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Abstract

We present a new class of learnable Riemannian manifolds with a metric param-
eterized by a deep neural network. The core manifold operations–specifically
the Riemannian exponential and logarithmic maps–are solved using approximate
numerical techniques. Input and parameter gradients are computed with an ad-
joint sensitivity analysis. This enables us to fit geodesics and distances with
gradient-based optimization of both on-manifold values and the manifold itself.
We demonstrate our method’s capability to model smooth, flexible metric structures
in graph embedding tasks.

1 Introduction

Geometric domain knowledge is important for machine learning systems to interact, process, and
produce data from inherently geometric spaces and phenomena [BBL+17, MBM+17]. Geometric
knowledge often empowers the model with explicit operations and components that reflect the
geometric properties of the domain.

One commonly used construct is a Riemannian manifold, the generalization of standard Euclidean
space. These structures enable models to represent non-trivial geometric properties of data [NK17,
DFDC+18, GDM+18, NK18, GBH18]. However, despite this capability, the current set of usable
Riemannian manifolds is surprisingly small, as the core manifold operations must be provided in a
closed form to enable gradient-based optimization. Worse still, these manifolds are often set a priori,
as the techniques for interpolating between manifolds are extremely restricted [GSGR19, SGB20].

In this work, we study how to integrate a general class of Riemannian manifolds into learning systems.
Specifically, we parameterize a class of Riemannian manifolds with a deep neural network and
develop techniques to optimize through the manifold operations. We apply this manifold learning
method in the context of graph embeddings to accurately reconstruct distances.

2 Background on Riemannian geometry

We assume that our readers are sufficiently familiar with the core definitions of Riemannian geometry
(including manifolds, Riemannian metrics, and the Riemannian exponential and logarithmic maps).
For a full mathematical introduction or for the explicit definitions and notations we used in this paper,
we point interested readers to app. A.

We outline the formulation for geodesics, which are integral to our core computations. Suppose we
are given a Riemannian manifold (M, g) and a set of local coordinates xi. A curve γ : I →M is a
geodesic if it satisfies the second-order ordinary differential equation (ODE) in eq. (1) for all indices
i, j, k ∈ [n]

d2γi

dt2
+ Γijk

dγj

dt

dγk

dt
= 0, (1)
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where γi are the local coordinate components of γ and the Christoffel symbols Γijk are defined by

Γijk :=
∑
l

1

2
gil
(
∂gjl
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

)
. (2)

3 Related work

Our work primarily relates to problems in geometric machine learning. Several previous works
exist for building systems for predefined manifolds [NK17, NK18, GSGR19, GDM+18, GBH18,
LKJ+20, LLK+20, MN20]. Others attempt to learn a manifold structure through neural networks
[BC20, AHH17, SKF18]. Our method augments both types of paper. For the first type we expand
the scope of tractable Riemannian manifolds, and, for the second type, we allow for deep metric
constructions independent of the manifold structure.

Our work can also be viewed as a deep metric learning method. There exist several approaches which
construct deep metrics directly [HA15, VBL+16, SSZ17, MBL20, DSGRS18] and even ones which
structure neural networks for metrics [PCJB20]. By contrast, our method constructs deep metrics
endowed with Riemannian geometry, which allow for several desirable properties such as smoothness
and interpretability. While other papers have explored usages of Riemannian geometry for metric
learning [HFB12], ours is the first to unify this with the generality of deep neural networks.

4 Deep Riemannian Manifolds

We present our construction of a Riemannian manifold (M, g) parameterized by a neural network.

4.1 Manifold Construction

The manifoldM will be constructed as an embedded submanifold parameterized by a single chart
ϕ : Rn →M⊆ RD, where ϕ is taken to be any type of diffeomorphic neural network and D ≥ n.

For all points x ∈ M we can directly model the local behavior through ϕ. Specifically, we can
construct a chart ϕx centered at x by taking ϕx(·) := ϕ(x + ·), allowing for local coordinates
xi := ϕx(ei). Tangent vectors can either be computed implicitly as the dual to the local coordinates
(in particular as vectors of Rn), or can be modeled explicitly as tangent vectors of TxM := Dxϕ(Rn).

Our approach is similar to previous works such as [BC20, SKF18], which also construct manifolds
through a single chart. We will find that the local coordinates provide a nice computational frame for
our metrics, so we will henceforth reference manifold values only by their Rn counterpart.

4.2 Metric Formulation

To construct the metric g, we first note that in local coordinates each gx is an symmetric positive
definite (SPD) matrix. Since our local coordinates remain fixed by our single chart construction, this
means that our function x→ gx is in fact a smooth function from Rn → S+n where S+n is the space
of n× n SPD matrices.

To parameterize this function with a neural network, we note that the matrix exponential map exp

acts as a bijection between Sn, the space of symmetric matrices, and S+n . Let sym : R
n(n+1)

2 → Sn
be the function which takes a R

n(n+1)
2 vector and produces the corresponding symmetric matrix in

Rn×n. Given a neural network fnn : Rn → R
n(n+1)

2 , then we define our deep metric as

gdx := (exp ◦sym ◦ fnn)(x).

We note that our construction is indeed a Riemannian metric, as it is a smooth inner product for
tangent vectors. Furthermore, it allows for some notion of universal approximation.

Prop 4.1 (Universal Approximation of Riemannian Metrics). On a compact set of Rn, our deep
metric is capable to approximating any Riemannian metric on our single-chart manifolds.
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This follows since neural networks are universal approximators and the matrix exponential is bounded
on a bounded set. We present this fully in app. B.1

5 Numerical Riemannian Manifold Operations

For our deep Riemannian manifold, the core operations of the exponential map, logarithmic map,
and distance have no closed form. This means that these functions must be solved numerically.
Furthermore, as there are no closed-form solutions, we must also develop differentiation techniques
for our operations.

5.1 Exponential Map

The exponential map expx(v) is the time 1 solution to eq. (1) with initial value x and velocity v.

For our deep manifold, x, v and expx(v) are all elements of Rn. Therefore, solving our geodesic
equation with the initial value becomes a standard numerical ODE problem. By linearizing the
ODE, our exponential map becomes a first order initial value problem (IVP), so computation and
differentiation can be implemented with a Neural ODE [CRBD18].

5.2 Logarithmic Map

The log map logx(y) is the initial value v for which expx(v) = y. This is a boundary value problem
(BVP), and, for our deep manifolds, reduces to a BVP on Euclidean space. As opposed to IVPs, these
problems are conceptually harder, more difficult to solve, and lack a clean adjoint sensitivity analysis.

Computation There exist many computational methods for BVP problems. Common methods
include shooting method and the the grid solver [SB02], and modern numerical solvers such as the
Matlab bvp5c solver can even control for error [KS08]. However, for our purposes we found that
using the BVP solver in [AHHS19], which we reimplement for batched computation in PyTorch
[PGM+19], provided a faster and more stable computation.

Differentiation To calculate gradients for the input values and neural network parameters, we
develop an adjoint sensitivity analysis for BVPs. We present the proof in app. B.2.
Theorem 5.1 (Adjoint Sensitivity For BVPs). Suppose we are given a BVP B(x, y) with correspond-
ing IVP I(x, v) s.t. I(x,B(x, y)) = y. Suppose our solution to B(x0, y0) is b. Then

DxB(x0, y0) = −DvI(x0, b)
−1 ◦DxI(x0, b) DyB(x0, y0) = −DvI(x0, b)

−1 (3)

Note that the derivatives of I can be computed through the adjoint-sensitivity analysis. Furthermore,
if our ODE problems are controlled by some parameter θ, then

DθB(x0, y0) = −DvI(x0, b)
−1 ◦DθI(x0, b)

5.3 Other Manifold Operations

Note that distance has the property that dg(x, y) =
∥∥logx(y)

∥∥
g

and that interpolation can be con-
structed directly with exp/log maps γx→y(t) = expx(t logx(y)). Since all of these components are
differentiable with respect to x, y and neural network parameters θ, AutoDiff takes care of these
derivatives [L+18].

6 Experiments

We experimentally validate our deep manifold formulation for graph embeddings.

6.1 Graph embeddings

In this experiment we embed graphs into our deep Riemannian manifolds. Since our manifolds are
able to represent more complex geometric structures than previous methods, we expect that our
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Sphere100 Tree6 Tree40 Cycle10 Cube1 Cube2

Figure 1: The synthetic graphs we consider from [CBG20].

Euclidean

Poincaré

DeepMetric

Figure 2: Geodesics and 2D embeddings on the Tree40 graph, where each column correspond to the
geodesics connected to a point (highlighted in red). The contours show the geodesic distances. The
deep metric accurately captures the node distances and induces non-trivial geodesics.

Table 1: Distortions for 2D, 5D, and 10D embeddings of the graph distances over 3 trials.

Sphere100 Tree6 Tree40 Cycle10 Cube1 Cube2
2 5 10 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

Euclidean 42.64± 21.88 2.85± 0.14 2.82± 0.08 3.14± 2.80 1.43± 0.07 1.51± 0.10 44.64± 19.64 7.85± 1.26 5.62± 0.39 1.67± 0.06 1.91± 0.12 1.79± 0.04 6.21± 1.27 1.83± 0.09 1.74± 0.16 4.37± 0.54 2.05± 0.07 1.98± 0.09

PoincareBall 12.11± 0.60 2.42± 0.04 2.64± 0.05 1.65± 0.04 1.63± 0.00 1.63± 0.00 8.65± 3.14 3.45± 0.12 2.38± 0.12 1.93± 0.00 1.93± 0.00 1.94± 0.00 1.80± 0.01 1.81± 0.01 1.81± 0.01 2.66± 0.31 2.17± 0.01 2.16± 0.01

Sphere 3.86± 0.00 2.42± 0.00 2.56± 0.01 1.69± 0.02 1.71± 0.01 1.71± 0.00 11.61± 0.94 6.83± 0.90 5.51± 0.23 1.72± 0.00 1.73± 0.00 1.73± 0.00 1.78± 0.05 1.76± 0.01 1.76± 0.01 2.48± 0.04 2.15± 0.05 2.10± 0.01

DeepManifold 102.74± 62.74 2.41± 0.01 2.51± 0.06 2.01± 0.80 1.13± 0.04 1.13± 0.05 71.57± 15.44 4.47± 0.65 2.51± 0.37 8.23± 5.69 1.77± 0.55 1.34± 0.07 5.99± 1.49 1.55± 0.15 1.53± 0.09 3.69± 1.02 1.65± 0.03 1.58± 0.05

embeddings will be more faithful and have lower distortion. We consider the synthetic graphs from
[CBG20], we which we visualize in sect. 6.

We present our experimental details in app. C. In table 1, we report the distortion of our embeddings,
noting how our manifolds are generally capable of producing better embeddings. Geodesics are
visualized in fig. 2; note how our method produces complex geodesics for the data geometry.

7 Conclusion

We have presented deep Riemannian manifolds, a type of Riemannian manifold with a metric
parameterized by a deep neural network, and have shown how to optimize both manifold-valued data
as well as the manifold itself. We hope our work enables future geometric machine learning models
to better account for more general structures.
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A Background in Riemannian Geometry

We give a cursory overview of the core Riemannian geometry constructs integral to our construction.
For a more thorough overview of this topic, we recommend interested readers consult a text such as
[DC16, Lee97, Lee03].

The core object of study is the differentiable manifoldM of dimension n, the higher dimensional
analogue of a surface. Locally around each point, the space “resembles” Euclidean space Rn. These
are mathematically formulated by charts, diffeomorphic functions ϕ : U → V with U, V open
subsets of Rn andM respectively. Our chart ranges cover our manifold, allowing the neighborhood
of each point on our manifold to be controlled by local coordinates x1, . . . , xn which correspond to
the standard directions in Rn.

By taking linear approximations of functions at each point, one can construct tangent vectors v
which form the TxM, the tangent space of M at x. These tangent spaces are vector spaces of
dimension n. With a local coordinate system, we can define the basis dx1, . . . , dxn of TxM, which
we assume implicitly from the local coordinate system.

To endow our manifold with a notion of distance, we first construct Riemannian metrics. These are
a collection of local inner products gx : TxM× TxM→ R that vary smoothly by x. We will denote
g as the general metric for for (gx)x∈M and ‖·‖g to be the norm induced by g.

A Riemannian metric gives rise to a notion of distance. Specifically, for a curve γ : I →M, then the

length of γ is L(γ) =
√∫ 1

0

∥∥γ′(t)∥∥2
g
dt. For two points x, y ∈ M, the distance dg(x, y) is defined

as the minimum such distance for any such curve minγ:γ(0)=x,γ(y) L(γ).

In practice, we can more efficiently find these minimizing curves by considering geodesics. Geodesics
are curves which are governed by the geodesic equation eq. (1) and are the locally minimizing curves.
This means that a minimizing curve will be a geodesic, but geodesics may not be minimizing (an
example being the great arc on a sphere).

Given a point x ∈M and an initial velocity v ∈ TxM, there is a unique constant speed geodesic with
γ(0) = x, γ′(0) = v. γ(1) is called the exponential map of x with v, or expx(v). The logarithmic
map is the (local) inverse of this and is denoted logx(y). Note that with this construction we can
interpolate a geodesic using only the exp and log maps, in particular for a geodesic γ between x and
y, γ(t) = expx(t logx(y)). Furthermore, the distance can be represented as dg(x, y) =

∥∥logx(y)
∥∥
g

B Proof of Claims

We formalize and prove the claims of the paper.

B.1 Universal Approximation

Prop B.1 (Universal Approximation of Riemannian Metrics Full). Suppose we have a compact set
D of Rn and a neural network with sufficient approximation capacity as in [Cyb89]. For any metric
g and ε > 0, there exists a neural network s.t. supx∈K

∥∥gx − gdx∥∥ < ε.

Proof. Let g′x be the function s.t. gx = (exp ◦sym)(g′x). We note that g′x exists and is unique as exp
is bijective as a function from Sn to S+n .

There exists a neural network s.t. supx∈K
∥∥fnn(x)− g′x

∥∥ ≤ ε
K , where K is defined as

supa,b∈fnn(D),g′(D)

∥∥(exp ◦sym)(a)− (exp ◦sym)(b)
∥∥ ≤ K ‖a− b‖.

Then, we see that

sup
x∈D

∥∥∥gx − gdx∥∥∥ ≤ K sup
x∈D

∥∥fnn(x)− g′x
∥∥ ≤ ε (4)

as desired.
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B.2 Adjoint Sensitivity

Theorem B.1 (Adjoint Sensitivity For BVPs). Suppose we are given a BVP B(x, y) with corre-
sponding IVP I(x, v) s.t. I(x,B(x, y)) = y. Suppose our solution to B(x0, y0) is b. Then

DxB(x0, y0) = −DvI(x0, b)
−1 ◦DxI(x0, b) DyB(x0, y0) = −DvI(x0, b)

−1 (5)

Note that the derivatives of I can be computed through the adjoint-sensitivity analysis. Furthermore,
if our ODE problems are controlled by some parameter θ, then

DθB(x0, y0) = −DvI(x0, b)
−1 ◦DθI(x0, b)

Proof. The core of this proof comes from the fact that I(x0, B(x0, y0)) = y0. Differentiating this
identity w.r.t y using the chain rule gives us

I = Dyy0
= (DyI)(x0, B(x0, y0))

=

[
DxI(x0, B(x0, y0))
DvI(x0, B(x0, y0))

] [
0 DyB(x0, y0)

]
= DvI(x0, B(x0, y0))DyB(x0, y0)

rearranging and setting b = B(x0, y0) gives us that DyB(x0, y0) = −DvI(x0, b)
−1, as desired.

For x, differentiating through the same identity gives us that

0 = Dxy0
= (DxI)(x0, B(x0, y0))

=

[
DxI(x0, B(x0, y0))
DvI(x0, B(x0, y0))

] [
I DxB(x0, y0)

]
= DxI(x0, B(x0, y0)) +DvI(x0, B(x0, y0))DxB(x0, y0)

and rearranging gives us that DxB(x0, y0) = −DvI(x0, b)
−1 ◦DxI(x0, b).

For θ, the proof is very similar to the proof for x. In particular, from the same differentiation we get
that

0 = Dθy0
= (DθI)(x0, B(x0, y0), θ)

=

DxI(x0, B(x0, y0))
DvI(x0, B(x0, y0))
DθI(x0, B(x0, y0))

 [0 DθB(x0, y0) I
]

= DvI(x0, B(x0, y0))DθB(x0, y0) +DθI(x0, B(x0, y0))

and rearranging gives us DθB(x0, y0) = −DvI(x0, b)
−1 ◦DθI(x0, b).

C Graph embeddings: Additional Details

We optimize global distances with respect to the stress metric. This metric is given below, where we
denote the graph distance between points i and j by gij and the manifold distance as mij .

Ls :=
∑
i<j

(gij −mij)
2 (6)
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Table 2: Reconstruction losses (stress) for 2D, 5D, and 10D embeddings of the graph distances.

Sphere100 Tree6 Tree40 Cycle10 Cube1 Cube2
2 5 10 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

Euclidean 1.76± 0.26 0.25± 0.00 0.25± 0.00 0.32± 0.46 0.04± 0.01 0.05± 0.01 1.42± 0.28 0.35± 0.03 0.26± 0.05 0.17± 0.00 0.21± 0.01 0.20± 0.01 0.34± 0.16 0.11± 0.01 0.12± 0.01 0.37± 0.06 0.15± 0.00 0.15± 0.00

PoincareBall 1.83± 0.00 0.13± 0.00 0.13± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00 1.87± 0.17 0.25± 0.00 0.04± 0.00 0.22± 0.00 0.22± 0.00 0.22± 0.00 0.18± 0.00 0.18± 0.00 0.18± 0.00 0.29± 0.02 0.24± 0.00 0.24± 0.00

Sphere 0.53± 0.00 0.15± 0.00 0.07± 0.00 0.07± 0.00 0.08± 0.00 0.08± 0.00 1.03± 0.00 0.76± 0.00 0.66± 0.00 0.12± 0.00 0.12± 0.00 0.12± 0.00 0.16± 0.00 0.16± 0.00 0.16± 0.00 0.27± 0.00 0.23± 0.00 0.23± 0.00

DeepManifold 1.92± 0.29 0.11± 0.00 0.18± 0.02 0.14± 0.12 0.00± 0.00 0.00± 0.00 1.48± 0.70 0.18± 0.05 0.08± 0.01 0.62± 0.42 0.11± 0.10 0.03± 0.01 0.67± 0.15 0.05± 0.03 0.05± 0.02 0.28± 0.08 0.06± 0.00 0.06± 0.01

However, one will note that we report distortion as our loss function, which is given by

Ld := min{α : α ≥ 1,∃β > 0 s.t. ∀i < j, βmij ≤ dij ≤ αβmij} (7)

In practice, distortion is calculated as maxi<j
gij
mij

maxi<j
mij

dij
. We choose to optimize stress to

allow for signal to propagate along more than one node and to account for more global graph
structures. In practice, this effects our Poincare Ball results for larger graphs as the Poincare Ball
is incapable of numerically representing these larger distances without a more complex numerical
system [SDSGR18, YDS19]. We report the stress of the embeddings in table 2 normalized by the
number of distances.

Points are updated with Riemannian Stochastic Gradient Descent with a learning rate of 0.01 on the
chart. We run with a batch size of 32 for most tasks except for small graphs, where we must optimize
over smaller batches of 8 to avoid our optimization becoming full batch gradient descent. Finally, we
train for 500 epochs.

For our deep manifold, we construct a 2 layer neural network with 32 hidden units for smaller
graphs and 128 for larger ones. Neural network parameters are updated with Stochastic Gradient
Descent with a learning rate of 0.01. To stabilize training, we “burnin" deep manifold embeddings by
optimizing the Euclidean distances instead for 15 epochs before switching to Deep Manifolds. Since
at initialization time our deep manifold metric is (approximately) Euclidean, this enables us to find a
good for position our initial embeddings in which geodesics are less likely to overlap. Finally, we
clamp the gradient of our neural network to 5.
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