based on the character configuration, we train with four different agent characters: a neutral human
male monk (mon-hum-neu-mal), a lawful dwarf female valkyrie (val-dwa-law-fem), a chaotic elf
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male wizard (wiz-elf-cha-mal), and a neutral human female tourist (tou-hum-neu-fem). More
implementation details can be found in Appendix F.

In addition, we present results using Random Network Distillation (RND) [13], a popular exploration
technique for Deep RL. As previously discussed, exploration techniques which require returning
to previously visited states such as Go-Explore are not suitable for use in NLE, but RND does not
have this restriction. RND encourages agents to visit unfamiliar states by using the prediction error
of a fixed random network as an intrinsic exploration reward, which has proven effective for hard
exploration games such as Montezuma’s Revenge [12]. The intrinsic reward obtained from RND
can create “reward bridges” between states which provide sparse extrinsic environmental rewards,
thereby enabling the agent to discover new sources of extrinsic reward that it otherwise would not
have reached. We replace the original network’s pixel-based feature extractor with the symbolic
feature extractor described above for the baseline model, and use the best configuration of other RND
hyperparameters documented by the authors (see Appendix G for full details).

3 Experiments and Results

We present quantitative results on a suite of tasks included in NLE using a standard distributed
Deep RL baseline and a popular exploration method, before additionally analyzing agent behavior
qualitatively. For each model and character combination, we present results of the mean episode
return over the last 100 episodes averaged for five runs in Figure 4. We discuss results for individual
tasks below (see Table 5 in the appendix for full details).

Staircase: Our agents learning to navigate the dungeon to the staircase > with a success rate of
77.26% for the monk, 50.42% for the tourist, 74.62% for the valkyrie, and 80.42% for the wizard.
What surprised us is that agents learn to reliably kick in locked doors. This is a costly action to
explore as the agent looses health points and might even die when accidentally kicking against walls.
Similarly, the agent has to learn to reliably search for hidden passages and secret doors. Often, this
involves using the search action consecutively many times, sometimes even at many locations on
the map (e.g., around all walls inside a room). Since NLE is procedurally generated, it might provide
an implicit curriculum of easy and hard task instances to learn from similar to [60, 18]. With a
small probability, the staircase down might be generated near the agent’s starting position. Using
RND exploration, we observe substantial gains in the success rate for the monk (+13.58pp), tourist
(+6.52pp) and valkyrie (+16.34pp) roles, while lower results for wizard roles (−12.96pp).

Pet: Finding the staircase while taking care of the hero’s pet (e.g., the starting kitten f or little
dog d) is a harder task as the pet might get killed or fall into a trap door, making it impossible for the
agent to successfully complete the episode. Compared to the staircase task, the agent success rates
are generally lower (62.02% for monk, 25.66% for tourist, 63.30% for valkyrie, and wizard 66.80%).
Again, RND exploration provides consistent and substantial gains.

Eat: This tasks highlights the importance of testing with different character classes in NetHack.
The monk and tourist start with a number edible items (e.g., food rations %, apples % and oranges %). A
sub-optimal strategy is to consume all of these comestibles right at the start of the episode, potentially
risking choking to death. In contrast, the other roles have to hunt for food, which our agent learns
to do slowly over time for the valkyrie and wizard roles. By having more pressure to quickly learn
a sustainable food strategy, the valkyrie learns to outlast other roles and survives the longest in the
game (on average 1713 time steps). Interestingly, RND exploration leads to consistently worse results
for this task.

Gold: Locating gold $ in NetHack provides a relatively sparse reward signal. Still, our agents learn
to collect decent amounts during training and learn to descend to deeper dungeon levels in search for
more. For example, monk agents reach dungeon level 4.2 on average for the CNN baseline and even
5.0 using RND exploration.

Score: As discussed in Section 2.4, we believe this task is the best candidate for comparing future
methods regarding progress on NetHack. However, it is questionable whether a reward function
based on NetHack’s in-game score is sufficient for training agents to solve the game. Our agents
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Figure 4: Mean return of the last 100 episodes averaged over five runs.

average at a score of 748 for monk, 11 for tourist, 573 for valkyrie, and 314 for wizard, with RND
exploration again providing substantial gains (e.g. increasing the average score to 780 for monk). The
resulting agents explore much of the early stages of the game, reaching dungeon level 5.4 on average
for the monk with the deepest descent to level 11 achieving a high score of 4260 while leveling up to
experience level 7 (see Table 6 in the appendix).

Scout: The scout task shows a trend that is similar the score task. Interestingly, we observe a lower
experience level and in-game score, but agents descend, on average, similarly deep into the dungeon
(e.g. level 5.5 for monk). This is sensible, since a policy that tries to avoid fighting monsters to lower
the chances of premature death will not increase the in-game score as fast or level up the character
quickly, thereby keeping the difficulty of spawned monsters low. We note that delaying the leveling
up of the character to avoid encountering strong enemies early in the game is a strategy that human
players often adopt in NetHack.

Oracle: None of our agents find the Oracle @ (except for one lucky valkyrie episode). Locating
the Oracle is a difficult exploration task. Even if the agent learns to make its way down the dungeon
levels, it needs to search many, potentially branching, levels of the dungeon. Thus, we believe this task
serves as a challenging benchmark for exploration methods in procedurally generated environments
in the short term. Long term, many tasks harder than this (e.g., reaching Minetown, Mines’ End,
Medusa’s Island, The Castle, Vlad’s Tower, Moloch’s Sanctum etc.) can be easily defined in NLE with
very few lines of code.

3.1 Generalization Analysis

Akin to [18], we evaluate agents trained on a restricted set of seeds. We find that test performance
increases monotonically with the size of the set of seeds that the agent is trained on. Figure 3 shows
this effect for the score and staircase tasks. Training only on a limited number of seeds leads to
high training performance, but poor generalization. The gap between training and test performance
becomes narrow when training with at least 1000 seeds, indicating that at that point agents are
exposed to sufficient variation during training to make memorization infeasible. We also investigate
how model capacity affects performance by comparing agents with five different hidden sizes for
the final layer (of the architecture described in Section 2.5). Figure 6 in the appendix shows that
increasing the model capacity improves results on the score but not on the staircase task, indicating
that it is an important hyperparameter to consider, as also emphasized by [18].

3.2 Qualitative Analysis

We analyse the cause for death of our agents during training and present results in Figure 8 in the
appendix. We notice that starvation and traps become a less prominent cause of death over time, most
likely because our agents, when starting to learn to descend dungeon levels and fight monsters, are
more likely to die in combat before they starve or get killed by a trap. In the score and scout tasks,
our agents quickly learn to avoid eating rotten corpses, but food poisoning becomes again prominent
towards the end of training.

We can see that gnome lords G, gnome kings G, chameleons :, and even mind flayers h become a
more prominent cause of death over time, which can be explained with our agents leveling up and
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descending deeper into the dungeon. Chameleons are a particularly interesting entity in NetHack as
they regularly change their form to a random animal or monster, thereby adversarially confusing our
agent with rarely seen symbols for which it has not yet learned a meaningful representation (similar
to unknown words in natural language processing). We release a set of high-score recordings of our
agents (see Appendix J on how to view them via browser or terminal).

4 Related Work

Progress in RL has historically been achieved both by algorithmic innovations as well as development
of novel environments to train and evaluate agents. We review recent RL environments and delineate
their strengths and weaknesses as testbeds for current methods and future research below.

Recent Game-Based Environments: Retro video games have been a major catalyst for Deep RL
research. ALE [9] provides a unified interface to Atari 2600 games, which enables testing of RL
algorithms on high-dimensional visual observations quickly and cheaply, resulting in numerous Deep
RL publications over the years [4]. The Gym Retro environment [51] expands the list of classic
games, but focuses on evaluating visual generalization and transfer learning on a single game, Sonic
The Hedgehog.

Both StarCraft: BroodWar and StarCraft II have been successfully employed as RL environ-
ments [64, 69] for research on, for example, planning [52, 49], multi-agent systems [27, 63], imitation
learning [70], and model-free reinforcement learning [70]. However, the complexity of these games
creates a high entry barrier both in terms of computational resources required as well as intricate
baseline models that require a high degree of domain knowledge to be extended.

3D games have proven to be useful testbeds for tasks such as navigation and embodied reasoning.
Vizdoom [42] modifies the classic first-person shooter game Doom to construct an API for visual
control; DeepMind Lab [7] presents a game engine based on Quake III Arena to allow for the
creation of tasks based on the dynamics of the original game; Project Malmo [37], MineRL [29]
and CraftAssist [35] provide visual and symbolic interfaces to the popular Minecraft game. While
Minecraft is also procedurally generated and has complex environment dynamics that an agent needs
to learn, it is much more computationally demanding than NetHack (see Table 4 in the appendix).

More recent work has produced game-like environments with procedurally generated elements, such
as the Procgen Benchmark [18], MazeExplorer [30], and the Obstacle Tower environment [38].
However, we argue that, compared to NetHack or Minecraft, these environments do not provide
the depth likely necessary to serve as long-term RL testbeds due to limited number of entities and
environment interactions that agents have to learn to master.

In conclusion, none of the current benchmarks combine a fast simulator with a procedurally generated
environment, a hard exploration problem, a wide variety of complex environment dynamics, and
numerous types of static and interactive entities. The unique combination of challenges present in
NetHack makes NLE well-suited for driving research towards more general and robust RL algorithms.

Roguelikes as Reinforcement Learning Testbeds: We are not the first to argue for roguelike
games to be used as testbeds for RL. Asperti et al. [5] present an interface to Rogue, the very
first roguelike game and one of the simplest roguelikes in terms of game dynamics and difficulty.
They show that policies trained with model-free RL algorithms can successfully learn rudimentary
navigation. Similarly, Kanagawa and Kaneko [41] present an environment inspired by Rogue that
provides a parameterizable generation of Rogue levels. Like us, Dannenhauer et al. [20] argue that
roguelike games could be a useful RL testbed. They discuss the roguelike game Dungeon Crawl
Stone Soup, but their position paper provides neither an environment nor experiments to validate their
claims.

Most similar to our work is gym_nethack [14, 15], which offers a Gym environment based on
NetHack 3.6.0. We commend the authors for introducing NetHack as an RL environment, and to the
best of our knowledge they were the first to suggest the idea. However, there are several design choices
that limit the impact and longevity of their version as a research testbed. First, they heavily modified
NetHack to enable agent interaction. In the process, gym_nethack disables various game mechanics
to simplify the game, its environment dynamics, and the resulting optimal policies. This includes
removing obstacles like boulders, traps, and locked doors as well as all item identification mechanics,
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making items much easier to employ. Additionally, these modifications tie the environment to a
particular version of the game. This is not ideal as (i) players tend to use new versions of the game as
they are released, hence, publicly available human data becomes progressively incompatible, limiting
the amount of data for e.g., learning from demonstrations; (ii) older versions of NetHack tend to
include well-documented exploits which may be discovered by agents (see Appendix I for exploits
used in programmatic bots). In contrast, NLE is designed to make the interaction with NetHack as
close as possible to the one experienced by humans playing the full game.

5 Conclusion and Future Work

The NetHack Learning Environment is a fast, complex, procedurally generated environment for
advancing research in RL. We demonstrate that current state-of-the-art model-free RL serves as a
sensible baseline, and we provide an in-depth analysis of learned agent behaviors.

NetHack provides interesting challenges for exploration methods given the extremely large number
of possible states and wide variety of environment dynamics to discover. Previously proposed
formulations of intrinsic motivation based on seeking novelty [8, 53, 13] or maximizing surprise
[56, 12, 57] are likely insufficient to make progress on NetHack given that an agent will constantly
find itself in novel states or observe unexpected environment dynamics. NetHack poses further
challenges since, in order to win, an agent needs to acquire a wide range of skills such as collecting
resources, fighting monsters, eating, manipulating objects, casting spells, or taking care of their
pet, to name just a few. The multilevel dependencies present in NetHack could inspire progress
in hierarchical RL and long-term planning [21, 40, 55, 68]. Transfer to unseen game characters,
environment dynamics, or level layouts can be evaluated [67]. Furthermore, its richness and constant
challenge make NetHack an interesting benchmark for lifelong learning [45, 54, 61, 48]. In addition,
the extensive documentation about NetHack can enable research on using prior (natural language)
knowledge for learning, which could lead to improvements in generalization and sample efficiency
[10, 46, 72, 36]. Lastly, NetHack can also drive research on learning from demonstrations [1, 3] since
a large collection of replay data is available. We believe the NetHack Learning Environment
strikes an excellent balance between complexity and speed while encompassing a variety of challenges
for the research community.

For future versions of the environment, we plan to support NetHack 3.7 once it is released, as it will
further increase the variability of observations via Themed Rooms. This version will also introduce
scripting in the Lua language, which we will leverage to enable users to create their custom sandbox
tasks, directly tapping into NetHack and its rich universe of entities and their complex interactions.
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A Further Details on NetHack

Character options The player may choose (or pick randomly) the character from thirteen roles
(archaeologist, barbarian, cave(wo)man, healer, knight, priest(ess), ranger, rogue, samurai, tourist,
valkyrie, and wizard), five races (human, elf, dwarf, gnome, and orc), three moral alignments (neutral,
lawful, chaotic), and two genders (male or female). Each choice determines some of the character’s
features, as well as how the character interacts with other entities (e.g., some species of monsters may
not be hostile depending on the character race; priests of a particular deity may only help religiously
aligned characters).

The hero’s interaction with several game entities involves pre-defined stochastic dynamics (usually
defined by virtual dice tosses), and the game is designed to heavily punish careless exploration
policies.5 This makes NetHack an ideal environment for evaluating exploration methods such as
curiosity-driven learning [56, 12] or safe reinforcement learning [28].

Learning and planning in NetHack involves dealing with partial observability. The game, by default,
employs Fog of War to hide information based on a simple 2D light model (see for example the
difference between white . and gray . room tiles in Figure 1), requiring the player not only to
discover the topology of the level (including searching for hidden doors and passages), but to also
condition their policy on a world that might change, e.g., due to monsters spawning and interacting
outside of the visible range.

On top of the standard ASCII interface, NetHack supports many official and unofficial graphical user
interfaces. Figure 5 shows a screenshot of Lu Wang’s BrowserHack6 as an example.

Figure 5: Screenshot of BrowserHack showing NetHack with a graphical user interface.

5Occasionally dying because of simple, avoidable mistakes is so common in the game that the online
community has defined an acronym for it: Yet Another Stupid Death (YASD).

6Playable online at https://coolwanglu.github.io/BrowserHack/
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Conducts While winning NetHack by retrieving and ascending with the Amulet of Yendor is
already immensely challenging, experienced NetHack players like to challenge themselves even
more by imposing additional restrictions on their play. The game tracks some of these challenges
with the #conduct command [59]. These official challenges include eating only vegan or vegetarian
food, or not eating at all, or playing the game in “pacifist” mode without killing a single monster.
While very experienced players often try to adhere to several challenges at once, even moderately
experienced players often limit their use of certain polymorph spells (e.g., “polypiling”—changing
the form of several objects at once in the hope of getting better ones) or they try to beat the game
while minimizing the in-game score. We believe this established set of conducts will supply the
RL community with a steady stream of extended challenges once the standard NetHack Learning
Environment is solved by future methods.

B Observation Space

The Gym environment is implemented by wrapping a more low-level NetHack Python object into
a Python class responsible for the featurization, reward schedule and end-of-episode dynamics.
While the low-level NetHack object exposes a large number of NetHack game internals, the Gym
wrapper exposes by default only a part of this data as numerical observation arrays, namely the tuple
(glyphs, stats,message, inventory).

Glyphs: NetHack supports non-ASCII graphical user interfaces, dubbed window-ports (see Fig-
ure 5 for an example). To support displaying different monsters, objects and floor types in the
NetHack dungeon map as different tiles, NetHack internally defines glyphs as ids in the range
0, . . . , MAX_GLYPH, where MAX_GLYPH = 5991 in our build. The glyph observation is an integer array
of shape (21, 79) of these game glyph ids.7

Stats: A integer vector of length 23, containing the (x, y) coordinate of the hero and the following 21
character stats: StrengthPercentage, Strength, Dexterity, Constitution, Intelligence,
Wisdom, Charisma, Score, Hitpoints, MaxHitpoints, Depth, Gold, Energy, MaxEnergy, Ar-
morClass, MonsterLevel, ExperienceLevel, ExperiencePoints, Time, HungerLevel, Car-
ryingCapacity.

Message: A padded byte vector of length 256 representing the current message shown to the player,
normally displayed in the top area of the GUI. We support different padding strategies and alphabet
sizes, but by default we choose an alphabet size of 96, where the last character is used for padding.

Inventory: In NetHack’s default ASCII user interface, the hero’s inventory can be opened and
closed during the game. Other user interfaces display a permanent inventory at all times. NLE follows
that strategy. The inventory = (glyphs, strs, letters, oclass) observation is a tuple of the following
four arrays: glyphs: an integer vector of length 55 of glyph ids, padded with MAX_GLYPH; strs: A
padded byte array of shape (55, 80) describing the inventory items; letters: A padded byte vector of
length 55 with the corresponding ASCII character symbol; oclass: An integer vector of shape 55
with ids describing the type of inventory objects, padded with MAXOCLASSES = 18.

The low-level NetHack Python object has additional entries for the dungeon map’s character symbols
and colors as well as various parts of the program state of the underlying NetHack process, including
the contents of all in-game windows (e.g., menus and other pop-ups). We refer to the source code to
describe these.

C Action Space

The game of NetHack uses ASCII inputs, i.e., individual keyboard presses including modifiers like
Ctrl and Meta. NLE pre-defines 93 actions, 16 of which are compass directions and 77 of which are

7NetHack’s set of glyph ids is not necessarily well suited for machine learning. For example, more than
half of all glyph ids are of type “swallow”, most of which are guaranteed not to show up in any actual game of
NetHack. We provide additional tooling to determine the type of a given glyph id to process this observation
further.
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command actions. Table 1 gives a list of command actions, including their ASCII value and the
corresponding key binding in NetHack, while Table 3 lists the 16 compass directions. For a detailed
description of these actions, as well as other NetHack commands, we refer the reader to the NetHack
guide book [59].

By default, NLE will auto-apply the MORE action in situations where the game waits for input to
display more messages. NLE also auto-answers certain in-game questions, e.g., the “Do you want
your possessions identified?” question at the end of the game in order to contain that data in the tty
recording of the episode.

Table 1: Command actions.8

Name Value Key Description

EXTCMD 35 # perform an extended command
EXTLIST 191 M-? list all extended commands
ADJUST 225 M-a adjust inventory letters
ANNOTATE 193 M-A name current level
APPLY 97 a apply (use) a tool (pick-axe, key, lamp...)
ATTRIBUTES 24 C-x show your attributes
AUTOPICKUP 64 @ toggle the pickup option on/off
CALL 67 C call (name) something
CAST 90 Z zap (cast) a spell
CHAT 227 M-c talk to someone
CLOSE 99 c close a door
CONDUCT 195 M-C list voluntary challenges you have maintained
DIP 228 M-d dip an object into something
DOWN 62 > go down (e.g., a staircase)
DROP 100 d drop an item
DROPTYPE 68 D drop specific item types
EAT 101 e eat something
ENGRAVE 69 E engrave writing on the floor
ENHANCE 229 M-e advance or check weapon and spell skills
FIRE 102 f fire ammunition from quiver
FORCE 230 M-f force a lock
GLANCE 59 ; show what type of thing a map symbol corresponds to
HELP 63 ? give a help message
HISTORY 86 V show long version and game history
INVENTORY 105 i show your inventory
INVENTTYPE 73 I inventory specific item types
INVOKE 233 M-i invoke an object’s special powers
JUMP 234 M-j jump to another location
KICK 4 C-d kick something
KNOWN 92 \ show what object types have been discovered
KNOWNCLASS 96 ‘ show discovered types for one class of objects
LOOK 58 : look at what is here
LOOT 236 M-l loot a box on the floor
MONSTER 237 M-m use monster’s special ability
OFFER 239 M-o offer a sacrifice to the gods
OPEN 111 o open a door
OPTIONS 79 O show option settings, possibly change them
OVERVIEW 15 C-o show a summary of the explored dungeon
PAY 112 p pay your shopping bill
PICKUP 44 , pick up things at the current location
PRAY 240 M-p pray to the gods for help
PREVMSG 16 C-p view recent game messages
PUTON 80 P put on an accessory (ring, amulet, etc)
QUAFF 113 q quaff (drink) something
QUIT 241 M-q exit without saving current game
QUIVER 81 Q select ammunition for quiver
READ 114 r read a scroll or spellbook

7The descriptions are mostly taken from the cmd.c file in the NetHack source code.

16



REDRAW 18 C-r redraw screen
REMOVE 82 R remove an accessory (ring, amulet, etc)
RIDE 210 M-R mount or dismount a saddled steed
RUB 242 M-r rub a lamp or a stone
SAVE 83 S save the game and exit
SEARCH 115 s search for traps and secret doors
SEEALL 42 * show all equipment in use
SEETRAP 94 ^ show the type of adjacent trap
SIT 243 M-s sit down
SWAP 120 x swap wielded and secondary weapons
TAKEOFF 84 T take off one piece of armor
TAKEOFFALL 65 A remove all armor
TELEPORT 20 C-t teleport around the level
THROW 116 t throw something
TIP 212 M-T empty a container
TRAVEL 95 _ travel to a specific location on the map
TURN 244 M-t turn undead away
TWOWEAPON 88 X toggle two-weapon combat
UNTRAP 245 M-u untrap something
UP 60 < go up (e.g., a staircase)
VERSION 246 M-v list compile time options
VERSIONSHORT 118 v show version
WAIT / SELF 46 . rest one move while doing nothing / apply to self
WEAR 87 W wear a piece of armor
WHATDOES 38 & tell what a command does
WHATIS 47 / show what type of thing a symbol corresponds to
WIELD 119 w wield (put in use) a weapon
WIPE 247 M-w wipe off your face
ZAP 112 z zap a wand

Table 3: Compass direction actions.

one-step move far

Direction Value Key Value Key

North 107 k 75 K
East 108 l 76 L
South 106 j 74 J
West 104 h 72 H
North east 117 u 85 U
South east 110 n 78 N
South west 98 b 66 B
North west 121 y 89 Y

D Environment Speed Comparison

Table 4 shows a comparison between popular Gym environments and NLE. All environments were
controlled with a uniformly random policy using reset on terminal states. The tests were conducted on
a MacBook Pro equipped with an Intel Core i7 2.9 GHz, 16GB of RAM, MacOS Mojave, Python 3.7,
Conda 4.7.12, and latest available packages as of May 2020. ObstacleTowerEnv was instantiated with
(retro=False, real_time=False). It is important to note that this does not necessarily reflect
performance of these environments with better – or worse – policies, as each of these environments
has computational dynamics (and workloads) that heavily depend on their state. However, we expect
the difference in terms of magnitude to remain mostly unchanged across these environments. We are
also working towards optimizing NLE, and future versions might potentially be faster.
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Table 4: Comparison between NLE and popular environments when using their respective Python Gym
interface. SPS stands for “environment steps per second”. All environments but ObstacleTowerEnv
were run via gym with standard settings (and headless when possible), for 60 seconds.

Environment SPS steps episodes

NLE (score) 1.35K 81.12K 103
CartPole-v1 76.88K 4612.65K 207390
ALE (MontezumaRevengeNoFrameskip-v4) 0.90K 53.91K 611
Retro (Airstriker-Genesis) 1.31K 78.56K 52
ProcGen (procgen-coinrun-v0) 13.13K 787.98K 1283
ObstacleTowerEnv 0.06K 3.61K 6
MineRLNavigateDense-v0 0.06K 3.39K 0
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Figure 6: Mean episode return of the last 100 episodes for models with different hidden sizes averaged
over five runs.

E Task Details

For all tasks described below, we add a penalty of −0.001 to the reward function if the agent’s action
did not advance the in-game timer, which, for example, happens when the agent tries to move against
a wall or navigates menus. For all tasks, except the Gold task, we disable NetHack’s autopick option
[59]. Furthermore, we disable so-called bones files that would otherwise lead to agents occasionally
discovering the remains and ghosts of previous agents, considerably increasing the variance across
episodes.

Staircase The agent has to find the staircase down > to the next dungeon level. This task is already
challenging, as there is often no direct path to the staircase. Instead, the agent has to learn to reliably
open doors +, kick-in locked doors, search for hidden doors and passages #, avoid traps ^, or move
boulders O that obstruct a passage. The agent receives a reward of 100 once it reaches the staircase
down and the the episode terminates after 1000 agent steps.

Pet Many successful strategies for NetHack rely on taking good care of the hero’s pet (e.g., the
little dog d or kitten f that the hero starts with). Pets are controlled by the game, but their behavior
is influenced by the agent’s actions. In this task, the agent only receives a positive reward when it
reaches the staircase while the pet is next to the agent.

Eat To survive in NetHack, players have to make sure their character does not starve to death.
There are many edible objects in the game, for example food rations %, tins, and monster corpses. In
this task, the agent receives the increase of nutrition as determined by the in-game “Hunger” status as
reward [see 50, “Nutrition” entry for details]. A steady source of nutrition are monster corpses, but
for that the agent has to learn to locate and to kill monsters while avoiding to consume rotten corpses,
poisonous monster corpses such as Kobolds k or acidic monster corpses such as Acid Blobs b.

Gold Throughout the game, the player can collect gold $ to, for example, trade for useful items
with shopkeepers. The agent receives the amount of gold it collects as reward. This incentivizes the
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agent to explore dungeon maps fully and to descend dungeon levels to discover new sources of gold.
There are many advanced strategies for obtaining large amounts of gold such as finding, identifying
and selling gems; stealing from or killing shopkeepers; or hunting for vaults or leprechaun halls. To
make this task easier for the agent, we enable NetHack’s autopickup option for gold.

Scout An important part of the game is exploring dungeon levels. Here, we reward the agent
for uncovering previously unknown tiles in the dungeon, for example by entering a new room or
following a newly discovered passage. Like the previous task, this incentivizes the agent to explore
dungeon levels and to descend.

Score In this task, the agent receives as reward the increase of the in-game score. The in-game
score is governed by a complex calculation, but in early stages of the game it is dominated by killing
monsters and the number of dungeon levels that the agent descends [see 50, “Score” entry for details].

Oracle While levels are procedurally generated, there are a number of landmarks that appear in
every game of NetHack. One such landmark is the Oracle @, which is randomly placed between
levels five and nine of the dungeon. Reliably finding the Oracle is difficult, as it requires the agent
to go down multiple staircases and often to exhaustively explore each level. In this task, the agent
receives a reward of 1000 if it manages to reach the Oracle.

F Baseline CNN Details

As embedding dimension of the glyphs we use 32 and for the hidden dimension for the observation
ot and the output of the LSTM ht, we use 128. For encoding the full map of glyphs as well as the
9× 9 crop, we use a 5-layer ConvNet architecture with filter size 3× 3, padding 1 and stride 1. The
input channel of the first layer of the ConvNet is the embedding size of the glyphs (32). Subsequent
layers have an input and output channel dimension of 16. We employ a gradient norm clipping of 40
and clip rewards using rc = tanh(r/100). We use RMSProp with a learning rate of 0.0002 without
momentum and with εRMSProp = 0.000001. Our entropy cost is set to 0.0001.

G Random Network Distillation Details

We RND hyperparameters we mostly follow the recommendations by the authors [13]:

• we initialize the weights according to the original paper, using an orthogonal distribution
with a gain of

√
2

• we use a two-headed value function rather than merely summing the intrinsic and extrinsic
reward

• we use a discounting factor of 0.999 for the extrinsic reward and 0.99 for the intrinsic reward

• we use non-episodic intrinsic reward and episodic extrinsic reward

• we use reward normalization for the intrinsic reward, dividing it by a running estimate of its
standard deviation

We modify a few of the parameters for use in our setting:

• we use exactly the same feature extraction architecture as the baseline model instead of the
pixel-based convolutional feature extractor

• we do not use observation normalization, again due to the symbolic nature of our observation
space

• before normalizing, we divide the intrinsic reward by ten so that it has less weight than the
extrinsic reward

• we clip intrinsic rewards in the same way that we clip extrinsic rewards, i.e., using rc =
tanh(r/100), so that the intrinsic and extrinsic rewards are on a similar scale
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We downscale the forward modeling loss by a factor of 0.01 to slow down the rate at which the model
becomes familiar with a given state, since the intrinsic reward often collapsed quickly despite the
reward normalization. We determined these settings during a set of small-scale experiments.

We also tried using subsets of the full feature set (only the embedding of the full display of glyphs, or
only the embedding of the crop of glyphs around the agent) as well as the exact architecture used by
the original authors, but with the pixel input replaced by a random 8-dimensional embedding of the
symbolic observation space. However, we did not observe this improved results.

We tried using intrinsic reward only as the authors did in the original RND paper, but we found that
agents trained in this way made no significant progress through the dungeon, even on a single fixed
seed. This indicates that this form of intrinsic reward is not sufficient to make progress on NetHack.
As noted in Section 3, the intrinsic reward did help in some tasks for some characters when combined
with the extrinsic reward. Crucially, RND exploration is not sufficient for agents to learn to find the
Oracle, which leaves this as a difficult challenge for future exploration techniques.

H Dashboard

We release a web dashboard built with NodeJS (see Figure 9) to visualize experiment runs and
statistics for NLE, including replaying episodes that were recorded as tty files.

I NetHack Bots

Since the early stages of the development of NetHack, players have tried to build bots to play and
solve the game. Notable examples are TAEB, BotHack, and Saiph [65, 50]. These bot frameworks
largely rely on search heuristics and common planning methods, without generally making use of
any statistical learning methods. An exception is SWAGGINZZZ [2] which uses lookups, exhaustive
simulation and manipulation of the random number generator.

Successful bots have made use of exploits that are no longer present in recent versions of NetHack.
For example, BotHack employs the “pudding farming” strategy [see 50, “Pudding farming” entry]
to level up and to create items for the character by spawning and killing a large number of black
puddings P. This enabled the bot to become quite strong, which rendered late-game fights considerably
easier. This strategy was disabled by the NetHack DevTeam with a patch that is incorporated into
versions of NetHack above 3.6.0. Likewise, the random number generator manipulations employed
in SWAGGINZZZ are no longer possible.

We believe that it is very unlikely that in the future we will see a hand-crafted bot solving NetHack in
the way we defined it in Section 2.4. In fact, the creator of SWAGGINZZZ remarked that “[e]ven with
RNG manipulation, writing a bot that 99% ascends NetHack is extremely complicated. So much
stuff can go wrong, and there is no shortage of corner cases” [2].

J Viewing Agent Videos

We have uploaded some agent recordings to https://asciinema.org/~nle. These can be either
watched on the Asciinema portal, or on a terminal by running asciinema play -s 0.2 url
(asciinema itself is available as a pip package at https://pypi.org/project/asciinema).
The -s flag regulates the speed of the recordings, which can also be modified on the web interface by
pressing > (faster) or < (slower).
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Table 5: Metrics averaged over last 1000 episodes for each task.

Task Model Character Score Time Exp Lvl Dungeon Lvl Win

staircase CNN mon-hum-neu-mal 20 252 1.0 1.0 77.26
tou-hum-neu-fem 6 288 1.0 1.0 50.42
val-dwa-law-fem 19 329 1.0 1.0 74.62
wiz-elf-cha-mal 20 253 1.0 1.0 80.42

RND mon-hum-neu-mal 26 199 1.0 1.0 90.84
tou-hum-neu-fem 8 203 1.0 1.0 56.94
val-dwa-law-fem 25 242 1.0 1.0 90.96
wiz-elf-cha-mal 20 317 1.0 1.0 67.46

pet CNN mon-hum-neu-mal 20 297 1.0 1.1 62.02
tou-hum-neu-fem 6 407 1.0 1.0 25.66
val-dwa-law-fem 18 379 1.0 1.0 63.30
wiz-elf-cha-mal 16 273 1.0 1.0 66.80

RND mon-hum-neu-mal 33 319 1.1 1.0 74.38
tou-hum-neu-fem 10 336 1.0 1.0 49.38
val-dwa-law-fem 28 311 1.0 1.0 81.56
wiz-elf-cha-mal 20 278 1.0 1.0 70.48

eat CNN mon-hum-neu-mal 36 1254 1.1 1.2 –
tou-hum-neu-fem 7 423 1.0 1.0 –
val-dwa-law-fem 75 1713 1.5 1.1 –
wiz-elf-cha-mal 50 1181 1.3 1.1 –

RND mon-hum-neu-mal 36 1102 1.0 1.2 –
tou-hum-neu-fem 9 404 1.0 1.0 –
val-dwa-law-fem 55 1421 1.2 1.1 –
wiz-elf-cha-mal 14 808 1.0 1.1 –

gold CNN mon-hum-neu-mal 307 947 1.8 4.2 –
tou-hum-neu-fem 71 788 1.0 2.0 –
val-dwa-law-fem 245 1032 1.6 3.5 –
wiz-elf-cha-mal 162 780 1.3 2.7 –

RND mon-hum-neu-mal 403 1006 2.2 5.0 –
tou-hum-neu-fem 92 816 1.0 2.2 –
val-dwa-law-fem 298 998 1.8 4.0 –
wiz-elf-cha-mal 217 789 1.5 3.3 –

score CNN mon-hum-neu-mal 748 932 3.2 5.4 –
tou-hum-neu-fem 11 795 1.0 1.1 –
val-dwa-law-fem 573 908 2.8 4.8 –
wiz-elf-cha-mal 314 615 1.6 3.5 –

RND mon-hum-neu-mal 780 863 3.1 5.4 –
tou-hum-neu-fem 219 490 1.1 2.6 –
val-dwa-law-fem 647 857 2.8 5.0 –
wiz-elf-cha-mal 352 585 1.6 3.5 –

scout CNN mon-hum-neu-mal 372 838 2.2 5.3 –
tou-hum-neu-fem 105 580 1.0 2.7 –
val-dwa-law-fem 331 852 1.9 5.1 –
wiz-elf-cha-mal 222 735 1.5 3.8 –

RND mon-hum-neu-mal 416 924 2.3 5.5 –
tou-hum-neu-fem 119 599 1.0 2.8 –
val-dwa-law-fem 304 1021 1.8 4.6 –
wiz-elf-cha-mal 231 719 1.5 3.8 –

oracle CNN mon-hum-neu-mal 24 876 1.0 1.1 0.00
tou-hum-neu-fem 9 674 1.0 1.1 0.00
val-dwa-law-fem 18 1323 1.0 1.1 0.02
wiz-elf-cha-mal 10 742 1.0 1.1 0.00

RND mon-hum-neu-mal 32 967 1.0 1.1 0.00
tou-hum-neu-fem 13 811 1.0 1.1 0.00
val-dwa-law-fem 26 1353 1.0 1.1 0.00
wiz-elf-cha-mal 14 791 1.0 1.1 0.00
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Table 6: Top five of the last 1000 episodes in the score task.

Model Character Killer Name Score Exp Lvl Dungeon Lvl

CNN mon-hum-neu-mal warg 4408 7 9
forest centaur 4260 7 11
hill orc 2880 6 8
gnome lord 2848 6 9
crocodile 2806 6 8

tou-hum-neu-fem jackal 200 1 3
hobgoblin 200 1 5
hobbit 200 1 3
giant rat 190 1 4
large kobold 174 1 4

val-dwa-law-fem gnome lord 2176 5 12
ape 1948 6 7
gremlin 1924 5 11
gnome king 1916 5 11
vampire 1864 4 10

wiz-elf-cha-mal dingo 1104 3 9
giant ant 1008 3 8
gnome mummy 988 3 8
coyote 988 3 9
kicking a wall 972 3 8

RND mon-hum-neu-mal rothe 3664 5 7
rotted dwarf corpse 3206 5 7
leocrotta 2771 5 11
winter wolf cub 2724 6 9
starvation 2718 6 6

tou-hum-neu-fem grid bug 1432 1 7
sewer rat 1253 1 4
bolt of cold 1248 1 3
goblin 1125 1 4
goblin 1078 1 4

val-dwa-law-fem bugbear 2186 6 9
starvation 2150 5 10
ogre 2095 5 9
rothe 2084 6 8
Uruk-hai called Haiaigrisai of Aruka 2036 5 6

wiz-elf-cha-mal cave spider 1662 2 7
iguana 1332 2 5
starvation 1329 1 5
starvation 1311 1 5
gnome lord 1298 5 9
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Figure 8: Analysis of different causes of death during training, averaged over the last 1000 episodes
and over five runs.
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