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ABSTRACT
Intermittent hardware failures are generally non-catastrophic
and typical large-scale service infrastructures are designed
to tolerate them while still serving user traffic. However,
intermittent errors cause performance aberrations if they
are not handled appropriately. System error reporting mech-
anisms send hardware interrupts to the Central Processing
Unit (CPU) for handling the hardware errors. This disrupts
the CPU’s normal operation, which impacts the performance
of the server.

In this paper, we describe common intermittent hardware
errors observed on server systems in a large-scale data cen-
ter environment. We discuss two methodologies of handling
interrupts in server systems - System Management Inter-
rupt (SMI) and Corrected Machine Check Interrupt (CMCI).
We characterize the performance of these methods in live
environments as compared to prior studies that used error
injection to simulate error behavior. Our experience shows
that error injection methods are not reflective of production
behavior. We also present a hybrid approach for handling
error interrupts that achieves better performance, while pre-
serving monitoring granularity, in large scale data center
environments.

CCS CONCEPTS
• Hardware → Transient errors and upsets; • General
and reference → Performance; Reliability; Experimen-
tation; • Computer systems organization→ Reliability.
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1 INTRODUCTION
When hardware errors happen in large data center environ-
ments, they are either manually repaired or automatically
remediated. This is important to keep a large fleet of servers
running at high availability for serving the software applica-
tions. There are various reasonswhy hardware errors happen
during the life of a component, including material degrada-
tion (e.g. the mechanical components of a spinning hard
disk drive); over-usage beyond the device’s endurance (e.g.
NAND flash devices); environmental impacts (e.g. corrosion
due to humidity); and manufacturing defects. Large scale
environments have minimal human intervention to detect
and remediate such hardware failures. They achieve this by
deploying autonomous management systems that can handle
different types of hardware failures [21, 26, 29].
These autonomous systems are good at detecting perma-

nent hardware failures in a deterministic manner. As a result,
the management system takes the server offline, the faulty
component is repaired, and then the server is brought back
into service. However, when intermittent errors happen, it
would be cost-prohibitive and disruptive to repair every com-
ponent. The system is designed to tolerate or automatically
remediate such errors. In addition, a common class of these
errors are also correctable in hardware, and hence the appli-
cation is not expected to see any impact on the correctness
of the operations. There have been substantial studies on



program resilience against correctable and uncorrectable in-
termittent errors [15, 25, 28]. However, in real production
environments, we see intermittent errors cause performance
aberrations which are unpredictable. The major cause of this
behavior is the underlying interrupt handling mechanism
implemented in server architectures. Therefore, it is impor-
tant to consider this while designing both server hardware
and the software autonomous management systems.

Hardware errors in server systems are typically reported
through interrupts. For memory error handling there are
two types that are important. System Management Interrupt
(SMI) is a high-priority interrupt that puts the system into
the System Management Mode (SMM). SMI is commonly
used for reporting correctable memory errors, along with
the location of the errors [2]. When the system enters SMM
to handle the interrupt, operations on all CPU cores are sus-
pended, which leads to wasted cycles. Corrected Machine
Check Interrupt (CMCI) is another type of interrupt which
reports a user-specified number of correctable errors, and
the signal is treated as a normal software interrupt, halting
the operations on only the local core [4]. While this enables
better performance, CMCI also has few constraints, for in-
stance it does not reveal the location of the errors. In this
paper, we present both approaches, and characterize their
behaviors in production. We also present how we minimized
the performance impact of the error reporting mechanism
using SMI and CMCI jointly. In our hybrid approach, we
minimized the polling frequency of the errors without losing
the accuracy of the error count, while retaining the ability
to look up error locations.

Prior studies [16, 19] in this area have used error injection
methods to create varying number of interrupts to observe
system behavior. These approaches provide a way to under-
stand interrupt behavior in the absence of any production
traffic and without monitoring at scale. However, the sim-
ulated behavior is not reflective of real environments. In
production, interrupts exhibit non-deterministic behavior.
Albeit, the performance impact is perceivable through cas-
cading tail latency at the service level. These impacts are
seen even at low interrupt counts due to the penalty associ-
ated with interrupt handling and logging the required error
details. This paper presents an industry experience that looks
at optimizing the interrupt performance in real production
environments.
The rest of the paper is structured as the following: Sec-

tion 2 describes the common intermittent hardware errors
and the reporting mechanisms used in server systems. Sec-
tion 3 covers the autonomous management system for error
remediation in our production environment. Section 4 il-
lustrates SMI and its performance impact when reporting
correctable errors, and Section 5 demonstrates how we use

CMCI jointly with SMI to minimize the performance im-
pact while enabling necessary monitoring. Finally, Section 6
concludes the paper.

2 IMPACT OF INTERMITTENT ERRORS
A typical server architecture consists of CPUs and Dual In-
line Memory Modules (DIMMs) for executing operations,
hard disk drives (HDD) or solid state drives (SSD) for data re-
tention, and a network interface card (NIC) for external com-
munications, as show in Figure 1. Special function devices
for performing parallel processing like GPUs are connected
to the CPU using the Peripheral Component Interconnect
(PCI) Bus. To monitor the health of the machine, we use
a Baseboard Management Controller (BMC), with multiple
sensors for voltages, fan speed, Hot Swap Controller (HSC)
etc. Each of these blocks are prone to hard faults, where they
don’t appear online, or intermittent faults which can cause
a temporary performance drop or unavailability.

CPUs

DIMMs

PCH

storage

GPU

USB

BMC

TPM

sensors HSC

fan controller

peripherals

NIC

Figure 1: High-level architecture of a server.

In order to understand why intermittent errors cause per-
formance impact, it is important to understand the common
types of intermittent errors in server systems and the er-
ror reporting mechanisms used. Unlike permanent failures
which can be reproduced in any operating state and work-
load, intermittent failures occur only under certain criteria.
Intermittent errors also require continuous reporting for the
hardware remediation system to decide when the hardware
has degraded to a point that it needs be repaired. This sec-
tion discusses intermittent errors, their impacts on server
performance, and the reporting mechanisms for the errors.

2.1 Common Intermittent Errors
In this section, we describe primarily memory errors, and
briefly cover other intermittent errors that happen in CPU,



PCI, NIC to provide examples of areas where our methodol-
ogy could be useful.

2.1.1 Memory Error. A memory device can encounter bit
faults due to many factors including hardware degradation,
manufacturing defects, electrical noise, and cosmic rays. Con-
ventionally, memory errors are categorized by the cause and
by correction mechanisms [8].

• Hard vs. Soft Errors
Hard memory errors are inherent defects in the chip
or the memory array. Retries or rewrites will not elimi-
nate the error, as the hardware circuitry is permanently
affected, and the hard error would continue to repeat.
Soft memory errors are errors due to an electrical noise
or a glitch in the system. In the case of hard errors, the
remediation is to replace the component. Soft errors do
not necessarily repeat and are usually fixed by retries.

• Correctable vs. Uncorrectable Errors
Implemented with the use of Hamming codes, Error
Correcting Code (ECC) [18, 20] is a mechanism for
correcting memory errors. When an ECC protected
memory encounters correctable errors, the memory
controller can detect and correct the errors up to design
points. While correctable errors have no impact on
the correctness of the program processing, they are
reported through system interrupts, which could lead
to noticeable latencies in a short period. Uncorrectable
errors cannot be corrected by the ECC. These errors
usually cause kernel panics and crash themachine. The
errors induce noticeable unavailability for a production
service through frequent reboots. For the purposes of
this paper, we will focus our discussion around the
reporting of correctable errors. We will discuss the
reporting mechanisms and the performance impact in
Section 2.2 and Section 4

2.1.2 Other Intermittent Errors.

• CPU Intermittent Errors
A Machine Check Exception (MCE) is raised by the
CPU when it encounters an uncorrectable hardware
issue either within itself or a subsystem connected to
it [7]. An MCE is a subset of CATastrophic ERRors
(CATERR), and its root cause can usually be deter-
mined by examining the register values from the CPU
crash dump. An MCE usually results in system hangs
or reboots, which are highly disruptive to a service.
Another intermittent error, thermal throttling is typ-
ically asserted when the CPU on a host is operating
outside the thermal or voltage spec. Once this error is
asserted, the CPU typically gets throttled to a lower
operating frequency, which induces latency spikes on
memory.

• PCIe Error
An error can occur on the PCIe link connecting the
CPU, or through the Platform Controller Hub (PCH)
to an attached PCIe device due to electrical noise, a
loose connection, or a defective (or poorly tuned) PCIe
receiver or transmitter [23]. PCIe link correctable data
errors generate messages to the OS log and to the
System Event Log (SEL). With each detected PCIe bus
error, the affected transaction will be retried one or
more times. In most cases, the retries are successful,
and a correctable error is logged. In rare cases, where
the retries are not successful, the event will become
an uncorrectable error, and the link may go down,
affecting performance and availability.

• Data Link CRC Error
Cyclic Redundancy Check (CRC) [27] errors indicate a
corruption in the received data. CRC errors can occur
due to a faulty link between the sender and receiver, or
due to a defect in either the sender or receiver. Widely
used in both storage and network links for data trans-
fers, a CRC error usually indicates that the link is bad.
To recover from this class of errors, data packets are
re-transmitted when the CRC corruption is detected.
The rate of errors is directly proportional to the num-
ber of retransmits that we may see in the system. This
reduces the overall transfer bandwidth between the
sender and the receiver as the percentage of retrans-
mits can grow to occupy a large part of the overall
data transfer rate, thereby impacting performance.

While we presented these different intermittent errors, for
purposes of this paper, we will provide a deeper discussion of
memory correctable errors and the related interrupt handling
mechanisms.

2.2 Error Reporting for Memory Errors
There are two major ways of reporting memory errors in
server systems - EDAC and mcelog.

• EDAC
EDAC stands for "Error Detection and Correction" [3,
9]. The EDAC driver consists of Linux kernel modules,
which make use of the error detection facilities of the
memory controller hardware. EDAC has a number of
features for detection and correction. For monitoring
memory errors, EDAC internally uses the CMCI report-
ing mechanism. EDAC enables monitoring of memory
errors at the granularity of DIMMs and caches in the
CPU. EDAC is a feature that is supported on AMD
(ghes-EDAC) and Intel (native EDAC) CPUs. How-
ever, in order to perform accurate accounting of mem-
ory errors correctly through EDAC, error correction
and detection support needs to be enabled in system



firmware, i.e. BIOS (Basic Input/Output System). The
EDAC driver also provides a configuration mechanism
for enabling different types of detection and correc-
tion mechanisms. The logging features are enabled for
both memory correctable and memory uncorrectable
errors.

• mcelog
mcelog is another mechanism through the OS that is
used for monitoring memory and CPU errors [24]. The
mcelog runs as a daemon on a linux machine and ag-
gregates memory errors through polling or interrupts.
mcelog also provides support for page offlining (for
eligible pages).mcelog enables reporting of memory er-
rors at a DIMM level. If the DIMM is not found, it falls
back to the memory channel or the CPU socket level
granularity of error reporting. The reporting mech-
anism relies on the memory controller and machine
check registers in the CPU. The daemon accounts for
correctable errors in these blocks through the kernel.

While EDAC and mcelog both report memory errors, we
use EDAC in our infrastructure due to its simpler error re-
porting features. mcelog in contrast provides a large number
of config capabilities; however, in a scalable infrastructure,
consuming all those capabilities effectively is difficult as
the configurations (e.g. page offlining) introduce variability
within similar machines. Since EDAC relies on the mem-
ory controller metrics, it is easier to scale and be backward
compatible.

3 EXPERIMENT INFRASTRUCTURE
3.1 Autonomous Remediation Flow
Automonous systems are deployed for detecting and reme-
diating hardware errors to keep the service infrastructure
at high availability [21, 26, 29]. Figure 2 shows a hardware
remediation system discussed in [26]. A tool named Ma-
chineChecker periodically runs a set of checks to detect hard-
ware failures. When a hardware error is detected, an alert
is raised by the daemon monitoring Machinechecker and
sent to a centralized alert management system called Alert
Manager. Facebook Auto-Remediation (FBAR) then responds
to the alert with customizable remediations. The system is
designed with the flexibility for different service owners to
customize the corresponding actions given the failure signals,
so servers dedicated for different services can go through the
desired remediations at different rate limits, to satisfy the
specific service requirements. When the auto-remediation in
FBAR cannot bring the server back online, the hardware fail-
ure would then be passed to Cyborg, a tool that is designed
for low-level software fixes, e.g. reimaging and firmware
upgrade. Cyborg can also create a repair ticket for field en-
gineers if a physical repair or manual debugging is needed.

The data gathered from these multiple systems enables us to
identify performance issues or anomalies in hardware errors
across the fleet of servers in our data centers.

Daemon

MachineChecker

Alert 
Manager

run periodically 
and collect output

create alert if a 
server check fails

FBAR

Cyborg

Repair 
Ticketing

Figure 2: The hardware failure detection and remedia-
tion flow.

3.2 System Setup
With the autonomous hardware remediation system, we have
been able to collect hardware failure data in a fleet of servers
across multiple large-scale datacenters. The system runs
across multiple hardware generations and configurations,
collecting hardware failure data from the System Event Log
(SEL) and kernel log messages.

While we have significant monitoring for the actual pro-
duction events, we also validate that these errors are in fact
occurring in these systems. For reproducing the conditions
that trigger the hardware failures, we deployed multiple
benchmarks in the remediation flow, including CoreMark [1],
stream-scaling [6], MPrime [11], stressapptest [10], SPEC
benchmarks like perlbench, bzip2 [12], and iperf3 [13]. In
Section 4 and 5 we present the performance impact and how
we minimize it for memory correctable errors detected by
stressapptest.
We also deployed a fine-grained stall detector, a tool that

detects and measures the total time a CPU spent in interrupt
handling. The stall detector was designed to measure stalls
for every core while servicing the interrupts. It logs the stalls
on the machine, to enable measurement and comparison of
the performance impact induced by SMI and CMCI.



4 PERFORMANCE IMPACT OF SMI
INTERRUPTS

4.1 SMI
System Management Interrupt (SMI) is a high-priority inter-
rupt which puts the system into System Management Mode
(SMM). As shown in Figure 3, SMI is handled by system
firmware. When an SMI is invoked due to any of the sources
(e.g. hardware errors, thermal or power events), the control
within the firmware-first model is then transferred to the
firmware. Within the firmware, the tasks are split between
the logging handler and the interrupt handler. When both
the routines are finished, the control is transferred back to
the OS to resume the operations that were halted.

SMIs are the highest priority interrupts that are available
on the server. These interrupts are non-maskable, and are
not visible to the user or the kernel applications, and hence
cannot be deferred. Any other interrupt would be kept pend-
ing until SMI exits SMM. The configurations for SMI can
be altered within the firmware. In SMM, the machine has
the highest privileged access, and thus provides a detailed
overview and debug information for errors on the machine.
The performance impact of a System Management Inter-

rupt is high because all the cores are suspended in SMM.
The interrupt provides control to an error logging handler,
and returns to normal operating mode after writing to an
error log. Pending requests experience latencies while the
cores are suspended in SMM. In addition, since the amount
of time spent in SMM is non-deterministic as it depends on
logging and interrupt handler routines, this introduces an
unpredictable system behavior for time-bound applications.

Machine Check HandlerNMI Handler

SMI
Firmware

PlatformProcessor

Logging 
Handler

OS Error Handling

Figure 3: Interrupt handling architecture with SMI
(dashed lines show interrupt path).

4.2 Performance Impact in Synthetic Data
vs. Production

In a synthetic environment , it is possible to generate errors
at a particular rate andmeasure the CPU time spent in system
stall. A number of error injection scenarios that change SMI
rate from 1 per second to 100 per second and corresponding
test mechanisms can be used to show the different effects of
SMI. Prior studies are valuable to indicate and quantify the
experimental measurements for SMI with different rates.
However, production environments are not the same as

synthetic environments in the error occurrence rate. In con-
trast, in a production environment, the errors are sporadic
in nature. In a synthetic environment, it is possible to con-
trol the environmental factors, as well as the experimental
setup, to introduce errors at the desired rates. In contrast,
in a production environment usually consists of hundreds
of thousands of machines, having randomness with respect
to the workload running on the machine, the age of the ma-
chine. The wear and tear varies with respect to components
based on environmental and thermal factors. As a result,
production environments exhibit a larger randomness for
error generation in comparison to synthetic and controlled
environments.
In addition, the time spent in the System Management

Mode (SMM) is dependent on the details for the logging
mechanism. As a result, the number of system stalls as well
as the duration of the system stalls due to SMIs in a pro-
duction environment, are not the same as that measured for
benchmarks with error injection. This has drastic impact on
the performance of a workload executing on a machine, as
the workload is “unprepared” for a stall, and an SMI in the
middle of a critical workload can create cascaded failures in
a production fleet. An example of this is provided in the next
section.

Observation 1: SystemManagement Interrupts (SMI) cause
the machines to stall for hundreds of milli-seconds based on
the logging handler implementation. This is measurable per-
formance impact to report corrected errors.
A typical internet service has a front-end web infras-

tructure, with intermediate caching service, and back-end
databases. In an example caching service within Facebook
infrastructure, each CPU core responds to several hundred
thousand requests per second. In the few machines which
had spikes in correctable errors, the CPU went into SMM
mode (which stalls all cores of the CPU) and the caching ser-
vice dropped thousands of requests per second. This caused
timeouts for one-third of the requests for the service on
that machine. These timeouts were observed on machines
encountering System Management Interrupts (SMI), due to
logging of correctable errors into the System Event Log (SEL).

5



Since large scale services have higher level aggregators
and balancers, these issues aremanaged seamlessly. However,
in a fixed capacity service architecture, this behavior will
pressurize the rest of the machines which will get overloaded
with requests. This might result in service capability being
dynamically affected. Hence, due to unpredictable nature of
SMIs, the system can experience cascaded service impact
within front-end application performance.

Figure 4 demonstrates a correlation of the correctable
errors with service level caching request efficiency. The per-
centage of requests successfully executed by the service,
within the deadline, is termed as request efficiency. When
the caching service hosts encounter correctable errors, at
every N correctable errors, an SMI is triggered, and all the
cores encounter a system stall. This results in deadline-driven
caching requests timing out due to cores not being available
for performing workload computation while servicing the
SMI. In this example, the number of errors generated resulted
in one SMI event, which in turn caused the request efficiency
to drop.

Similar to prior work that uses benchmarks while injecting
errors [19], we deployed benchmarks to detect the perfor-
mance anomaly for sporadic memory errors. The bench-
marks didn’t detect deviations in their scores for two key
reasons, the benchmarks are long running, so sporadic pat-
terns will not impact scores. In addition, the errors are not
generated at a fixed frequency through an external test setup
or error injection, and thus the SMIs are not intentionally
disrupting the service.

Figure 5 shows the perlbench benchmark scores for 2 dif-
ferent cases. To obtain the first score, the benchmark is run
with stressapptest running in the background on a machine
which has no correctable errors (has a goodDIMM). To obtain
the second score, the benchmark is run with stressapptest in
the background with thousands of correctable errors on the
host (has a faulty DIMM). Both scores are close to each other
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correctable errors.

(within error bounds) to indicate that the benchmark did not
observe any difference with or without correctable errors
on the machine. As observed, the benchmarks cannot cap-
ture the system slowness observed when actual production
behavior is replicated with sporadic memory errors.
Figure 6 shows the number of correctable errors across

three machines over time with varied error rates. These er-
rors are not injected on the machine. The graph is generated
by randomly selecting three machines with faulty memory
known to have correctable errors, and plotting the errors
generated under the same workload over time. This also
shows that memories can inherently have faults, which gen-
erate different rate of errors. This is quite common in a large
production environment. From the figure, we can observe
that the errors do not have a consistent occurrence rate. In
general, memory errors are dependent on the memory ad-
dress access pattern and the variable memory utilization of
the application over time.
With the stall detector, we observed that the correctable

errors on the machine directly induced system stalls, and this
in turn caused a spike in the request timeouts in a caching
service. Since the stall detector is alwaysmonitoring for stalls,
any single SMI event is captured and logged, to correlate
with application performance impact.

Optimizing error handlers within SMI for reducing the
stall time for all the cores is another mechanism to reduce
performance impact. We provide recommendations on opti-
mizing error handlers in Section 4.3
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Figure 6: Variable occurrence of correctable errors on
three servers.

4.3 Optimizing error handlers within SMI
When an SMI is triggered, the control is solely limited to the
error handler within SMI. It is possible to optimize the error
handler to reduce the time spent in SMM by exploring:

• Improving the retry strategies of Intelligent Platform
Management Interface (IPMI) commands [5] used in
SMM memory error handler to log memory error data
into System Event Log (SEL) within the side band agent
(ex. BMC).

• Adjust the IPMI commands’ processing flow within
the side band agent to expedite the acknowledgement
of these IPMI commands.

• Minimize the amount of data logged to the SEL for
memory errors by trimming the logged data to only
what is required to identify the Field Replaceable Unit
(FRU).

Optimizing these proprietary mechanisms [14] can reduce
performance impact, however, stalls will occur on all cores
due to SMMmode. Hence we explore error reporting through
CMCI interrupt handling.
To summarize the findings, the performance impact due

to SMIs in a production environment is fine-grained, non-
deterministic and causes cascaded impact in a production
service. In order to minimize the performance impact due to
System Management Interrupts, we modify the default for
logging correctable errors from SMI to CMCI.

Observation 2: Benchmarks like perlbench within SPEC are
useful to quantify system performance. For variable events, we
need to augment the benchmarks with fine-grained detectors
to capture performance deviations.

5 MINIMIZING PERFORMANCE IMPACT
USING CMCI INTERRUPTS

5.1 CMCI
As shown in Figure 7, there is an alternate way of report-
ing memory errors. EDAC through the use of Corrected
Machine Check Interrupts (CMCI) provides an accounting
and aggregation of memory errors. This reporting is outside
of the SMI, firmware, and Non-Maskable Interrupt (NMI)
handlers. As a result, it is a simpler, lower cost per core re-
porting mechanism. Earlier mechanisms relied on a periodic
polling mechanism with a fixed threshold. After the fixed
threshold was crossed, on a subsequent poll, the errors were
reported. However, CMCI provides a low cost per core in-
terrupt, which is triggered based on the threshold configs
controlled through Model Specific Registers. So instead of
continuously polling for the errors at a software level, the
CMCI interrupt is now triggered only when the threshold is
crossed. This ensures that the errors are reported accurately
per bank, and also per core. EDAC utilizes the CMCI mech-
anism to report the errors by reading through registers in
each CPU core. EDAC aggregates all the errors logged by
all of the CPU cores by cycling through the CMCI counters
for each core, in order to report the total number of errors
logged for the system, during the EDAC specified polling in-
terval. The aggregation of the errors to provide a per system
count is performed by EDAC running on just one core.
In Figure 8, we see the growth of stalls using different

error reporting mechanisms in a production environment
on an example host as the number of correctable errors in-
creases. Reporting memory correctable errors through SMIs
accumulates stalls at a faster rate than reporting the same
errors through CMCIs.

Observation 3: SMI interrupts are several times more com-
putationally expensive than CMCI interrupts for correctable
memory error reporting in a production environment.

EDAC

CMCI Handler

Machine Check HandlerNMI Handler

SMI
Logging 
Handler

OS Error Handling

Firmware

PlatformProcessor

Figure 7: Interrupt handling architecture with CMCI
(dashed lines show interrupt path).
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The EDAC driver offers a few configuration options for
error reporting and error management:

• enabling PCI error reporting
• enabling uncorrectable error reporting
• enabling correctable error reporting
• polling frequency for errors
• enabling kernel panic on Uncorrectable Errors (UCE).

In our production infrastructure, we enable CMCI by de-
fault, and leverage the CMCI and EDAC infrastructure for re-
porting correctable errors. To demonstrate the performance
impact observed through the EDAC based reporting mecha-
nisms, we select a group of machines with measurable cor-
rectable error rate for obtaining the results below.We narrow
our configuration changes on the performance characteris-
tics to two main knobs in EDAC configs; enabling reporting
of correctable errors through EDAC and polling frequency.
We tune the polling frequency and provide observations
on the stalls and the impact of these stalls on application
workloads.

5.2 Impact of EDAC polling interval on
individual stall time

Figure 9 shows the maximum time a core spends in EDAC
aggregation logging with different configurations of polling
interval. The graph captures the maximum stall time ob-
served (in ms) per core. With increased polling interval for
EDAC, it is more likely that multiple cores will have logged
correctable errors. As a result, the logging mechanism of the
EDAC driver needs to scan through more cores, aggregating
and logging more messages.

Observation 4: We see that with increased polling interval,
the amount of time spent in individual aggregate logging by
the EDAC driver increases.
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Figure 9: Max individual stall vs. polling frequency.

5.3 Impact of EDAC polling interval on
total stall time

In Figure 10, we capture the total stall time a core spends
(on average) across multiple EDAC aggregation logging with
different configurations of polling interval. The graph cap-
tures the total stall time observed (in ms) per core on average.
With increased polling interval for EDAC, more cores will
have detected correctable errors. Instead of reporting a small
bucket of correctable errors, the longer polling interval al-
lows it to log the errors from multiple cores at once. This
prevents frequent transitions between executing “workloads”
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Figure 10: Total stall time vs. polling frequency.



to executing “logging”. The frequent context switches on one
core have a larger penalty for smaller polling intervals.

Observation 5: We see that with an increased polling in-
terval for EDAC, frequent context switches are reduced. Hence
the total time a machine spends in stalls will be reduced.

5.4 Impact of EDAC polling interval on
error visibility

Figure 11 demonstrates the number of errors that are lost per
poll with respect to different configurations of EDAC polling
interval. The error counting registers have a finite bit-width
allocated for tracking error count within amemory controller.
Within the CMCI architecture, the counters trigger the CMCI
interrupt after the threshold is crossed. If the EDAC driver
doesn’t log the error counters frequently enough, the error
counters can overflow. We then read an incorrect value for
the correctable errors which are reported by EDAC to be the
true value. This creates a condition where errors will be lost
in the overall EDAC accounting scheme.
In a large-scale infrastructure, we set criteria for accept-

able error rate for correctable errors beyond which we flag a
DIMM as faulty. Error rate in 10s of correctable errors per
second (10 CE/s) is more likely an indication that an entire
row is faulty in memory, instead of just a single cell. If the
errors are under-counted with a longer polling interval, this
can lead to faulty DIMMs left in the fleet. In order to prevent
that, we enforce a hard constraint based on our thresholds,
and avoid under-counting the errors which will put our de-
tection mechanisms at risk. For a different threshold, this
will result in a different value of polling interval.
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Figure 11: Missed error counts vs. polling frequency.

Observation 6: With increased polling interval for EDAC,
we run the risk of overflow in error aggregation.

5.5 Optimization of polling interval
Our goal is to reduce overall stall time on a machine using
EDAC logging, and we have the following options.

• Disable EDAC logging: We can completely disable the
logging of correctable errors by EDAC through one
of the configs mentioned above. This eliminates the
stall time due to EDAC logging on a machine. How-
ever, this in turn also means that we lose the ability
to report errors and identify which DIMMs are faulty
or have crossed a threshold of 10 Correctable Errors
(CE) per second. So we don’t pursue this option as vis-
ibility into memory health is an imperative in a large
infrastructure.

• Fine-tune polling interval: From observations 4, 5, and
6 above, we want to obtain an optimization point
where we have the minimum total stall on a system,
and yet retain the ability to diagnose our faulty mem-
ories correctly at our threshold.

Combining our 3 observations, we notice that having a
polling interval between 33-38 seconds, provides an optimum
point for minimizing total system stalls, while still retaining
error visibility, as seen in Figure 12.

The downside to this method is that one of the cores will,
at the worst case experience a stall in the range of 1200 ms.
This is only true if all the cores have logged an error. Given
that the arrival rate of memory errors is not constant, the
probability of this reaching a 1200 ms value is small. Even
with the worst-case scenario, we are still better than a large
stall on all the cores through (SMI) or many consecutive
stalls which amount to a larger aggregate stall time.
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5.6 Optimizing Interrupt Handling Using
Hybrid CMCI and SMI approach

Memory error reporting through SMI enables us to collect
debug information related to row, cell and physical address of
the failure. This information is useful for performing actions
like Post-Package Repair (PPR) [17, 22]. Switching from SMI
to CMCI means that PPR is no longer usable. CMCI through
EDAC does not provide the same level of detail as that of
SMI for memory correctable errors.

In order to minimize stalls and still use the PPR feature, we
use a hybrid approach where we enable the SMI reporting
in debug mode for a machine. When a machine is reported
to have a high error rate for memory errors by EDAC, it is
taken offline and put in a special debug mode to determine
what action is necessary. In this debug mode, the interrupt
is switched from CMCI to SMI and the threshold is reduced
to trigger SMIs at the first error, instead of 1 SMI every Nth
error. The machine is then subjected to a memory stress
workload to obtain the physical address and the necessary
detailed information needed for PPR. If the error is success-
fully recreated, a PPR action is initiated so that the memory
address can be remapped.
This complex remediation provides us with the limited

performance impact of CMCI reporting through EDACwhen
the machines are in production, but when the machine is
reported for high memory errors, the additional information
from SMI is used for performing PPR.

6 CONCLUSIONS
This paper presents important observations that highlight
the performance impact of interrupt handling using large
scale production data. Memory errors are a common class
of intermittent errors and this phenomenon is less under-
stood, as evident by the number of server manufacturers
that use SMI as default mechanism [2]. In addition, we also
present a methodology that explores the tradeoff between
performance impact, granularity of error information and
diagnostic capability. We believe that this experience will
benefit several system designers to explore interrupt han-
dling mechanisms that are better tuned to internet scale
services.
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