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ABSTRACT

We explore unsupervised pre-training for speech recognition by learning represen-
tations of raw audio. wav2vec is trained on large amounts of unlabeled audio data
and the resulting representations are then used to improve acoustic model train-
ing. We pre-train a simple multi-layer convolutional neural network optimized
via a noise contrastive binary classification task. Our experiments on WSJ reduce
WER of a strong character-based log-mel filterbank baseline by up to 36 % when
only a few hours of transcribed data is available. Our approach achieves 2.43 %
WER on the nov92 test set. This outperforms Deep Speech 2, the best reported
character-based system in the literature while using two orders of magnitude less
labeled training data.1

1 INTRODUCTION

Current state of the art models for speech recognition require large amounts of transcribed audio
data to attain good performance (Amodei et al., 2016). Recently, pre-training of neural networks
has emerged as an effective technique for settings where labeled data is scarce. The key idea is to
learn general representations in a setup where substantial amounts of labeled or unlabeled data is
available and to leverage the learned representations to improve performance on a downstream task
for which the amount of data is limited. This is particularly interesting for tasks where substantial
effort is required to obtain labeled data, such as speech recognition.

In computer vision, representations for ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014)
have proven to be useful to initialize models for tasks such as image captioning (Vinyals et al., 2016)
or pose estimation (Pavllo et al., 2019). Unsupervised pre-training for computer vision has also
shown promise (Doersch et al., 2015; Hénaff et al., 2019). In natural language processing (NLP),
unsupervised pre-training of language models (Devlin et al., 2018; Radford et al., 2018; Baevski
et al., 2019) improved many tasks such as text classification, phrase structure parsing and machine
translation (Edunov et al., 2019; Lample & Conneau, 2019). In speech processing, pre-training
has focused on emotion recogniton (Lian et al., 2018), speaker identification (Ravanelli & Bengio,
2018), phoneme discrimination (Synnaeve & Dupoux, 2016a; van den Oord et al., 2018) as well as
transferring ASR representations from one language to another (Kunze et al., 2017). There has been
work on unsupervised learning for speech but the resulting representations have not been applied to
improve supervised speech recognition (Synnaeve & Dupoux, 2016b; Kamper et al., 2017; Chung
et al., 2018; Chen et al., 2018; Chorowski et al., 2019).

In this paper, we apply unsupervised pre-training to improve supervised speech recognition. This
enables exploiting unlabeled audio data which is much easier to collect than labeled data. Our
model, wav2vec, is a convolutional neural network that takes raw audio as input and computes a
general representation that can be input to a speech recognition system. The objective is a contrastive
loss that requires distinguishing a true future audio sample from negatives (Collobert et al., 2011;
Mikolov et al., 2013; van den Oord et al., 2018). Different to previous work (van den Oord et al.,
2018), we move beyond frame-wise phoneme classification and apply the learned representations
to improve strong supervised ASR systems. wav2vec relies on a fully convolutional architecture
which can be easily parallelized over time on modern hardware compared to recurrent models used
in previous work (§2).

1The code is available as part of fairseq (https://github.com/pytorch/fairseq).
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Figure 1: Illustration of pre-training from audio data X which is encoded with two convolutional
neural networks that are stacked on top of each other. The model is optimized to solve a next time
step prediction task.

Experimental results on the WSJ benchmark demonstrate that pre-trained representations estimated
on about 1,000 hours of unlabeled speech can substantially improve a character-based ASR system
and outperform the best character-based result in the literature, Deep Speech 2, improving WER
from 3.1 % to 2.43 %. On TIMIT, pre-training enables us to match the best reported result in the lit-
erature. In a simulated low-resource setup with only eight hours of transcribed audio data, wav2vec
reduces WER by up to 36 % compared to a baseline model that relies on labeled data only (§3, §4).

2 PRE-TRAINING APPROACH

Given an audio signal as input, we optimize our model (§2.1) to predict future samples from a given
signal context. A common problem with these approaches is the requirement to accurately model
the data distribution p(x), which is challenging. We avoid this problem by first encoding raw speech
samples x into a feature representation z at a lower temporal frequency and then implicitly model a
density ratio p(zi+k|zi . . . zi−r)/p(zi+k) similar to van den Oord et al. (2018).

2.1 MODEL

Our model takes raw audio signal as input and then applies two networks. The encoder network
embeds the audio signal in a latent space and the context network combines multiple time-steps
of the encoder to obtain contextualized representations (Figure 1). Both networks are then used to
compute the objective function (§2.2).

Given raw audio samples xi ∈ X , we apply the encoder network f : X 7→ Z parameterized as
a five-layer convolutional network (van den Oord et al., 2018). Alternatively, one could use other
architectures such as the trainable frontend of Zeghidour et al. (2018a). The encoder layers have
kernel sizes (10, 8, 4, 4, 4) and strides (5, 4, 2, 2, 2). The output of the encoder is a low frequency
feature representation zi ∈ Z which encodes about 30 ms of 16 kHz of audio and the striding results
in representations zi every 10ms.

Next, we apply the context network g : Z 7→ C to the output of the encoder network to mix
multiple latent representations zi . . . zi−v into a single contextualized tensor ci = g(zi . . . zi−v) for
a receptive field size v. The context network has nine layers with kernel size three and stride one.
The total receptive field of the context network is about 210 ms.

The layers in both the encoder and context networks consist of a causal convolution with 512 chan-
nels, a group normalization layer and a ReLU nonlinearity. We normalize both across the feature
and temporal dimension for each sample which is equivalent to group normalization with a single
normalization group (Wu & He, 2018). We found it important to choose a normalization scheme
that is invariant to the scaling and the offset of the input. This choice resulted in representations that
generalize well across datasets.
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For training on larger datasets, we also consider a model variant (“wav2vec large”) with increased
capacity, using two additional linear transformations in the encoder and a considerably larger con-
text network comprised of twelve layers with increasing kernel sizes (2, 3, . . . , 13). We found it
important to introduce skip connections in the aggregator to help convergence in this case. The total
receptive field in the last context network layer is hereby increased to about 810 ms.

2.2 OBJECTIVE

We train the model to distinguish a sample zi+k that is k steps in the future from distractor samples
z̃ drawn from a proposal distribution pn, by minimizing the contrastive loss for each step k =
1, . . . ,K:

Lk = −
T−k∑
i=1

(
log σ(z>i+khk(ci)) + λE

z̃∼pn

[log σ(−z̃>hk(ci))]
)

(1)

where we denote the sigmoid σ(x) = 1/(1+exp(−x)), and where σ(z>i+khk(ci)) is the probability
of zi+k being the true sample. We consider a step-specific affine transformation hk(ci) =Wkci+bk

for each step k, that is applied to ci (van den Oord et al., 2018). We optimize the loss L =
∑K

k=1 Lk,
summing (1) over different step sizes. In practice, we approximate the expectation by sampling ten
negatives examples by uniformly choosing distractors from each audio sequence, i.e., pn(z) = 1

T ,
where T is the sequence length and we set λ to the number of negatives.2

After training, we input the representations ci produced by the context network to the acoustic model
instead of log-mel filterbank features.

3 EXPERIMENTAL SETUP

3.1 DATA

We consider the following corpora: For phoneme recognition on TIMIT (Garofolo et al., 1993b) we
use the standard train, dev and test split where the training data contains just over three hours of
audio data. Wall Street Journal (WSJ; Garofolo et al. (1993a); Woodland et al. (1994)) comprises
about 81 hours of transcribed audio data. We train on si284, validate on nov93dev and test on
nov92. Librispeech (Panayotov et al., 2015) contains a total of 960 hours of clean and noisy speech
for training. For pre-training, we use either the full 81 hours of the WSJ corpus, an 80 hour subset
of clean Librispeech, the full 960 hour Librispeech training set or a combination of all of them.

To train the baseline acoustic model we compute 80 log-mel filterbank coefficients for a 25 ms
sliding window with stride 10 ms. Final models are evaluated in terms of both word error rate
(WER) and letter error rate (LER).

3.2 ACOUSTIC MODELS

We use the wav2letter++ toolkit for training and evaluation of acoustic models (Pratap et al., 2018).
For the TIMIT task, we follow the character-based wav2letter++ setup of Zeghidour et al. (2018a)
which uses seven consecutive blocks of convolutions (kernel size 5 with 1,000 channels), followed
by a PReLU nonlinearity and a dropout rate of 0.7. The final representation is projected to a 39-
dimensional phoneme probability. The model is trained using the Auto Segmentation Criterion
(ASG; Collobert et al., 2016)) using SGD with momentum.

Our baseline for the WSJ benchmark is the wav2letter++ setup described by Collobert et al. (2019)
which is a 17 layer model with gated convolutions (Dauphin et al., 2017). The model predicts
probabilities for 31 graphemes, including the standard English alphabet, the apostrophe and period,
two repetition characters (e.g. the word ann is transcribed as an1), and a silence token (|) used as
word boundary.

All acoustic models are trained on 8 NVIDIA V100 GPUs using the distributed training implemen-
tations of fairseq and wav2letter++. When training acoustic models on WSJ, we use plain SGD with

2Similar to van den Oord et al. (2018), we found that sampling negatives from different sequences and
speakers yields inferior results.
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nov93dev nov92
LER WER LER WER

Deep Speech 2 (12K h labeled speech; Amodei et al., 2016) - 4.42 - 3.1
Trainable frontend (Zeghidour et al., 2018a) - 6.8 - 3.5
Lattice-free MMI (Hadian et al., 2018) - 5.66† - 2.8†

Supervised transfer-learning (Ghahremani et al., 2017) - 4.99† - 2.53†

4-GRAM LM (Heafield et al., 2013)
Baseline – – 3.32 8.57 2.19 5.64
wav2vec Librispeech 80 h 3.71 9.11 2.17 5.55
wav2vec Librispeech 960 h 2.85 7.40 1.76 4.57
wav2vec Libri + WSJ 1,041 h 2.91 7.59 1.67 4.61
wav2vec large Librispeech 960 h 2.73 6.96 1.57 4.32

WORD CONVLM (Zeghidour et al., 2018b)
Baseline – – 2.57 6.27 1.51 3.60
wav2vec Librispeech 960 h 2.22 5.39 1.25 2.87
wav2vec large Librispeech 960 h 2.13 5.16 1.02 2.53

CHAR CONVLM (Likhomanenko et al., 2019)
Baseline – – 2.77 6.67 1.53 3.46
wav2vec Librispeech 960 h 2.14 5.31 1.15 2.78
wav2vec large Librispeech 960 h 2.11 5.10 0.99 2.43

Table 1: Replacing log-mel filterbanks (Baseline) by pre-trained embeddings improves WSJ per-
formance on test (nov92) and validation (nov93dev) in terms of both LER and WER. We evaluate
pre-training on the acoustic data of part of clean and full Librispeech as well as the combination of
all of them. † indicates results with phoneme-based models.

learning rate 5.6 as well as gradient clipping (Collobert et al., 2019) and train for 1,000 epochs with
a total batch size of 64 audio sequences. We use early stopping and choose models based on valida-
tion WER after evaluating checkpoints with a 4-gram language model. For TIMIT we use learning
rate 0.12, momentum 0.9 and we train for 1,000 epochs on 8 GPUs with a batch size of 16 audio
sequences.

3.3 DECODING

For decoding the emissions from the acoustic model we use a lexicon as well as a separate language
model trained on the WSJ language modeling data only. We consider a 4-gram KenLM language
model (Heafield et al., 2013), a word-based convolutional language model (Collobert et al., 2019),
and a character based convolutional language model (Likhomanenko et al., 2019). We decode the
word sequence y from the output of the context network c or log-mel filterbanks using the beam
search decoder of Collobert et al. (2019) by maximizing

max
y

fAM(y|c) + α log pLM(y) + β|y| − γ
T∑

i=1

[πi = ‘|‘] (2)

where fAM is the acoustic model, pLM is the language model, π = π1, ..., πL are the characters of y.
Hyper-parameters α, β and γ are weights for the language model, the word penalty, and the silence
penalty.

For decoding WSJ, we tune the hyperparameters α, β and γ using a random search. Finally, we
decode the emissions from the acoustic model with the best parameter setting for α, β and γ. We
use a beam size of 4,000 and beam score threshold of 250 for the word based language models, and
a beam size of 1,500 with beam score threshold 40 for the character based language model.

3.4 PRE-TRAINING MODELS

The pre-training models are implemented in PyTorch in the fairseq toolkit (Ott et al., 2019). We
optimize them with Adam (Kingma & Ba, 2015) and a cosine learning rate schedule (Loshchilov
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Figure 2: Pre-training substanstially improves WER in simulated low-resource setups on the audio
data of WSJ compared to wav2letter++ with log-mel filterbanks features (Baseline). Pre-training on
the audio data of the full 960 h Librispeech dataset (wav2vec Libri) performs better than pre-training
on the 81 h WSJ dataset (wav2vec WSJ).

& Hutter, 2016) annealed over 40k update steps for both WSJ and the clean Librispeech training
datasets or over 400k steps for full Librispeech. We start with a learning rate of 1× 10−7, and then
gradually warm it up for 500 updates up to 5× 10−3 and then decay it following the cosine curve up
to 1× 10−6. To compute the objective, we sample ten negatives for each of the K = 12 tasks.

We train the first wav2vec variant on 8 GPUs and put audio sequences amounting up to 1.5M frames
on each GPU. Sequences are grouped by length and we crop each to a maximum size of 150k frames,
or the length of the shortest sequence in the batch, whichever is smaller. Cropping removes speech
signal from either the beginning or the end of the sequence and we randomly decide the cropping
offsets for each sample; we re-sample every epoch. This is a form of data augmentation but also
ensures equal length of all sequences on a GPU and removes on average 25 % of the training data.
After cropping, the total effective batch size across GPUs is about 556 seconds of speech. For the
large model variant, we train on 16 GPUs, doubling the effective batch size.

4 RESULTS

Different to van den Oord et al. (2018), we evaluate the pre-trained representations directly on down-
stream speech recognition tasks. We measure speech recognition performance on the WSJ bench-
mark and simulate various low resource setups (§4.1). We also evaluate on the TIMIT phoneme
recognition task (§4.2) and ablate various modeling choices (§4.3).

4.1 PRE-TRAINING FOR THE WSJ BENCHMARK

We consider pre-training on the audio data (without labels) of WSJ, part of clean Librispeech (about
80 h) and full Librispeech as well as a combination of all datasets (§3.1). For the pre-training exper-
iments we feed the output of the context network to the acoustic model, instead of log-mel filterbank
features.

Table 1 shows that pre-training on more data leads to better accuracy on the WSJ benchmark. Pre-
trained representations can substantially improve performance over our character-based baseline
which is trained on log-mel filterbank features. This shows that pre-training on unlabeled audio
data can improve over the best character-based approach, Deep Speech 2 (Amodei et al., 2016),
by 0.67 WER on nov92. In comparison to Hadian et al. (2018), wav2vec performs as well as
their phoneme-based model and wav2vec large outperforms it by 0.37 WER. The phoneme-based
approach of Ghahremani et al. (2017) pre-trains on the labeled version of Librispeech and then fine-
tunes on WSJ. wav2vec large still outperforms Ghahremani et al. (2017) despite a weaker baseline
model and not using Librispeech transcriptions.

What is the impact of pre-trained representations with less transcribed data? In order to get a bet-
ter understanding of this, we train acoustic models with different amounts of labeled training data
and measure accuracy with and without pre-trained representations (log-mel filterbanks). The pre-
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dev test

CNN + TD-filterbanks (Zeghidour et al., 2018a) 15.6 18.0
Li-GRU + MFCC (Ravanelli et al., 2018) – 16.7 ± 0.26
Li-GRU + FBANK (Ravanelli et al., 2018) – 15.8 ± 0.10
Li-GRU + fMLLR (Ravanelli et al., 2018) – 14.9 ± 0.27

Baseline 16.9 ± 0.15 17.6 ± 0.11
wav2vec (Librispeech 80h) 15.5 ± 0.03 17.6 ± 0.12
wav2vec (Librispeech 960h) 13.6 ± 0.20 15.6 ± 0.23
wav2vec (Librispeech + WSJ) 12.9 ± 0.18 14.7 ± 0.42

Table 2: Results for phoneme recognition on TIMIT in terms of PER. All our models use the CNN-
8L-PReLU-do0.7 architecture (Zeghidour et al., 2018a).

negatives dev PER train time (h)

1 16.3 6.1
2 15.8 6.3
5 15.9 8.2
10 15.5 10.5
20 15.7 15.3

Table 3: Effect of different number of negative samples during pre-training for TIMIT on the devel-
opment set.

trained representations are trained on the full Librispeech corpus and we measure accuracy in terms
of WER when decoding with a 4-gram language model. Figure 2 shows that pre-training reduces
WER by 36 % on nov92 when only about eight hours of transcribed data is available. Pre-training
only on the audio data of WSJ (wav2vec WSJ) performs worse compared to the much larger Lib-
rispeech (wav2vec Libri). This further confirms that pre-training on more data is important to good
performance. Similar to Hénaff et al. (2019), we noticed that fine-tuning the embedding network
does not meaningfully improve performance while substantially increasing the acoustic model train-
ing time.

4.2 PRE-TRAINING FOR TIMIT

On the TIMIT task we use a 7-layer wav2letter++model with high dropout (§3; Synnaeve & Dupoux
(2016b)). Table 2 shows that wav2vec pre-training on Librispeech and WSJ audio data can lead to
results matching the state of the art. Accuracy steadily increases with more data for pre-training and
the best accuracy is achieved with the largest amount of data for pre-training.

4.3 ABLATIONS

In this section we analyze some of the design choices we made for wav2vec. We pre-train on the 80
hour subset of clean Librispeech and evaluate on TIMIT. Table 3 shows that increasing the number of
negative samples only helps up to ten samples. Thereafter, performance plateaus while training time
increases. We suspect that this is because the training signal from the positive samples decreases as
the number of negative samples increases. In this experiment, everything is kept equal except for
the number of negative samples.

Next, we analyze the effect of data augmentation through cropping audio sequences (§3.4). When
creating batches we crop sequences to a pre-defined maximum length. Table 4 shows that a crop size
of 150k frames results in the best performance. Not restricting the maximum length (None) gives an
average sequence length of about 207k frames and results in the worst accuracy. This is most likely
because the setting provides the least amount of data augmentation.

Table 5 also shows that predicting more than 12 steps ahead in the future does not result in better
performance and increasing the number of steps increases training time.
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Crop size dev PER

None (Avg. 207k) 16.3
100k 16.1
150k 15.5
200k 16.0

Table 4: Effect of different crop sizes
(cf. Table 3).

# Tasks dev PER

8 15.9
12 15.5
16 15.5

Table 5: Effect of different number of
tasks K (cf. Table 3).

5 CONCLUSIONS

We introduce wav2vec, the first application of unsupervised pre-training to speech recognition with
a fully convolutional model. Our approach achieves 2.43 % WER on the test set of WSJ, a result that
outperforms the next best known character-based speech recognition model in the literature (Amodei
et al., 2016) while using two orders of magnitude less transcribed training data. We show that more
data for pre-training improves performance and that this approach not only improves resource-poor
setups, but also settings where all WSJ training data is used. In future work, we will investigate
different architectures which is likely to further improve performance.
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