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Abstract

In Bayesian persuasion, an informed sender has to design a signaling scheme
that discloses the right amount of information so as to influence the behavior of a
self-interested receiver. This kind of strategic interaction is ubiquitous in real-world
economic scenarios. However, the seminal model by Kamenica and Gentzkow
makes some stringent assumptions that limit its applicability in practice. One of
the most limiting assumptions is, arguably, that the sender is required to know the
receiver’s utility function to compute an optimal signaling scheme. We relax this
assumption through an online learning framework in which the sender repeatedly
faces a receiver whose type is unknown and chosen adversarially at each round from
a finite set of possible types. We are interested in no-regret algorithms prescribing a
signaling scheme at each round of the repeated interaction with performances close
to that of a best-in-hindsight signaling scheme. First, we prove a hardness result on
the per-round running time required to achieve no-α-regret for any α < 1. Then,
we provide algorithms for the full and partial feedback models with regret bounds
sublinear in the number of rounds and polynomial in the size of the instance.

1 Introduction

Bayesian persuasion was first introduced by Kamenica and Gentzkow [23] as the problem faced by an
informed sender trying to influence the behavior of a self-interested receiver via the strategic provision
of payoff-relevant information. In Bayesian persuasion, the agents’ beliefs are influenced only by
controlling ‘who gets to know what’. This ‘sweet talk’ is ubiquitous among all sorts of economic
activities, and it was famously attributed to a quarter of the GDP in the United States by McCloskey
and Klamer [28]. 2 The computational study of Bayesian persuasion has been largely driven by its
application in domains such as auctions and online advertisement [7, 19, 11], voting [1, 14, 16], traffic
routing [9, 32], recommendation systems [26], security [30, 34], and product marketing [6, 13].

In the model by Kamenica and Gentzkow [23], the sender’s and receiver’s payoffs are determined
by the receiver’s action and a set of parameters collectively termed the state of nature. Unlike the
receiver, the sender observes the realized state of nature drawn from a shared prior distribution. The
sender uses this private information to determine a signal for the receiver according to a publicly
known signaling scheme, i.e., a mapping from states of nature to probability distributions over signals.

In this paper, we focus on arguably one of the most severe limitations of the basic model: the sender
must know exactly the receiver’s utility function to compute an optimal signaling scheme.

∗The work was conducted while the author was a postdoc at Politecnico di Milano.
2A more recent estimate by Antioch and others [2] places this figure at 30%.
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Our model and results We deal with uncertainty about the receiver’s type by framing the Bayesian
persuasion problem in an online learning framework. We study a repeated Bayesian persuasion
problem where, at each round, the receiver’s type is adversarially chosen from a finite set of types.
Our goal is the design of an online algorithm that recommends a signaling scheme at each round,
guaranteeing an expected utility for the sender close to that of the best-in-hindsight signaling scheme.
We study this problem under two models of feedback: in the full information model, the sender
selects a signaling scheme and later observes the type of the best-responding receiver; in the partial
information model, the sender only observes the actions taken by the receiver.

First, in Section 4, we provide a negative result that rules out, even in the full information setting, the
possibility of designing a no-regret algorithm with polynomial per-round running time. Furthermore,
the same hardness result holds when adopting the notion of no-α-regret (in the additive sense) for
any α < 1. Then, we focus on the problem of designing no-regret algorithms by relaxing the
running time constraint. We show that it is possible to achieve a regret polynomial in the size of
the problem instance and sublinear in the number of rounds T under both full (with O(T−1/2)) and
partial feedback (with O(T−1/5)). We present these results in Sections 5 and 6, respectively.

Related works The closest line of research to ours is the one studying online learning problems
in Stackelberg games. In these games, a leader commits to a probability distribution over a set of
actions, and a follower plays an action maximizing her/his utility given the leader’s commitment [33].
In this setting, Letchford et al. [25] and Blum et al. [10] study the problem of computing the best
leader’s strategy against an unknown follower using a polynomial number of best-response queries.
Marecki et al. [27] study the problem with a single follower with type drawn from a Bayesian prior.

Balcan et al. [8] study how to minimize the leader’s regret in an online setting in which the follower’s
type is unknown and chosen adversarially from a finite set. Although the problem is conceptually
similar to ours, the Bayesian persuasion framework presents a number of additional challenges: the
solution to a Stackelberg game consists of a point in a finite-dimensional simplex, while the solution
to a Bayesian persuasion problem is a probability distribution with potentially infinite support size.
This probability distribution is subject to additional consistency constraints, which (under partial
feedback) rule out the possibility of exploiting unbiased estimators of the sender’s expected utility.

Finally, it is worth mentioning that known online learning algorithms (for either the full or partial
feedback setting) do not provide any guarantee in the case of Bayesian persuasion. Indeed, the regret
bounds of those algorithms depend linearly or sublinearly in the number of actions, but the action
space in Bayesian persuasion is infinite. A large body of previous works in other fields resolves
the issue of dealing with an infinite action space by requiring specific assumptions (e.g., linear or
convex utility function [4, 12, 22, 35]). However, in the online Bayesian persuasion setting, these
assumptions do not hold as the sender’s utility depends on the receiver’s best response, which yields
a function that is not linear nor convex (or even continuous in the space of signaling schemes).

2 Preliminaries

The receiver has a finite set of m actions A := {ai}mi=1 and a set of n possible types K := {ki}ni=1.
For each type k ∈ K, the receiver’s payoff function is uk : A×Θ→ [0, 1], where Θ := {θi}di=1 is a
finite set of d states of nature. For notational convenience, we denote by ukθ(a) ∈ [0, 1] the utility
observed by the receiver of type k ∈ K when the realized state of nature is θ ∈ Θ and she/he plays
action a ∈ A. The sender’s utility when the state of nature is θ ∈ Θ is described by the function
usθ : A → [0, 1]. As it is customary in Bayesian persuasion, we assume that the state of nature is
drawn from a common prior distribution µ ∈ int(∆Θ), which is explicitly known to both the sender
and the receiver. 3 Moreover, the sender can commit to a signaling scheme φ, which is a randomized
mapping from states of nature to signals for the receiver. Formally φ : Θ→ ∆S , where S is a finite
set of signals. We denote by φθ the probability distribution employed by the sender when the state of
nature is θ ∈ Θ, with φθ(s) being the probability of sending signal s ∈ S.

A one-shot interaction between the sender and the receiver goes on as follows: (i) the sender commits
to a publicly known signaling scheme φ and the receiver observes the commitment; (ii) the sender

3int(X) is the interior of set X and ∆X is the set of all probability distributions over X . Vectors are denoted
by bold symbols. For any vector x, the value of its i-th component is denoted by xi.
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observes the realized state of nature θ ∼ µ; (iii) the sender draws a signal s ∼ φθ and communicates
it to the receiver; (iv) the receiver observes s and rationally updates her/his prior beliefs over Θ
according to the Bayes rule; (v) the receiver selects an action maximizing her/his expected utility.

Let Ξ := ∆Θ be the set of receiver’s posterior beliefs over the states of nature. In step (iv), after
observing s ∈ S , the receiver performs a Bayesian update and infers a posterior belief ξ ∈ Ξ over the
states of nature such that the component of ξ corresponding to state of nature θ ∈ Θ is:

ξθ :=
µθ φθ(s)∑

θ′∈Θ µθ′ φθ′(s)
. (1)

After computing ξ, the receiver solves a decision problem to find an action maximizing her/his
expected utility given the current posterior. Letting a ∈ A be the receiver’s choice, the receiver
observes payoff ukθ(a), where k ∈ K is the receiver’s type, while the sender observes payoff usθ(a).

2.1 Working in the space of posterior distributions

It is oftentimes useful to represent signaling schemes as convex combinations of posterior beliefs
they can induce. First, we describe such interpretation (see [24] for further details). Then, we define
the receiver’s best response given an arbitrary posterior belief.

Representing signaling schemes Given a signaling scheme φ, each signal realization s ∈ S leads
to a posterior belief ξs ∈ Ξ, whose components are defined as in Equation (1). Accordingly, each
signaling scheme leads to a distribution over posterior beliefs. We denote a distribution over posteriors
by w ∈ ∆Ξ. We say that a signaling scheme φ : Θ→ ∆S induces w ∈ ∆Ξ if, for every ξ ∈ Ξ, the
component of w corresponding to ξ is defined as follows:

wξ :=
∑

s∈S:ξs=ξ

∑
θ∈Θ

µθ φθ(s). (2)

Intuitively, if φ induces w, then wξ represents the probability that φ induces the posterior ξ ∈ Ξ. We
let supp(w) := {ξ ∈ Ξ | wξ > 0} be the set of posteriors induced with strictly positive probability.
We say that a distribution over posteriors w ∈ ∆Ξ is consistent (i.e., intuitively, there exists a valid
signaling scheme φ inducing w) if the following hods:∑

ξ∈supp(w)

wξ ξθ = µθ, for all θ ∈ Θ. (3)

We letW ⊆ ∆Ξ be the set of distributions over posteriors that are consistent according to Equation (3).
In the remainder of the paper, we equivalently employ φ or w to denote an arbitrary signaling scheme.

Receiver’s best-response set After observing a signal s ∈ S that induces a posterior ξ ∈ Ξ, the
receiver best responds by choosing an action that maximizes her/his expected utility (step (v)). The
set of actions maximizing the receiver’s expected utility given posterior ξ is defined as follows:
Definition 1 (BR-set). Given posterior ξ ∈ Ξ and type k ∈ K, the best-response set (BR-set) is:

Bkξ := arg max
a∈A

∑
θ∈Θ

ξθ u
k
θ(a).

We denote by bkξ the action belonging to the BR-set Bkξ played by the receiver. When the receiver is
indifferent among multiple actions for a given posterior ξ, we assume that the receiver breaks ties in
favor of the sender, i.e., she/he chooses an action bkξ ∈ arg maxa∈Bkξ

∑
θ ξθ u

s
θ(a). 4

We conclude the section by introducing some additional notation. We denote by us(ξ, k) :=∑
θ ξθ u

s
θ(b

k
ξ) the sender’s expected utility when she/he induces a posterior ξ ∈ Ξ and the re-

ceiver is of type k ∈ K. Moreover, we use us(φ, k) to denote the sender’s expected utility achieved
with the signaling scheme φ. Formally, us(φ, k) :=

∑
ξ∈supp(w) wξ u

s(ξ, k), where w ∈ ∆Ξ is the
distribution over posteriors induced by φ. Analogously, we write us(w, k).

Finally, letting OPT be the sender’s optimal expected utility, we say that a signaling scheme is
α-optimal (in the additive sense) if it provides the sender with a utility at least as large as OPT − α.

4This assumption is customary in settings involving commitments, such as Stackelberg games [17, 18, 29].

3



State G State I
(µG = .3) (µI = .7)

A A 0 0 0 1
C 1 1 1 0

Realized state
State G State I

S s1 0 4/7
s2 1 3/7

State of nature
State G State I w?

supp(w?)
ξ1 0 1 2/5
ξ2 1/2 1/2 3/5

Figure 1: Left: The prosecutor/judge game. Rows represent the judge’s actions. For each possible state of nature
{G, I}, the first column is the prosecutor’s payoff while the second is the judge’s payoff. Center: The optimal
signaling scheme φ?. Each column describes the probability with which the two signals are drawn given the
realized state of nature. Right: Representation of φ? as the convex combination of posteriors w?.

2.2 Example

We illustrate the key notion of signaling scheme in a simple example with a single receiver type (i.e.,
|K| = 1) inspired by Kamenica and Gentzkow [23]: a prosecutor (the sender) is trying to convince a
rational judge (the receiver) that a defendant is guilty. The judge has two available actions: to acquit
or to convict the defendant (denoted by A and C, respectively). There are two possible states of
nature: the defendant is either guilty (denoted by G) or innocent (denoted by I). The prosecutor and
the judge share a prior belief µG = .3. Moreover, the prosecutor gets utility 1 if the judge convicts
the defendant and 0 otherwise, regardless of the state of nature. The prosecutor gets to observe the
realized state of nature (i.e., whether the defendant is guilty or innocent). The she/he can exploit
this information to select a signal from set S = {s1, s2} and send it to the judge. The judge has a
unique type and she/he gets utility 1 for choosing the just action (convict when guilty and acquit
when innocent) and utility 0 for choosing the unjust action (see Figure 1-Left).

Figure 1-Center depicts a sender-optimal signaling scheme φ? obtained via the following LP:

arg max
φ≥0

us(φ, k) s.t.
∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ,

where k is the unique type of the judge. When the sender acts according to φ?, signal s1 (resp., s2)
originates posterior ξ1 (resp., ξ2; see Figure 1-Right). Applying Equation (3) yields the equivalent
representation of φ? as a convex combination of posteriors, i.e., w?ξ1

= 2/5 and w?ξ2
= 3/5.

By unpacking the objective function of the above LP (and dropping the dependency on k) we have:
Bξ1

= {A} and Bξ2
= {A,C}. Therefore, if the posterior is ξ1, the judge will acquit the defendant,

i.e., bξ1
= A. Otherwise, if the posterior is ξ2, we have bξ2

= C since the receiver breaks ties in favor
of the sender. This highlights an intuitive interpretation of the signaling problem: the two signals
may be interpreted as action recommendations. Signal s1 (resp., s2) is interpreted by the judge as a
recommendation to play A (resp., C). Then, our definition of best-response set (Definition 1) implies
that it is in the receiver’s best interest to follow the action recommendations. The best-response
conditions can be formulated in terms of linear constraints on φθ as follows:∑
θ∈Θ

µθ φθ(s1)
(
uθ(A)− uθ(â)

)
≥ 0 and

∑
θ∈Θ

µθ φθ(s2)
(
uθ(C)− uθ(â)

)
≥ 0 ∀â ∈ {A,C}.

3 The online Bayesian persuasion framework

We consider the following online setting. The sender plays a repeated game in which, at each round
t ∈ [T ], she/he commits to a signaling scheme φt, observes a state of nature θt ∼ µ, and she/he sends
signal st ∼ φtθt to the receiver. 5 Then, a receiver of unknown type updates her/his prior distribution
and selects an action at maximizing her/his expected reward (in the one-shot interaction at round
t). We focus on the problem in which the sequence of receiver’s types k := {kt}t∈[T ] is selected
beforehand by an adversary. After the receiver plays at, the sender receives a feedback on her/his
choice at round t. In the full information feedback setting, the sender observes the receiver’s type kt.
Therefore, the sender can compute the expected payoff for any signaling scheme she/he could have
chosen other than φt. Instead, in the partial information feedback setting, the sender only observes
the action at played by the receiver at round t.

5Throughout the paper, the set {1, . . . , x} is denoted by [x].
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We are interested in algorithms computing φt at each round t. The performance of one such algorithm
is measured using the average per-round regret computed with respect to the best signaling scheme in
hindsight. Formally:

RT := max
φ

{
1

T

T∑
t=1

(
us(φ, kt)− E

[
us(φt, kt)

])}
,

where the expectation is on the randomness of the online algorithm (i.e., the probability distribution
which is used by the sender to draw the signaling scheme at round t) and T is the number of rounds.
Ideally, we would like to find an algorithm that generates a sequence {φt}t∈[T ] with the following
properties: (i) the regret is polynomial in the size of the problem instance, i.e., poly(n,m, d), and
goes to zero as a polynomial of T ; (ii) the per-round running time is poly(t, n,m, d). An algorithm
satisfying property (i) is usually called a no-regret algorithm.

In the case in which requiring no-regret is too limiting, we use the following relaxed notion of regret.
An algorithm has no-α-regret if there exists a constant c > 0 such that: RT ≤ α+ 1

T c poly(n,m, d).
The idea of no-α-regret is that the regret approaches α after a sufficiently large number of rounds
(polynomial in the size of the game).

4 Hardness of sub-linear regret

Our first result is negative: for any α < 1, it is unlikely (i.e., technically, it is not the case unless
NP ⊆ RP) that there exists a no-α-regret algorithm for the online Bayesian persuasion problem
requiring a per-round running time polynomial in the size of the instance. In order to prove the result,
we provide an intermediate step, showing that the problem of approximating an optimal signaling
scheme is computationally intractable even in the offline Bayesian persuasion problem in which the
sender knows the probability distribution over the receiver’s types (see Theorem 1 below).

Definition 2 (OPT-SIGNAL). Given an offline Bayesian persuasion problem in which the distribution
over the receiver’s types ρ ∈ ∆K is uniform, i.e., ρk = 1

n for all k ∈ K, we call OPT-SIGNAL the
problem of finding an optimal signaling scheme φ : Θ → ∆S , i.e., one maximizing the sender’s
expected utility 1

n

∑
k∈K u

s(φ, k).

Then, we can prove the following result (the omitted proofs can be found in Appendix B).

Theorem 1. For every 0 ≤ α < 1, it is NP-hard to compute an α-optimal solution to OPT-SIGNAL.

Now, we use the approximation-hardness of the offline Bayesian persuasion problem to provide
lower bounds on the α-regret in the online setting. In order to do this, we employ a set of techniques
introduced by Roughgarden and Wang [31], which lead to the following result. 6.

Theorem 2. For every α < 1, there is no polynomial-time algorithm for the online Bayesian
persuasion problem providing no-α-regret, unless NP ⊆ RP.

5 Full information feedback setting

The negative result of the previous section (Theorem 2) rules out the possibility of designing an
algorithm which satisfies the no-regret property and requires a poly(t, n,m, d) per-round running
time. A natural question is whether it is possible to devise a no-regret algorithm for the online
Bayesian persuasion problem by relaxing the running-time constraint. This is not a trivial problem
because, at every round t, the sender has to choose a signaling scheme among an infinite number of
alternatives and her/his utility depends on the receiver’s best response, which yields a function that is
not linear nor convex (or even continuous in the space of the signaling schemes). However, we show
that it is possible to provide a no-regret algorithm for the full information setting by restricting the
sender’s action space to a finite set of posteriors. All the omitted proofs are in Appendix C.

First, we show that it is always possible to design a sender-optimal signaling scheme defined as a
convex combination of a specific finite set of posteriors. For each type k ∈ K and action a ∈ A, we
define Ξka ⊆ ∆Θ as the set of posterior beliefs in which a is a receiver’s best response. Formally,

6Theorem 2 can be obtained as a corollary of Theorem 6.2 by Roughgarden and Wang [31].
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Guilty InnocentSpace of posteriors

ξ1 = (1, 0)>
ξ2 = (.5, .5)> ξ3 = (0, 1)>

Ξ1
A = ΞA Ξ1

C = ΞC

ξ1

ξ2

ξ3

(0, 0, 0)>

w = (1, 0, 0)>
w = (0, 1, 0)>

w = (0, 0, 1)>

∆Ξ̂

Ŵ

W ?

Figure 2: Left: Subdivision of the space of posteriors Ξ in the two best-response regions. If ξ ∈ ΞA (resp.,
ξ ∈ ΞC) then the judge’s best response under ξ is acquitting (resp., convicting) the defendant. When ξ = ξ2,
the judge is indifferent among her/his available actions. We have Ξ̂ = {ξ1, ξ2, ξ3}. Right: Visual depiction of
∆Ξ̂, Ŵ ⊆ ∆Ξ̂, and W ? = V (Ŵ ). The set Ŵ comprises of the distributions over posteriors in Ξ̂ consistent
with the prior µ = (.3, .7)> and it is obtained by intersecting ∆Ξ̂ with [ξ1 | ξ2 | ξ3] ·w ≥ µ. As a result, we
obtain Ŵ = conv{(.3, 0, .7)>, (0, .6, .4)>}. Finally, W ? = V (Ŵ ) = {(.3, 0, .7)>, (0, .6, .4)>}.

Ξka :=
{
ξ ∈ Ξ | a ∈ Bkξ

}
. Let a = (ak)k∈K ∈×k∈KA be a tuple specifying one action for each

receiver’s type k. Then, for each tuple a, let Ξa ⊆ ∆Θ be the (potentially empty) polytope such that
each action ak is optimal for the corresponding type k, i.e., Ξa :=

⋂
k∈K Ξkak . The polytope Ξa has a

simple interpretation: a probability distribution over posteriors in Ξa yields a signaling scheme such
that, for every type k, the receiver has no interest in deviating from ak in the induced posteriors Ξa
(i.e., the constraints analogous to those of the example in Section 2.2 are satisfied).

Then, let Ξ̂ ⊆ Ξ be the set of posteriors defined as Ξ̂ :=
⋃

a∈×k∈KA V (Ξa). 7 Finally, we define the

following set of consistent (according to Equation (3)) distributions over posteriors in Ξ̂:

Ŵ :=

w ∈ ∆Ξ̂ |
∑
ξ∈Ξ̂

wθξθ = µθ, ∀θ ∈ Θ

. (4)

By letting M be a suitably defined |Θ| × |Ξ̂|-dimensional matrix with one column for each ξ ∈ Ξ̂,
then the affine hyperplanes defined by Equation (3) are in the form M ·w = µ. Since w ∈ ∆Ξ̂, we
can safely rewrite the consistency constraints as M · w ≥ µ (see the example below for a better
intuition). Then, Ŵ can be seen as the intersection between the simplex ∆Ξ̂ and a finite number of
half-spaces. Therefore, Ŵ is a convex polytope, whose vertices compose the finite action space that
will be employed by the no-regret algorithm. Specifically, let

W ? := V (Ŵ ). (5)

Example Consider the game of Section 2.2 (see Figure 1–Left) where the receiver has a single
type (type 1). We obtain Ξ̂ by partitioning the space of posteriors in different best response regions
and by taking the vertices of the resulting polytopes (see Figure 2–Left). Then, we provide a visual
depiction of Ŵ and W ?, which are obtained, respectively, by intersecting ∆Ξ̂ with the hyperplanes
corresponding to consistency constraints (see Equation (4)), and then taking the vertices of the
resulting polytope (see Figure 2–Right). Another example, with two receiver’s types, is provided
in Appendix A.

For an arbitrary sequence of receiver’s types, we show that there exists w? ∈W ? guaranteeing to the
sender an expected utility that is equal to the best-in-hindsight signaling scheme.

Lemma 1. For every sequence of receiver’s types k = {kt}t∈[T ], it holds

max
w∈W

T∑
t=1

us(w, kt) = max
w?∈W?

T∑
t=1

us(w?, kt).

7V (X) denotes the set of vertices of polytope X .
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The size of the sender’s finite action space grows exponentially in the number of states of nature d.
Lemma 2. The size of W ? is |W ?| ∈ O

(
(nm2 + d)d

)
.

Now, by letting η ∈ [0, 1] be the maximum absolute payoff value, we can employ any algorithm
satisfying RT ≤ O

(
η
√

log |A|/T
)

as a black box (see, e.g., Polynomial Weights [15] and Follow
the Lazy Leader [22]). By taking W ? as the sender action space, we obtain the following.
Theorem 3. Given an online Bayesian persuasion problem with full information feedback, there
exists an online algorithm such that, for every sequence of receiver’s types k = {kt}t∈[T ]:

RT ≤ O

(√
d log(nm2 + d)

T

)
.

Notice that any no-regret algorithm working on W ? requires a per-round running time polynomial in
n,m and exponential in d (see the bound in Lemma 2). This shows that the source of the hardness
result in Theorem 2 is the number of states of nature d, while achieving no-regret in polynomial time
is possible when the parameter d is fixed.

6 Partial information feedback setting

In this setting, at every round t, the sender can only observe the action at played by the receiver.
Therefore, the sender has no information on the utility us(w, kt) that she/he would have obtained
by choosing any signaling scheme w ∈ W ? other than wt. We show how to design no-regret
algorithms with regret bounds that depend polynomially in the size of the problem instance by
exploiting a reduction from the partial information setting to the full information one. 8 The main
idea is to use a full-information no-regret algorithm in combination with a mechanism to estimate
the sender’s utilities corresponding to signaling schemes different from the one recommended by
the algorithm. In particular, the overall time horizon T is split into a given number of equally-sized
blocks, each corresponding to a window of time simulating a single round of a full information
setting. During this window, the strategy suggested by the full-information algorithm is played in
most of the rounds (exploitation phase), while only few rounds are chosen uniformly at random and
used by the mechanism that estimates the utilities provided by other signaling schemes (exploration
phase). Algorithm 1 provides a sketch of the overall procedure, where Z (Line 1) denotes the
number of blocks, which are the intervals of consecutive rounds {Iτ}τ∈[Z] defined in Line 4. The
FULL-INFORMATION(·) sub-procedure is a black box representing a no-regret algorithm for the full
information setting, working on a subset W ◦ ⊆ W ? of signaling schemes. After the execution of
all the rounds of each block τ ∈ [Z], it takes as input the utility estimates computed during Iτ and
returns a recommended strategy qτ+1 ∈ ∆W◦ for the next block Iτ+1 (see Line 14).

Algorithm 1 ONLINE BAYESIAN PERSUASION WITH PARTIAL INFORMATION FEEDBACK

Input: Full-information no-regret algorithm FULL-INFORMATION(·) working on W ◦ ⊆ W ?; subset of
signaling schemes W} ⊆W ? used for exploration . See Appendix D.2 for the definitions of W ◦ and W}

1: Let Z be defined as in Theorem 3
2: Let q1 ∈ ∆W◦ be the uniform distribution over W ◦

3: for τ = 1, . . . , Z do
4: Iτ ←

{
(τ − 1)T

Z
+ 1, . . . , τ T

Z

}
5: Choose a random permutation π : [|W}|]→W} and t1, . . . , t|W}| rounds at random from Iτ

6: for t = (τ − 1)T
Z

+ 1, . . . , τ T
Z

do
7: if t = tj for some j ∈ [|W}|] then
8: qt ← q ∈ ∆W? such that qw = 1 for the signaling scheme w = π(j) . Exploration phase
9: else

10: qt ← qτ . Exploitation phase
11: Play a signaling scheme wt ∈W ? randomly drawn from qt

12: Observe sender’s utility us(wt, kt) and receiver’s action at ∈ A
13: Compute estimators ũs

Iτ (w) of us
Iτ (w) := 1

|Iτ |
∑
t∈[T ]:t∈I u

s(w, kt) for all w ∈W ◦

14: qτ+1 ← FULL-INFORMATION
({
ũs
Iτ (w)

}
w∈W◦

)
8The reduction is an extension of those proposed by Balcan et al. [8] and Awerbuch and Mansour [5].
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During each block Iτ with τ ∈ [Z], Algorithm 1 alternates between two tasks: (i) exploration
(Line 8), trying all the signaling schemes in a subset W} ⊆W ? given as input, so as to compute the
required estimates of the sender’s expected utilities; and (ii) exploitation (Line 10), playing strategy
qτ recommend by FULL-INFORMATION(·) for Iτ .

Our main result is the proof that Algorithm 1 achieves the no-regret property. Formally:
Theorem 4. Given an online Bayesian persuasion problem with partial feedback, there exist W ◦ ⊆
W ?, W} ⊆W ?, and estimators ũsIτ (w) such that Algorithm 1 provides the following regret bound:

RT ≤ O

(
nm2/3d log1/3 (mn+ d)

T 1/5

)
.

In order to prove this result, we show that Algorithm 1 provides a regret bound that depends on the
number |W}| of signaling schemes used for exploration, the logarithm of |W ◦|, and the range and
bias of the estimators ũsIτ (w). To do this, we extend a result shown by Balcan et al. [8, Lemma 6.2] to
the more general case in which only biased utility estimators are available, rather than unbiased ones.
This result can be generalized to any partial information setting (beyond online Bayesian persuasion).

In any block Iτ with τ ∈ [Z], for every w ∈ W ◦, we assume that Algorithm 1 has access to an
estimator ũsIτ (w) of the sender’s average utility usIτ (w) = 1

|Iτ |
∑
t∈[T ]:t∈I u

s(w, kt) obtained by
committing to w during the block Iτ , with the following properties:

(i) the bias is bounded by a given constant ι ∈ (0, 1), i.e., it holds
∣∣usIτ (w)− E

[
ũsIτ (w)

]∣∣ ≤ ι;
(ii) the range is limited, i.e., there exists a η ∈ R such that ũsIτ (w) ∈ [−η,+η].

Lemma 3. Suppose that Algorithm 1 has access to estimators ũsIτ (w) with properties (i) and (ii) for
some constants ι ∈ (0, 1) and η ∈ R, for every signaling scheme w ∈W ◦ and block Iτ with τ ∈ [Z].
Moreover, let Z := T 2/3|W}|−2/3η2/3 log1/3 |W ◦|. Then, Algorithm 1 guarantees regret:

RT ≤ O

(
|W}|1/3η2/3 log1/3 |W ◦|

T 1/3

)
+O (ι) .

Lemma 3 shows that even if utility estimators have small bias, we can still hope for a no-regret
algorithm. However, we have to guarantee that W} has a polynomial size, and that the estimator has
a limited range. These requirements can be achieved by estimating sender’s utilities indirectly by
means of other related estimates, at the cost of giving up on the unbiasedness of the estimators.

The key observation that allows to get the desired estimators ũsIτ (w) by only exploring a polynomially-
sized set W} is that the utilities usIτ (w) that we wish to estimate are not independent, but they all
depend on the frequency of each receiver’s type during block Iτ . Thus, only these (polynomially
many) quantities need to be estimated. In order to do so, we use the concept of barycentric span-
ners [4] (see Appendix D.2 for the details). A direct application of barycentric spanners to our
setting would require being able to induce any receiver’s posterior during the exploration phase.
Unfortunately, this is not possible as the sender is forced to play consistent signaling schemes (see
Equation (2)), which could prevent her from inducing certain posteriors. We achieve the goal of
keeping the bias and the range of the estimators small by adopting the following two technical caveats:

(i) we focus on posteriors that can be induced by a signaling scheme with at least some (‘not
too small’) probability, which ensures that the resulting estimators have a limited range; and

(ii) we restrict the full-information algorithm to signaling schemes W ◦ ⊆W ? inducing a small
number of posteriors, which guarantees to have estimators with a small bias.

We provide our complete technical results in Appendix D.

7 Discussion and future works

We proposed the online Bayesian persuasion framework as a natural extension of the original model
by Kamenica and Gentzkow [23]. This is, to the best of our knowledge, the first work relaxing the

8



assumption that the sender has a perfect knowledge of the receiver’s utility function. We proved that
any no-regret algorithm for this setting has to require an exponential per-round running time, and we
designed no-regret algorithms for the partial and full information feedback settings with adversarially
chosen sequences of types. In the future, it would be interesting to study what happens if the receiver
can play, at each round, an approximate best response (ε-best response) to the sender signal. We
conjecture that in this case it should be possible to build a no-regret algorithm with quasi-polynomial
per-round running time.

Broader Impact

Bayesian persuasion is a fascinating model that suffers from some limiting assumptions, which
prevented a widespread use of the framework in practical applications. This work tries to amend
one of such limitations, by relaxing the constraint that the sender has to have a perfect knowledge
of the payoff structure of the game. This goes in the direction of developing a complete theory of
Bayesian persuasion from data as a framework based solely on sender’s and receiver’s historical
observations. In the future, an application of this framework at scale (e.g., on large social platforms)
could raise some societal challenges (see, e.g., recent works on Bayesian persuasion as an election-
manipulation tool). Therefore, future research in this direction should prioritize the study of how
to protect receivers from excessive information garbling, and how to incentivize senders to work
towards a socially-acceptable outcome.
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A Additional example

This example (see Figure 3) builds on the classical prosecutor/judge game by Kamenica and Gentzkow [23]
described in Section 2.2. Here, the judge has two possible types. A judge of type 1 gets payoff 1 for a just decision,
and 0 otherwise. A judge of type 2 has a worse perception of acquitting a guilty defendant, for which she gets
−1. In this case, the computation of best-response regions is more involved because different judge’s types yield
different boundaries on the space of posteriors. Specifically, by Equation (4), Ŵ is the result of the intersection
between the simplex ∆Ξ̂ and the closed half-spaces specified by [ξ1|ξ2|ξ3|ξ4] ·w ≥ µ. The vertices of the resulting
polytope are w1 = (3/10, 0, 0, 7/10)>, w2 = (0, 9/10, 0, 1/10)>, and w3 = (0, 0, 3/5, 2/5)>. Then, the new
sender’s action space can be restricted to W ? = {w1,w2,w3}. 9

Type 1

State G State I
(µG = .3) (µI = .7)

A A 0 0 0 1
C 1 1 1 0

Type 2

State G State I
(µG = .3) (µI = .7)

A A 0 −1 0 1
C 1 1 1 0

G I

ξ1

ξ2 = ( 1
2
, 1

2
)> ξ3

Ξ1
A Ξ1

C

G I

ξ1

ξ4 =
(

1
3
, 2

3

)>
ξ3

Ξ2
A Ξ2

C

Ξ(A,A)

G I

ξ1 ξ4

G
Ξ(A,C)

I

ξ4 ξ2

G
Ξ(C,C)

I

ξ2 ξ3

Figure 3: Left: A prosecutor/judge game with two types. When the judge is of type 2 she has a worse perception of acquitting a
guilty defendant. Center: A visual depiction of ΞkA and ΞkC for each possible type k ∈ {1, 2}. When k = 2, the judge is less
inclined towards acquitting and, therefore, the best-response boundary is ξ4. When k = 1 (resp., k = 2) and the posterior is
ξ2 (resp., ξ4), the judge is indifferent between acquitting and convicting the defendant. Right: Best-response regions for the
possible joint actions. When a = (C,A) we have Ξa = ∅ because there is no posterior for which A is a best response for a
receiver of type 1, and C is a best response for a receiver of type 2. We have Ξ̂ = {ξ1, ξ2, ξ3, ξ4}.

B Proofs omitted from Section 4

Theorem 1. For every 0 ≤ α < 1, it is NP-hard to compute an α-optimal solution to OPT-SIGNAL.

Proof. In order to prove Theorem 1, we resort to a result by Guruswami and Raghavendra [21] (see Theorem 5
below), which is about the following promise problem related to the satisfiability of a fraction of linear equations
with rational coefficients and variables restricted to the hypercube.

Definition 3 (LINEQ-MA(1 − ζ, δ) by Guruswami and Raghavendra [21]). For any two constants ζ, δ ∈ R
satisfying 0 ≤ δ ≤ 1 − ζ ≤ 1, LINEQ-MA(1 − ζ, δ) is the following promise problem: Given a set of linear
equations Ax = c over variables x ∈ Qnvar , with coefficients A ∈ Qneq×nvar and c ∈ Qnvar , distinguish between the
following two cases:

• there exists a vector x̂ ∈ {0, 1}nvar that satisfies at least a fraction 1− ζ of the equations;

• every possible vector x ∈ Qnvar satisfies less than a fraction δ of the equations.

Theorem 5 (Guruswami and Raghavendra [21]). For all valid ζ, δ > 0, LINEQ-MA(1− ζ, δ) is NP-hard.

We introduce a reduction from LINEQ-MA(1− ζ, δ) to OPT-SIGNAL, showing the following:

• Completeness: If an instance of LINEQ-MA(1− ζ, δ) admits a 1− ζ fraction of satisfiable equations when
variables are restricted to lie the hypercube {0, 1}nvar , then an optimal solution to OPT-SIGNAL provides
the sender with an expected utility at least of 1− 2ζ;

9The polytopes were computed using Polymake, a tool for computational polyhedral geometry [3, 20].
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• Soundness: If at most a δ fraction of the equations can be satisfied, then an optimal solution to OPT-SIGNAL
has sender’s expected utility at most δ.

Since ζ and δ can be arbitrary (with 0 ≤ δ ≤ 1− ζ ≤ 1), the two properties above immediately prove the result.
In the rest of the proof, given a vector of variables x ∈ Qnvar , for i ∈ [nvar], we denote with xi the component
corresponding to the i-th variable. Similarly, for j ∈ [neq], cj is the j-th component of the vector c, whereas, for
i ∈ [nvar] and j ∈ [neq], the (j, i)-entry of A is denoted by Aji.

Reduction As a preliminary step, we normalize the coefficients by letting Ā := 1
τA and c̄ := 1

τ c, where we
let τ := 2 max

{
maxi∈[nvar],j∈[neq] Aji,maxj∈[neq] cj , n

2
var

}
. It is easy to see that the normalization preserves the

number of satisfiable equations. Formally, the number of satisfied equations of Ax = c is equal to the number of
satisfied equations of Āx̄ = c̄, where x̄ = 1

τ x. For every variable i ∈ [nvar], we define a state of nature θi ∈ Θ.
Moreover, we introduce an additional state θ0 ∈ Θ. The prior distribution µ ∈ int(∆Θ) is defined in such a way that
µθi = 1

n2
var

for every i ∈ [nvar], while µθ0 = nvar−1
nvar

(notice that
∑
θ∈Θ µθ = 1). We define a receiver’s type kj ∈ K

for each equation j ∈ [neq] (recall that the distribution over receiver’s types ρ ∈ ∆K is uniform by definition of
OPT-SIGNAL). The receiver has three actions available, namely A := {a0, a1, a2}, whereas, for every kj ∈ K, the
utilities of type kj are ukjθi (a0) = 1

2 , ukjθi (a1) = 1
2−Āji+ c̄j , and ukjθi (a2) = 1

2 +Āji− c̄j for every i ∈ [nvar], while

u
kj
θ0

(a0) = 1
2 , ukjθ0 (a1) = 1

2 + c̄j , and ukjθ0 (a2) = 1
2 − c̄j . Finally, the sender’s utility is 1 when the receiver plays

a0, while it is 0 otherwise, independently of the state of nature. Formally, usθ(a0) = 1 and usθ(a1) = usθ(a2) = 0
for every θ ∈ Θ.

Completeness Suppose there exists a vector x̂ ∈ {0, 1}nvar such that at least a fraction 1− ζ of the equations in
Ax̂ = c are satisfied. Let X1 ⊆ [nvar] be the set of variables i ∈ [nvar] with xi = 1, while X0 := [nvar]\X1. Given
the definition of Ā and c̄, there exists a vector x̄ ∈ {0, 1

τ }
nvar such that at least a fraction 1− ζ of the equations in

Āx̄ = c̄ are satisfied, and, additionally, x̄i = 1
τ for all the variables in i ∈ X1, while x̄i = 0 whenever i ∈ X0.

Let us consider an (indirect) signaling scheme φ : Θ → ∆S defined for the set of signals S := {s1, s2}. Let
q := nvar(nvar−1)

τ−|X1| . For every i ∈ [nvar], we define φθi(s1) = q and φθi(s2) = 1− q if i ∈ X1, while φθi(s1) = 0 and
φθi(s2) = 1 otherwise. Moreover, we let φθ0(s1) = 1 and φθ0(s2) = 0. Now, let us take the receiver’s posterior

ξ1 ∈ ∆Θ induced by signal s1. Let h :=
q

n2
var∑

i∈X1
q

n2
var

+nvar−1
nvar

. Then, using the definition of ξ1, it is easy to check that

ξ1
θi

= h for every i ∈ X1, ξ1
θi

= 0 for every i ∈ X0, while ξ1
θ0

=
nvar−1
nvar∑

i∈X1
q

n2
var

+nvar−1
nvar

= 1− h
∣∣X1

∣∣. Next, we prove

that given the posterior ξ1 at least a fraction 1− ζ of the receiver’s types has action a0 as a best response, implying
that the expected utility of the sender is equal to 1

n

∑
k∈K u

s(φ, k) ≥ n−1
n (1− ζ) ≥ 1 − 2ζ, which holds for n

large enough. For each satisfied equality j ∈ [neq] in Āx̄ = c̄, the receiver of type kj ∈ K experiences a utility of∑
θ∈Θ ξ

1
θu

kj
θ (a0) = 1

2 by playing action a0. Instead, the utility she gets by playing a1 is defined as follows:∑
θ∈Θ

ξ1
θu

kj
θ (a1) =

∑
i∈X1

h

(
1

2
− Āji + c̄j

)
+ ξ1

θ0

(
1

2
+ c̄j

)
=

= h
∣∣X1

∣∣ (1

2
+ c̄j

)
− h

∑
i∈X1

Āji +
(
1− h

∣∣X1
∣∣)(1

2
+ c̄j

)
=

=
1

2
+ c̄j − h

∑
i∈X1

Āji =
1

2
+ c̄j −

1

τ

∑
i∈X1

Āji =
1

2
,

where the second to last equality holds since h = 1
τ (by definition of h and q), while the last equality follows from

the fact that the j-th equation is satisfied, and, thus, 1
τ

∑
i∈X1 Āji = c̄j (recall that x̄i = 1

τ for all i ∈ X1). Using
similar arguments, we can write

∑
θ∈Θ ξ

1
θu

kj
θ (a2) = 1

2 , which concludes the completeness proof.

Soundness Suppose, by contradiction, that there exists a signaling scheme φ : Θ → ∆S providing the sender
with an expected utility greater than δ. This implies, by an averaging argument, that there exists a signal inducing
a posterior ξ ∈ ∆Θ in which at least a fraction δ of the receiver’s types best responds by playing action a0. Let
K1 ⊆ K be the set of such reviver’s types. For every receiver’s type kj ∈ K, it holds

∑
θ∈Θ ξθu

kj
θ (a0) = 1

2 .
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Moreover, it is the case that:∑
θ∈Θ

ξθu
kj
θ (a1) =

∑
i∈[nvar]

ξθi

(
1

2
− Āji + c̄j

)
+ ξθ0

(
1

2
+ c̄j

)
=

1

2
+ c̄j −

∑
i∈[nvar]

ξθiĀji.

Similarly, it holds: ∑
θ∈Θ

ξθu
kj
θ (a2) =

1

2
− c̄j +

∑
i∈[nvar]

ξθiĀji.

By assumption, for every type kj ∈ K1, it is the case that
∑
θ∈Θ ξθu

kj
θ (a0) ≥

∑
θ∈Θ ξθu

kj
θ (a1), which implies that

c̄j −
∑
i∈[nvar]

ξθiĀji ≤ 0, whereas
∑
θ∈Θ ξθu

kj
θ (a0) ≥

∑
θ∈Θ ξθu

kj
θ (a2), implying −c̄j +

∑
i∈[nvar]

ξθiĀji ≤ 0.
Thus,

∑
i∈[nvar]

ξθiĀji = c̄j for every j ∈ [neq] such that kj ∈ K1 and the vector x̂ ∈ Qnvar with x̂i = ξθi for all
i ∈ [nvar] satisfies at least a fraction δ of the equations, reaching a contradiction.

C Proofs omitted from Section 5

Lemma 1. For every sequence of receiver’s types k = {kt}t∈[T ], it holds

max
w∈W

T∑
t=1

us(w, kt) = max
w?∈W?

T∑
t=1

us(w?, kt).

Proof. The idea to prove the lemma is the following: any posterior distribution ξ in supp(w) can be represented as
the convex combination of elements of Ξ̂. We denote such convex combination by wξ ∈ ∆Ξ̂. We define a new
signaling scheme w? ∈ ∆Ξ̂ as follows:

w?ξ′ :=
∑

ξ∈supp(w):

ξ′∈supp(wξ)

wξw
ξ
ξ′ for each ξ′ ∈ Ξ̂. (6)

Since w is consistent (i.e., w ∈W ) we have by construction that w? is consistent, and therefore w? ∈ Ŵ . Finally,
we show that w? guarantees to the sender an expected utility which is greater than or equal to that achieved via
w. The crucial point here is showing that whenever the decomposition over Ξ̂ involves a vertex (i.e., a posterior)
where the receiver is indifferent between two or more actions, her/his choice does not damage the sender. This
happens at the boundaries of best-response regions (see, e.g., what happens at ξ2 and ξ4 in the example of Figure 3).
The sender’s expected utility is a linear function of the signaling scheme w?. Therefore, the sender can limit her
attention to W ?, since her/his maximum expected utility is attained at one of the vertices of Ŵ .

Consider a posterior ξ ∈ Ξ and let a = {bkξ}k∈K (i.e., a is the tuple specifying the best-response action under
posterior ξ for each receiver’s type k). Tuple a defines polytope Ξa ⊆ Ξ. By Carathéodory’s theorem, any ξ ∈ Ξa
is the convex combination of a finite number of points in Ξa. Specifically, there exists wξ ∈ ∆V (Ξa) such that, for
each θ ∈ Θ,

∑
ξ′∈V (Ξa)

wξ
ξ′ξ
′
θ = ξθ.

Let w ∈ Ŵ (i.e., w is consistent). By following Equation (6), we define a distribution w? such that, for each
ξ′ ∈ Ξ̂,

w?ξ′ :=
∑

ξ∈supp(w):

ξ′∈supp(wξ)

wξw
ξ
ξ′ .

By construction, w? is a well-defined convex combination of elements of Ξ̂. Moreover, since w is consistent, the
same holds true for w?, which implies w? ∈ Ŵ .

Fix a type k ∈ K and a posterior ξ ∈ Ξ, and let a be defined as the tuple specifying the best response under ξ for
each k. At each posterior ξ′ ∈ V (Ξa), the receiver plays bkξ′ . The following holds:

bkξ′ ∈ arg max
a′∈Bk

ξ′

∑
θ∈Θ

ξ′θu
s
θ(a
′) ≥

∑
θ∈Θ

ξ′θu
s
θ(b

k
ξ), (7)
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where the inequality holds because, by construction, bkξ ∈ Bkξ′ . Therefore, we can show that the sender’s expected
utility when decomposing ξ as wξ ∈ ∆V (Ξa) is guaranteed to be greater than or equal to the expected utility under
ξ. Specifically, ∑

ξ′∈V (Ξa)

wξ
ξ′u

s(ξ′, k) =
∑

ξ′∈V (Ξa)

wξ
ξ′

∑
θ∈Θ

ξ′θu
s
θ(b

k
ξ′)

≥
∑

ξ′∈V (Ξa)

wξ
ξ′

∑
θ∈Θ

ξ′θu
s
θ(b

k
ξ) (By Equation (7))

=
∑
θ∈Θ

ξθu
s
θ(b

k
ξ) (By definition of wξ)

= us(ξ, k).

Let w ∈ W be the best-in-hindsight signaling scheme. We show that, for any sequence of receiver’s types
k = {kt}t∈[T ], the sender’s expected utility achieved via w is matched by the expected utility guaranteed by
w? ∈ Ŵ defined as in Equation (6). We have∑

t∈[T ]

∑
ξ∈supp(w?)

w?ξu
s(ξ, kt) =

∑
t∈[T ]

∑
ξ∈supp(w?)

∑
ξ′∈supp(w):

ξ∈supp(wξ′ )

wξ′w
ξ′

ξ u
s(ξ, kt)

=
∑
t∈[T ]

∑
ξ′∈supp(w)

wξ′

∑
ξ∈supp(wξ′ )

wξ′

ξ u
s(ξ, kt)

≥
∑
t∈[T ]

∑
ξ′∈supp(w)

us(ξ′, kt)

=
∑
t∈[T ]

us(w, kt).

Finally, since
∑
t∈[T ] u

s(w?, kt) =
∑
t∈[T ]

∑
ξ∈supp(w?) w

?
ξu

s(ξ, kt) is a linear function in the signaling scheme

w?, its maximum is attained at a vertex of Ŵ . This concludes the proof.

Lemma 2. The size of W ? is |W ?| ∈ O
(
(nm2 + d)d

)
.

Proof. By definition, for any a = (ak)k∈K, Wa ⊆ Ξ. Then, each w ∈ V (Wa) is an extreme point of a (d − 1)-
dimensional convex polytope, and therefore the point lies at the intersection of (d − 1) linearly independent
defining half-spaces of the polytope. Now, to provide a bound for |Ξ̂| we first compute the number of half-spaces
separating best-response regions corresponding to different actions. For each type k ∈ K, there are at most

(
m
2

)
half-spaces each separating W k

a and W k
a′ for two actions a 6= a′. Then, in order to take all the incentive constraints

into account, we have to sum over all possible reveiver’s types, obtaining O(nm2) half-spaces. The set Ξ̂ is
the result of the intersection between the region defined by such half-spaces, and the d constraints defining the
simplex. Each extreme point of the polytope defined by points in Ξ̂ lies at the intersection of d − 1 half-spaces.
Therefore, there are at most

(
nm2+d
d−1

)
∈ O

(
(nm2 + d)d

)
such extreme points. The convex polytope Ŵ is the

result of the intersection between the simplex defined over Ξ̂, which has O
(
(nm2 + d)d

)
extreme points, and d

half-spaces defining consistency constraints. Then, Ŵ has a number of extreme points which is less than or equal to
O
(
(nm2 + d)d

)
.

Theorem 3. Given an online Bayesian persuasion problem with full information feedback, there exists an online
algorithm such that, for every sequence of receiver’s types k = {kt}t∈[T ]:

RT ≤ O

(√
d log(nm2 + d)

T

)
.
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Proof. We employ an arbitrary algorithm satisfying RT ≤ O
(
η
√

log |A|/T
)

with action set A = W ?. Let
w∗ ∈W be the sender-optimal signaling scheme in hindsight. Then,∑

t∈[T ]

E[us(wt, kt)] ≥
∑
t∈[T ]

us(w∗, kt)−O
(√

T log |W ?|
)

≥
∑
t∈[T ]

us(w∗, kt)−O
(√

T log (nm2 + d)d
)

(By Lemma 2)

=
∑
t∈[T ]

us(w∗, kt)−O
(√

Td log (nm2 + d)
)
.

This completes the proof.

D Additional results on the partial information feedback setting

Appendix D.1 reports the proof of Lemma 3, which shows a regret bound for the reduction from partial information
to full information that exploits biased estimators. Appendix D.2 provides a detailed treatment on how Algorithm 1
computes the required sender’s utility estimates. Finally, Appendix D.3 concludes with the proof of Theorem 4.

D.1 Proof of Lemma 3

Lemma 3. Suppose that Algorithm 1 has access to estimators ũsIτ (w) with properties (i) and (ii) for some
constants ι ∈ (0, 1) and η ∈ R, for every signaling scheme w ∈ W ◦ and block Iτ with τ ∈ [Z]. Moreover, let
Z := T 2/3|W}|−2/3η2/3 log1/3 |W ◦|. Then, Algorithm 1 guarantees regret:

RT ≤ O

(
|W}|1/3η2/3 log1/3 |W ◦|

T 1/3

)
+O (ι) .

Proof. In order to prove the desired regret bound for Algorithm 1, we rely on two crucial observations:

• during the exploration phase of each block Iτ with τ ∈ [Z], i.e., the iterations t1, . . . , t|W}|, the algorithm
plays a strategy qt 6= qτ , where qτ is the last strategy recommended by FULL-INFORMATION(·), resulting
in a corresponding utility loss that can be as large as −1 (since the utilities are in the range [0, 1]);

• running the full-information no-regret algorithm (i.e., the sub-procedure FULL-INFORMATION(·)) using
biased estimates of the sender’s utilities (rather than their real values) results in the regret bound being
worsened by only a term that is proportional to the bias ι of the adopted estimators.

In the following, we denote with RZfull the cumulative regret achieved by FULL-INFORMATION(·), where we remark
the fact that each block Iτ simulates a single iteration of the full information setting, and, thus, the number of
iterations for the full-information algorithm is Z rather than T . Formally, we have the following definition:

RZfull := max
w∈W◦

∑
τ∈[Z]

ũsIτ (w)−
∑
τ∈[Z]

∑
w∈W◦

qτwũ
s
Iτ (w),

where we notice that the regret is computed with respect to the estimates ũsIτ (w) of the sender’s average utilities
usIτ (w) experienced in each block Iτ , defined as usIτ (w) = 1

|Iτ |
∑
t∈Iτ u

s(w, kt) for every w ∈ W ◦. We also
remark that the full-information algorithm is run on a subset W ◦ ⊆W ? of signaling schemes, and, thus, the regret
RZfull is defined with respect to them. Moreover, from Section 5, we know that there exists an algorithm satisfying

the regret bound RZfull ≤ O
(
η
√
Z log |W ◦|

)
, where η is the range of the utility values observed by the algorithm

that, in our case, corresponds to the range of the estimates observed by the algorithm, which is limited thanks to
property (ii) of the estimators.

In order to prove the result, we also need the following relation, which holds for every τ ∈ [Z] and signaling scheme
w ∈W ◦: ∑

t∈Iτ

us(w, kt) = |Iτ |usIτ (w) ≥ |Iτ |
(
E[ũsIτ ]− ι

)
=
T

Z

(
E[ũsIτ ]− ι

)
, (8)
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where the first equality holds by definition, the inequality holds thanks to property (i) of the estimators, while the
last equality is given by |Iτ | = T

Z .

Letting U be the sender’s expected utility achieved by playing according to Algorithm 1, the following relations
hold:

1

T
U :=

1

T

∑
τ∈[Z]

∑
t∈Iτ

∑
w∈W◦

qtwu
s(w, kt)

≥ 1

T

∑
τ∈[Z]

∑
w∈W◦

qτw
∑
t∈Iτ

us(w, kt)− |W
}|Z
T

(qt 6= qτ in |W}| iterations and max. loss = −1)

≥ 1

T

∑
τ∈[Z]

∑
w∈W◦

qτw
T

Z

(
E
[
ũsIτ (w)

]
− ι
)
− |W

}|Z
T

(By Equation (8))

=
1

Z

∑
τ∈[Z]

∑
w∈W◦

qτw

(
E
[
ũsIτ (w)

]
− ι
)
− |W

}|Z
T

=
1

Z

∑
τ∈[Z]

∑
w∈W◦

qτwE
[
ũsIτ (w)

]
− ι− |W

}|Z
T

(Since
∑
τ∈[Z]

∑
w∈W◦

qτw = Z, being qτ ∈ ∆W◦ )

=
1

Z
E

∑
τ∈[Z]

∑
w∈W◦

qτwũ
s
Iτ (w)

− ι− |W}|Z
T

=
1

Z
E

[
max
w∈W◦

∑
τ∈Z

ũsIτ (w)−RZfull

]
− ι− |W

}|Z
T

(Definition of RZfull)

≥ 1

Z
max
w∈W◦

∑
τ∈[Z]

E
[
ũsIτ (w)

]
− 1

Z
RZfull − ι−

|W}|Z
T

(Jensen’s inequality)

≥ 1

Z
max
w∈W◦

∑
τ∈[Z]

(
usIτ (w)− ι

)
− 1

Z
RZfull − ι−

|W}|Z
T

(By property (i))

=
1

Z
max
w∈W◦

∑
τ∈[Z]

usIτ (w)− ι− 1

Z
RZfull − ι−

|W}|Z
T

=
1

Z
max
w∈W◦

Z

T

∑
τ∈[Z]

∑
t∈Iτ

us(w, kt)− 1

Z
RZfull − 2ι− |W

}|Z
T

(By def. of usIτ (w) and |Iτ | =
T

Z
)

=
1

T
max
w∈W◦

∑
τ∈[Z]

∑
t∈Iτ

us(w, kt)− 1

Z
RZfull − 2ι− |W

}|Z
T

=
1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)− 1

Z
RZfull − 2ι− |W

}|Z
T

=

≥ 1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)− 1

Z
O
(
η
√
Z log |W ◦|

)
− 2ι− |W

}|Z
T

≥ 1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)−O

(
|W}|1/3η2/3 log1/3 |W ◦|

T 1/3

)
− 2ι− |W

}|1/3η2/3 log1/3 |W ◦|
T 1/3

≥ 1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)−O

(
|W}|1/3η2/3 log1/3 |W ◦|

T 1/3

)
−O (ι)

By using the definition of the regret RT of Algorithm 1, we get the statement.
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D.2 Details on sender’s average utilities estimation

In the following, we show in details how to compute the estimates needed by Algorithm 1 by using random samples
from a polynomially-sized set W} ⊆ W ?. Let us recall that, during each block Iτ with τ ∈ [Z], Algorithm 1
needs to compute the estimators ũsIτ (w) of usIτ (w) = 1

|Iτ |
∑
t∈Iτ u

s(w, kt) for all the signaling schemes w ∈W ◦
(Line 13). Notice that the set W ◦ ⊆W ? is defined (as shown in Lemma 6) in order to be able to build estimators
with the desired properties (i) and (ii).

As discussed in Section 6, the key insight that allows us to get the required estimates by using only a polynomial
number of random samples is that the utilities to be estimated are not independent. This is because they depend on
the frequencies of the receiver’s actions during bock Iτ , which depend, in turn, on the frequencies of the receiver’s
types. Thus, the goal is to devise estimators for the frequencies of the receiver’s types during each block Iτ . As an
intuition, imagine that the sender commits to a signaling scheme such that each receiver’s type best responds by
playing a different action. Then, by observing the receiver’s action, the sender gets to know the receiver’s type with
certainty. In general, for a given signaling scheme, there might be many different receiver’s types that are better off
playing the same action. In order to handle this problem and build the required estimates of the frequencies of the
receiver’s types, we use insights from the bandit linear optimization literature, and, in particular, we use the concept
of barycentric spanner introduced by Awerbuch and Kleinberg [4].

For every block Iτ with τ ∈ [Z], we let fτ : [0, 1]n → R be a function that, given a vector x = [x1, . . . , xn] ∈
[0, 1]n, returns the sum of the number of times the receiver’s types in K were active during block Iτ , weighted by
the coefficients defined by the vector x. Formally, the following definition holds:

fτ (x) :=
∑
k∈K

xk
∑
t∈Bτ

I{kt = k},

where I{kt = k} is an indicator function that is equal to 1 if and only if it is the case that kt = k, while it is 0
otherwise. Notice that, for a given τ ∈ [Z] and k ∈ K, the term

∑
t∈Bτ I{k

t = k} is a constant, and, thus, the
function fτ is linear. Intuitively, fτ is the key element that allows us to connect the utilities that we need to estimate
with the actual quantities we can estimate through the use of barycentric spanners.

The first crucial step is to restrict the attention to posteriors that can be induced with at least some (‘not too small’)
probability. This ensures that our estimators have a limited range. Given a probability threshold σ ∈ (0, 1), we
denote with Ξ} ⊆ Ξ the set of posteriors that can be induced with probability at least σ by some signaling scheme.
We can verify whether a given posterior ξ ∈ Ξ belongs to Ξ} by solving an LP. Formally, ξ ∈ Ξ} if and only if the
following set of linear equations admits a feasible solution w ∈ ∆Ξ:

wξ ≥ σ (10a)∑
ξ∈Ξ

wξξθ = µθ ∀θ ∈ Θ. (10b)

We defineR as the set of all the tuples a = (ak)k∈K ∈×k∈KA for which there exists a posterior ξ ∈ Ξ} such that,
for every receiver’s type k ∈ K, the action ak specified by the tuple is a best response to ξ for type k. Formally:

R :=
⋃

ξ∈Ξ}

(
b1ξ, . . . , b

n
ξ

)
,

where we recall that bkξ denotes the best response of type k ∈ K under posterior ξ. Intuitively,R is the set of tuples
of receiver’s best responses which result from the posteriors that the sender can induce with probability at least σ. 10

Given a tuple a = (ak)k∈K ∈ R and a receiver’s action a ∈ A, we denote with I(a=a) ∈ {0, 1}n an indicator vector
whose k-th component is equal to 1 if and only if type k ∈ K plays action a in a, i.e., it holds ak = a. Moreover,
we define X as the set of all the indicators vectors; formally, X :=

{
I(a=a) | a ∈ R, a ∈ A

}
.

Since the set X is a finite (and hence compact) subset of the Euclidean space Rn, we can use the following
proposition due to Awerbuch and Kleinberg [4] to introduce the barycentric spanner of X .
Proposition 1 ([4], Proposition 2.2). If X is a compact subset of an n-dimensional vector space V , then there exists
a setH = {h1, ...,hn} ⊆ X such that for all x ∈ X , x may be expressed as a linear combination of elements ofH
using coefficients in [−1, 1]. That is, for all x ∈ X , there exists a vector of coefficients λ = [λ1, . . . , λn] ∈ [−1, 1]n

such that x =
∑
i∈[n] λih

i. The setH is called barycentric spanner of X .

10Let us remark that the sets Ξ} andR depend on the given threshold σ ∈ (0, 1). In the following, for the ease of notation,
we omit such dependence, as the actual value of σ that the two sets refer to will be clear from context.
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In the following, we denote with H := {h1, ...,hn} ⊆ X a barycentric spanner of X . Notice that, since each
element h ∈ H of the barycentric spanner belongs to X by definition, there exist a tuple a ∈ R and a receiver’s
action a ∈ A such that h is equal to the indicator vector I(a=a). Moreover, by definition of R, there exists a

posterior ξ ∈ Ξ} such that the tuple of best responses
(
b1ξ, . . . , b

n
ξ

)
coincides with a.

Next, we describe how Algorithm 1 computes the required estmates. During the exploration phase of block Iτ with
τ ∈ [Z], one iteration is devoted to each element h ∈ H of the barycentric spanner, so as to get an estimate of
fτ (h). During such iteration, the algorithm plays a signaling scheme w ∈ ∆Ξ that is feasible for the LP defined
by Constraints (10) where the posterior ξ ∈ Ξ} is that associated to h. As a result, the set of all such signaling
schemes can be used as W} in Algorithm 1. Moreover, when the induced receiver’s posterior is ξ and the receiver
responds by playing action a, the algorithm sets a variable pτ (h) to the value 1

wξ
, otherwise pτ (h) is set to 0.

The following lemma shows that the variables pτ (h) computed by the algorithm during each block Iτ with τ ∈ [Z]
are unbiased estimates of the values fτ (h).
Lemma 4. For any τ ∈ [Z] and h ∈ H, it holds E [pτ (h) · |Iτ |] = fτ (h).

Proof. First, recall that pτ (h) = 1
wξ

if and only if during the iteration of exploration devoted to h, the induced
receiver’s posterior is ξ and she/he best responds by playing a (otherwise, pτ (h) = 0). Since the iteration is selected
uniformly at random over the block Iτ and the sequence of receiver’s types k = {kt}t∈[T ] is chosen adversarially
before the beginning of the game, we can conclude that also the receiver’s type for that iteration is picked uniformly
at random. Thus, E [pτ (h)] = 1

wξ
·wξ ·P

{
randomly chosen type from Iτ best responds to ξ consistently with h

}
,

where by best responding consistently we mean that the type k ∈ K is such that hk = 1, i.e., she plays action a in a.
By using the definition of fτ (h), we can write the following:

E [pτ (h)] =

∑
k∈K:hk=1 fτ (ek)

|Iτ |
=
fτ (h)

|Iτ |
,

where ek ∈ Rn denotes an n-dimensional vector whose k-th component is 1, while others components are 0.

For any x ∈ X , we let λ(x) = [λ1(x), . . . , λn(x)] ∈ [−1, 1]n be the vector of coefficients representing x with
respect to basisH. Formally, we can write x =

∑
i∈[n] λi(x)hi.

For any posterior ξ ∈ Ξ}, let a[ξ] ∈ R be such that a[ξ] =
(
b1ξ, . . . , b

n
ξ

)
. Then, for each τ ∈ [Z], let us define

ũsIτ (ξ) :=
∑
a∈A

∑
k∈K

λk
(
Ia[ξ]=a

)
pτ
(
hk
)∑
θ∈Θ

ξθu
s
θ(a).

Letting usIτ (ξ) := 1
|Iτ |
∑
t∈τ u

s(ξ, kt) be the sender’s average utility achieved by inducing the receiver’s posterior
ξ ∈ Ξ} during each iteration of block Iτ with τ ∈ [Z], the following lemma shows that ũsIτ (ξ) is an unbiased
estimator of usIτ (ξ), and, additionally, the range in which the estimator values lie is not to large.

Lemma 5. For any posterior ξ ∈ Ξ} and τ ∈ [Z], it holds E
[
ũsIτ (ξ)

]
= usIτ (ξ). Moreover, ũsIτ (ξ) ∈ [−mnσ , mnσ ].

Proof. The first statement follows from the following relations:

E
[
ũsIτ (ξ)

]
= E

[∑
a∈A

∑
k∈K

λk
(
Ia[ξ]=a

)
pτ
(
hk
)∑
θ∈Θ

ξθu
s
θ(a)

]
=
∑
a∈A

∑
k∈K

λk
(
Ia[ξ]=a

)
E
[
pτ
(
hk
)]∑
θ∈Θ

ξθu
s
θ(a)

=
∑
a∈A

∑
θ∈Θ

ξθu
s
θ(a)

∑
k∈K

λk
(
Ia[ξ]=a

)
E
[
pτ
(
hk
)]

=
∑
a∈A

∑
θ∈Θ

ξθu
s
θ(a)

∑
k∈K

λk
(
Ia[ξ]=a

) fτ (hk)
|Iτ |

(By Lemma 4)

=
∑
a∈A

∑
θ∈Θ

ξθu
s
θ(a)

∑
k∈K

fτ
(
Ia[ξ]=a

)
|Iτ |

(By definition of fτ )

= usIτ (ξ),
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where the last equality holds by using again the definition of fτ and re-arranging the terms.

As for the second statement, since λk
(
Ia[ξ]=a

)
∈ [−1, 1],

∑
θ∈Θ ξθu

s
θ(a) ∈ [0, 1], and pτ

(
hk
)
∈
[
0, 1

σ

]
, it is easy

to show that ũsIτ (ξ) ∈ [−mnσ , mnσ ].

In the next lemma, we show that there always exists a best-in-hindsight signaling scheme that uses (i.e., induces
with positive probability) only a small number of posteriors. This is the final step needed to show that the estimators
ũsIτ (ξ) allow to compute slightly biased estimates of the utilities needed by the full-information algorithm.

Lemma 6. Given a sequence of receiver’s types k = {kt}t∈[T ], there always exists a best-in-hindsight signaling

scheme w? ∈ W ? such that the set of posteriors it induces with positive probability
{
ξ ∈ Ξ | w?ξ > 0

}
has

cardinality at most the number of states d.

Proof. Notice that a best-in-hindsight signaling scheme w? ∈W ? can be computed by solving the following LP:

max
w∈∆Ξ

∑
t∈[T ]

∑
ξ∈Ξ

wξu
s(w, kt)

s.t.
∑
ξ∈Ξ

wξξθ = µθ ∀θ ∈ Θ.

Since the LP has d equalities, it always admits an optimal basic feasible solution in which at most d variables wξ

are greater than 0. This concludes the proof.

Then, we define the W ◦ used by Algorithm 1 as the set of signaling schemes w ∈W ? whose support is at most
d, i.e., it is the case that |{ξ ∈ Ξ | wξ > 0}| ≤ d. By definition of W ? and Lemma 6, it is easy to see that a
best-in-hindsight signaling scheme is always guaranteed to be in the set W ◦.

Letting ũsIτ (w) :=
∑

ξ∈Ξ} wξũ
s
Iτ

(ξ) for every w ∈ W ◦ and τ ∈ [Z], the following lemma shows that each
ũsIτ (w) is a biased estimator of the sender’s average utility usIτ (w) in block Iτ , while also providing bounds on the
bias and the range of the estimators. This final result allows us to effectively use the estimators ũsIτ (w) defined
above in Algorithm 1.
Lemma 7. For any signaling scheme w ∈ W ◦ and τ ∈ [Z], it holds usIτ (w) ≥ E

[
ũsIτ (w)

]
≥ usIτ (w) − dσ.

Moreover, it is the case that ũsIτ (w) ∈ [−mnσ , mnσ ].

Proof. By using Lemma 5, it is easy to check that the left inequality in the first statement holds:

usIτ (w) =
∑
ξ∈Ξ

wξu
s
Iτ (ξ) ≥

∑
ξ∈Ξ}

wξu
s
Iτ (ξ) =

∑
ξ∈Ξ}

wξE
[
ũsIτ (ξ)

]
= E

[
ũsIτ (w)

]
.

Moreover, it is the case that:

E
[
ũsIτ (w)

]
=
∑
ξ∈Ξ}

wξE
[
ũsIτ (ξ)

]
=
∑
ξ∈Ξ}

wξu
s
Iτ (ξ) (By Lemma 5)

= usIτ (w)−
∑

ξ∈Ξ\Ξ}

wξu
s
Iτ (ξ) (By definition of usIτ (w))

≥ usIτ (w)−
∑

ξ∈Ξ\Ξ}

wξ (Since usIτ (w) ≤ 1)

≥ usIτ (w)−
∑

ξ∈Ξ\Ξ}

σ (By definition of Ξ}, it must be wξ < σ)

≥ usIτ (w)− dσ (Since w ∈W ◦)

Finally, ũsIτ (w) ∈ [−mnσ , mnσ ] follows from the fact that, by definition, ũsIτ (w) is the weighted sum of quantities
within the range [−mnσ , mnσ ], with the weights sum being at most 1.
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D.3 Proof of Theorem 4

Theorem 4. Given an online Bayesian persuasion problem with partial feedback, there exist W ◦ ⊆W ?, W} ⊆
W ?, and estimators ũsIτ (w) such that Algorithm 1 provides the following regret bound:

RT ≤ O

(
nm2/3d log1/3 (mn+ d)

T 1/5

)
.

Proof. By setting σ := d−2/5T−1/5, it is sufficient to run Algorithm 1 with estimators usIτ (w) for every w ∈W ◦

computed as previously described in this section. Thus, it holds |W}| = n and η = mnd2/5T 1/5. By Theorem 3,
the following holds:

RT ≤ O
(
|W}|1/3η2/3log1/3|W ◦|

T 1/3

)
+O (ι)

= O

(
n1/3

(
mnd2/5T 1/5

)2/3
log1/3 |W ◦|

T 1/3

)
+O

(
d

d2/5T 1/5

)

= O

(
nm2/3d4/15

(
d log

(
m2n+ d

))1/3
T 1/5

)
+O

(
d3/5

T 1/5

)

= O

(
nm2/3d3/5 log1/3 (mn+ d)

T 1/5

)
.

This concludes the proof.
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