
Avatars Grow Legs: Generating Smooth Human Motion
from Sparse Tracking Inputs with Diffusion Model

Yuming Du* Robin Kips Albert Pumarola Sebastian Starke Ali Thabet Artsiom Sanakoyeu
Meta AI

Figure 1. Full body motion synthesis based on HMD and hand controllers input. We show synthesis results of the proposed AGRoL
method. RGB axes illustrate the orientation of the head and hands which serves as the input to to our model.

Abstract

With the recent popularity spike of AR/VR applications,
realistic and accurate control of 3D full-body avatars is
a highly demanded feature. A particular challenge is that
only a sparse tracking signal is available from standalone
HMDs (Head Mounted Devices) and it is often limited to
tracking the user’s head and wrist. While this signal is
resourceful for reconstructing the upper body motion, the
lower body is not tracked and must be synthesized from
the limited information provided by the upper body joints.
In this paper, we present AGRoL, a novel conditional dif-
fusion model specially purposed to track full bodies given
sparse upper-body tracking signals. Our model uses a sim-
ple multi-layer perceptrons (MLP) architecture and a novel
conditioning scheme for motion data. It can predict ac-
curate and smooth full-body motion, especially the chal-
lenging lower body movement. Contrary to common dif-
fusion architectures, our compact architecture can run in
real-time, making it usable for online body-tracking appli-
cations. We train and evaluate our model on AMASS motion
capture dataset, and show that our approach outperforms
state-of-the-art methods in generated motion accuracy and
smoothness. We further justify our design choices through
extensive experiments and ablations.

*Work done during an internship at Mera AI.

1. Introduction
Humans are the primary actors in AR/VR applications.

As such, being able to track full-body movement is in high
demand for these applications. Common approaches are
able to accurately track upper bodies only [25, 58]. Moving
to full-body tracking unlocks engaging experiences where
users can interact with the virtual environment with an in-
creased sense of presence. However, in the typical AR/VR
setting there is no strong tracking signal for the entire hu-
man body – only the head and hands are usually tracked
by means of Inertial Measurement Unit (IMU) sensors em-
bedded in Head Mounted Displays (HMD) and hand con-
trollers. Some works suggest adding additional IMUs to
track the lower body joints [22,25], those additions come at
higher costs and the expense of the user’s comfort [24, 27].
In an ideal setting, we want to enable high-fidelity full-body
tracking using the standard three inputs (head and hands)
provided by most HMDs.

Given the position and orientation information of the
head and both hands, predicting full-body pose, especially
the lower body, is inherently an underconstrained problem.
To address this challenge, different methods rely on genera-
tive models such as normalizing flows [46] and Variational
Autoencoders (VAE) [11] to synthesize lower body mo-
tions. In the realm of generative models, diffusion models
have recently shown impressive results in image and video
generation [21, 40, 49], especially for conditional genera-
tion. This inspires us to employ the diffusion model to gen-
erate the fully-body poses conditioned on the sparse track-

1

ing signals. To the best of our knowledge, there is no exist-
ing work leveraging the diffusion model solely for motion
reconstruction from sparse tracking information.

However, it is not trivial to employ the diffusion model
in this task. Existing approaches for conditional generation
with diffusion models are widely used for cross-modal con-
ditional generation. Unfortunately, these methods can not
be directly applied to the task of motion synthesis, given
the disparity in data representations, e.g. human body joints
feature vs. images.

In this paper, we propose a novel diffusion architecture –
Avatars Grow Legs (AGRoL), which is specifically tailored
for the task of conditional motion synthesis. Inspired by
recent work in future motion prediction [18], which uses a
simple MLP-based architecture, we find that a carefully de-
signed MLP network can already achieve comparable per-
formance to the state-of-the-art methods. However, we dis-
covered that the predicted motions of MLP networks may
contain jittering artifacts. To solve this problem and gen-
erate smooth realistic full body motion from sparse track-
ing signals, we design a novel lightweight diffusion model
empowered by our MLP architecture. Diffusion models re-
quire time step embedding [21,39] to be injected in the net-
work during training and inference, while we found that our
MLP architecture is not sensitive to the positional embed-
ding in the input. To solve this issue, we further propose a
novel strategy to effectively inject the time step embedding
during the diffusion process. With the proposed strategy,
we can significantly mitigate the jittering issues and further
improve the model performance and its robustness to the
loss of tracking signal. Our model accurately predicts full-
body motions outperforming state-of-the art approaches as
we demonstrate by the experiments on AMASS [36], large
motion capture dataset.

We summarize our contributions as follows:

• We propose AGRoL, a conditional diffusion model
specifically designed for full-body motion synthesis
based on sparse IMU tracking signals. AGRoL is a
simple and yet efficient MLP-based diffusion model
with a lightweight architecture. To enable gradual de-
noising and produce smooth motion sequences we pro-
pose a block-wise injection scheme that adds diffusion
timestep embedding before every intermediate block
of the neural network. With this timestep embedding
strategy, AGRoL achieves state-of-the-art performance
on the full-body motion synthesis task without any ex-
tra losses that are commonly used in other motion pre-
diction methods.

• We show that our lightweight diffusion-based model
AGRoL can generate realistic smooth motions while
achieving real-time inference speed, making it suitable
for online applications. Moreover, it is more robust

Figure 2. The architecture of our MLP-based network. FC,
LN, and SiLU denote the fully connected layer, the layer normal-
ization, and the SiLU activation layer respectively. 1 × 1 Conv
denotes the 1D convolution layer with kernel size 1. Note that 1 ×
1 Conv here is equivalent to a fully connected layer operating on
the first dimension of the input tensor RN×D̂ , while the FC layers
operate on the last dimension. N denotes the temporal dimension
and D̂ denotes the dimension of the latent space. The middle block
is repeated M times. The first FC layer projects input data to a la-
tent space RN×D̂ and the last one converts from latent space to the
output space of full-body poses RN×S .

against tracking signals loss then existing approaches.

2. Related Work
2.1. Motion Tracking from Sparse Tracking Inputs

Generating full-body poses from sparse tracking signals
of body joints has recently drawn a lot of interest in the re-
search community. Works like [22] track full bodies given
6 IMU inputs and using a bi-directional LSTM to predict
SMPL body joints. In a similar approach, the method
in [58] tracks with 4 IMU inputs (head, wrists, and pelvis).
However, the more practical case in HMD settings is to have
access to only 3 tracking signals: head and 2 wrists. To
that extent, AvatarPoser [24] solves the 3-point problem us-
ing a transformer-based architecture. Other recent methods
attempt to solve sparse input body tracking as a synthesis
problem. To that extent, Aliakbarian et al. [4] proposed a
flow-based architecture derived from [10], while Dittadi et
al. [11] opted for a Variational Autoencoder (VAE) method.
Finally, more complex methods resort to Reinforcement
Learning [57], but require future frames as input, introduc-
ing latency in the tracking system.

In summary, all methods presented in this section either
rely on more than 3 inputs or struggle to predict full body
pose, in particular lower bodies. In contrast, our method
leverages a custom diffusion model, using a simple MLP-
based architecture, to accurately predict full body pose us-
ing only 3 IMU inputs.

2.2. Diffusion Models and Motion Synthesis

Diffusion models [21, 40, 49] are a class of likelihood-
based generative models based on learning progressive
noising and denoising of data. Diffusion models have re-
cently drawn a large amount of interest in image genera-

2

tion [9], due to their ability to significantly outperform pop-
ular GAN architectures [7, 26]. Conditional generation is
also possible with diffusion models, as seen in the classi-
fier guidance proposed in [9], or the CLIP-based text condi-
tional synthesis for diffusion models presented in [39].

More recently, concurrent works have also extended dif-
fusion models to motion synthesis, with particular focus on
the text-to-motion task [28, 52, 60]. However, these models
are both complex in architecture and require multiple itera-
tions at inference time. This hinders them unusable for real-
time applications like VR body tracking. We circumvent
this problem by designing a custom and efficient diffusion
model. To the best of our knowledge, we present the first
diffusion model solely purposed for solving motion recon-
struction from sparse inputs. Our model leverages a simple
MLP architecture, runs in real-time, and provides accurate
pose predictions, particularly for lower bodies.

2.3. Human Motion Synthesis

Early works in human motion synthesis rose under the
task of future motion prediction. Works around this task
saw various modeling approaches ranging from sequence
to sequence models [14], all the way to graph modeling of
each body part [23]. These supervised models were later
replaced by generative methods [17, 31] based on Genera-
tive Adversarial Networks (GANs) [16]. Despite their leap
forward, these approaches tend to diverge from realistic mo-
tion and require access to all body joint positions, making
them impractical for avatar animation in VR [19].

A second family of motion synthesis methods revolves
around character control. In this setting, character motion
must be generated according to user inputs and environ-
mental constraints, such as the virtual environment prop-
erties. This line of work is lucrative for computer gam-
ing, where controller input is used as guidance for charac-
ter motion. Inspired by these constraints, the work in [56]
formulates motion synthesis as a control problem given di-
rection and speed input, using a GAN architecture. Sim-
ilar efforts are found in [51], where the method learns fast
and dynamic character interactions that involve contacts be-
tween the body and other objects, given user input from a
controller. These methods are impractical in a VR setting,
where users want to drive motion using their real body pose
instead of a controller.

3. Method
3.1. Problem Formulation

Our goal is to predict the whole body motion given
sparse tracking signals, i.e. the orientation and translation
of the headset and two hand controllers. Given a sequence
of N observed joint features p1:N = {pi}Ni=1 ∈ RN×C ,
we aim to predict the whole body poses for the N frames

Figure 3. The architecture of our MLP-based diffusion model.
t is the noising step. x1:N

t denotes the motion sequence of length
N at step t, which is pure Gaussian noises when t = 0. p1:N

denotes the sparse upper body signals of length N . x̂1:N
t denotes

the denoised motion sequence at step t.

y1:N = {yi}Ni=1 ∈ RN×S , where C and S represent the di-
mension of the input/output joint features. In this paper, we
adopt SMPL [34] model to represent the human poses and
follow the setting of [11, 24] to only use the first 22 joints
of SMPL model and ignore the joints on the hands. Thus,
y1:N represents the global orientation of the pelvis and the
relative rotation of each joint.

In the following section, we first introduce a simple
MLP-based network for full-body motion synthesis based
on sparse tracking signals. Then, we show how we further
improve the performance by leveraging the proposed MLP-
based architecture to power the conditional generative dif-
fusion model, termed AGRoL.

3.2. MLP-based Network

Our network is composed of only 4 types of compo-
nents widely used in the deep learning era: fully connected
layer (LN), SiLU [43] activation layer, 1D convolutional
layer [30] with kernel size 1 and layer normalization [5].
Note that the 1D convolutional layer with kernel size 1 can
be also seen as a fully connected layer operating on a dif-
ferent dimension. The details of our network architecture
are demonstrated in Figure 2. Each block of the MLP net-
work contains one convolutional and one fully connected
layer, which is responsible for temporal and spatial infor-
mation merging respectively. We use skip-connections as in
ResNets [20] with Layer Norm [6] as pre-normalization of
the layers. First, we project the input data p1:N to a higher
dimensional latent space using a linear layer. And the last
layer of the network projects from the latent space to the
output space of full-body poses y1:N .

3.3. Diffusion Model

Diffusion model [21, 49] is a type of generative model
which learns to reverse random Gaussian noise added by a
Markov chain in order to recover desired data samples from
the noise. In the forward diffusion process, given a sample

3

motion sequence x1:N
0 ∼ q(x1:N

0) from the data distribu-
tion, the Markovian noising process can be written as:

q(x1:N
t |x1:N

t−1) := N (x1:N
t ;

√
αtx

1:N
t−1, (1− αt)I), (1)

where αt ∈ (0, 1) is constant hyper-parameter and I is the
identity matrix. x1:N

T tend to an isotropic Gaussian distribu-
tion when t → ∞. Then, in the reverse diffusion process, a
model pθ with parameters θ is trained to generate samples
from a Gaussian noise input xT ∼ N (0, I) with a fixed
variance σ2

t . Formally,

pθ(x
1:N
t−1|x1:N

t) := N (x1:N
t−1;µθ(xt, t), σ

2
t I), (2)

where µθ could be reformulated as [21],

µθ(xt, t) =
1

√
αt

(xt −
1− αt

1− ᾱt
ϵθ(xt, t)), (3)

where ᾱt = α1...αt. So the model has to learn to predict
noise ϵθ(xt, t) from xt and timestep t.

In our case, we want to use the diffusion model to gener-
ate sequences of full-body poses conditioned on the sparse
tracking of joint features p1:N . Thus, the reverse diffusion
process becomes conditional: pθ(x1:N

t−1|x1:N
t , p1:N). More-

over, we follow [44] to directly predict the clean body
poses x̂1:N

0 instead of predicting the residual noise ϵθ(xt, t).
We denote by x̂1:N

0 := fθ(x
1:N , p1:N , t) the output of our

model fθ. The objective function is then formulated as

Ldm = Ex1:N
0 ∼q(x1:N

0),t

[
∥ x1:N

0 − fθ(x
1:N , p1:N , t) ∥22

]
(4)

We use the MLP network that we proposed in Section 3.2
as our model fθ that predicts the full-body poses. At time
step t, the motion features x1:N

t and the observed joints fea-
ture p1:N are first passed separately through a fully con-
nected layer to obtain the intermediate features x̄1:N

t and
p̄1:N .

x̄1:N
t = FC0(x

1:N
t) (5)

p̄1:N = FC1(p
1:N) (6)

Then these features are concatenated together and fed to
the MLP network.

x̂1:N
0 = fθ(Concat(x̄1:N

t , p̄1:N), t) (7)

Block-wise Timestep Embedding. In diffusion models,
embedding of the timestep t is usually fed to a network as an
extra input. A common way to add time step embedding is
to concatenate it with the input, similarly to positional em-
bedding used in transformer-based methods [12, 55]. How-
ever, as our network uses MLPs, we find that our model is
not very sensitive to the values of the timestep embedding

which hinders learning the denoising process and results in
predicting motions with severe jittering issues, as shown in
Section 4. To solve this problem, we propose a novel strat-
egy that repetitively injects the time step embedding before
every block of the MLP network. The details of our pipeline
are shown in Figure 3. The timestep embedding is projected
to match the input feature dimensions through a fully con-
nected layer and a SiLU activation layer, then, differently
from [21], which predicts a scale and a shift factor from the
time step embedding for each block, we directly add the ob-
tained feature to the input intermediate activations. As we
show in Sect. 4, the proposed strategy can largely mitigate
the jittering problem and enables synthesis of smooth mo-
tions.

4. Experiments
We train and evaluate our models on AMASS [36]

dataset. We use two settings for training and testing to com-
pare with previous methods. For the first setting, we fol-
low [24] and use three subsets CMU [8], BMLr [53], and
HDM05 [38]. For the second setting, we follow the data
split in [4, 11, 45], which uses CMU [8], MPI Limits [3],
Total Capture [54], Eyes Japn [13], KIT [37], BioMotion-
Lab [53], BMLMovi [15], EKUT [37], ACCAD [1], MPI
Mosh [33] SFU [2] and HDM05 [38] as training data, and
HumanEval [48] and Transition [36] as testing data. In both
settings, we adopt the SMPL [34] human model for the hu-
man pose representation and train our model to predict the
global orientation of the root joint and relative rotation of
the other joints.

4.1. Implementation details

We represent the joint rotations by the 6D reparametriza-
tion [61] due to its simplicity and continuity. Thus, for the
sequences of body poses y1:N ∈ RN×S , S = 22 × 6. And
we set the frame number N = 196 if not stated otherwise.

MLP Network We build our MLP network using 12
blocks (M = 12). All latent features in the MLP network
have the same shape of N × 512. The network is trained
with batch size 256 and Adam optimizer [29]. The learning
rate is set to 3e-4 at the beginning and drops to 1e-5 after
200000 iterations. The weight decay is set to 1e-4 for the
entire training. During inference, we apply our model in an
auto-regressive manner for the longer sequences.

MLP-based Diffusion Model (AGRoL) We keep the
MLP network architecture unchanged in the diffusion
model. To inject the time step embedding used in the dif-
fusion process in the network, in each MLP block, we pass
the time step embedding to a fully connected layer and a
SiLU activation layer [43] and add it with the input feature.
The network is trained with exactly the same hyperparam-
eters as the MLP network, with the exception of using the

4

Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter Upper Jitter Lower Jitter

Final IK 16.77 18.09 59.24 - - - - - - - -
LoBSTr 10.69 9.02 44.97 - - - - - - - -
VAE-HMD 4.11 6.83 37.99 - - - - - - - -
AvatarPoser* 3.08 4.18 27.70 2.12 1.81 7.59 3.34 19.68 14.49 7.36 24.81
MLP (Ours) 2.69 3.93 22.85 2.62 1.89 6.88 3.35 19.61 13.01 9.13 18.61
AGRoL (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 3.36 19.62 7.26 5.88 9.27

GT 0 0 0 0 0 0 0 0 4.00 3.65 4.52

Table 1. Comparison of our approach with state-of-the-art methods on a subset of AMASS dataset following [24]. We report MPJPE
[cm], MPJRE [deg], MPJVE [cm/s], Jitter [102m/s3] metrics. AGRoL achieves the best performance on MPJPE, MPJRE and MPJVE,
and outperforms other models, especially on the Lower PE(Lower body Position Error) and Jitter metrics, which shows that our model
generates accurate lower body movement and smooth motions.

Method MPJRE MPJPE MPJVE Root RE Jitter

VAE-HMD† [11] - 7.45 - - -
HUMOR† [45] - 5.50 - - -
FLAG† [4] - 4.96 - - -

AvatarPoser* 4.70 6.38 34.05 33.72 10.21
MLP (Ours) 4.33 6.66 33.87 33.58 21.74
AGRoL (Ours) 4.30 6.17 24.40 33.33 8.32

GT 0 0 0 0 2.93

Table 2. Comparison of our approach with state-of-the-art meth-
ods on AMASS dataset following the protocol of [4, 11, 45]. We
report the MPJPE [cm], MPJRE [deg], MPJVE [cm/s], and Jitter
[102m/s3] metrics. The * denotes that we retrained the Avatar-
Poser using public code. † denotes methods that use pelvis loca-
tion and rotation during inference, which are not directly compa-
rable to our method, as we assume that the pelvis information is
not available during the training and the testing. The best results
are in bold, and the second-best results are underlined.

AdamW [35] as optimizer. The sampling step is set to 1000
with a cosine noise schedule [40] during the training. To
accelerate the inference speed, instead of doing 1000 sam-
pling steps during the inference. We use the DDIM [50]
technique to speed up the sampling and only sample 5 steps
during the inference.

All experiments are conducted with Pytorch frame-
work [41] on a single NVIDIA V100 graphics card.

4.2. Evaluation Metrics

We use in total 10 metrics to evaluate our methods fol-
lowing previous works [11, 24, 45, 59]. The metrics can be
divided into three types. The first type is rotation-related
metrics, which includes the MPJRE (Mean Per Joint Rota-
tion Error [degrees]) and Root RE (Root Rotation Error [de-
grees]), which measure the average relative rotation error of
all joints and the rotation error of the root joint. The second
type is velocity-related metrics including MPJVE (Mean
Per Joint Velocity Error[cm/s]) and Jitter, MPJVE (Mean
Per Joint Velocity Error[cm/s]) measures the average veloc-
ity error of all joints, Jitter measures the mean jerk (time
derivative of acceleration) of all body joints in the global
space in 102m/s [59], which reflects the smoothness of the
motion. The third type is position-related metrics, which in-

cludes all the rest metrics. Specifically, MPJPE(Mean Per
Joint Position Error[cm]) measures the average position er-
ror of all joints. Root PE evaluates the position error of the
root. Hand PE measures the average position error for the
two hands. Upper PE and Lower PE evaluate the average
position error for joints in the upper body and lower body
respectively.

4.3. Evaluation Results

We evaluate our method on AMASS dataset with two
different protocols. As shown in Table 1 and Table 2, our
MLP network solely can surpass most previous methods
and achieves comparable results with the state-of-the-art
method [24], which shows the effectiveness of our proposed
simple network. With the help of the diffusion process,
our AGRoL model further improves the performance of the
MLP network and surpasses all previous methods. More-
over, the proposed AGRoL model significantly reduces the
Jitter error, which means our generated motion is much
smoother compared to the others. We visualize some ex-
amples in Figure 4 and Figure 5. In Figure 4 we show the
comparison of the reconstruction error between AGRoL and
AvatarPoser. In Figure 5, by visualizing the pose trajecto-
ries, we show the comparison of the smoothness between
AGRoL and AvatarPoser, furthermore, the foot sliding is-
sues can also be viewed by
4.4. Ablation Studies

In this section, we ablate our methods on AMASS
dataset. We first compare our proposed MLP network with
other networks in the case of the diffusion model in Sec-
tion 4.4.1 to show the effectiveness of the MLP network.
Then we ablate the importance of time step embedding for
our diffusion model and ablate different strategies to add
time step embedding in Section 4.4.2. We study the influ-
ence of extra losses in Section 4.4.3 and the number of sam-
pling steps we used during the inference in Section 4.4.4.

4.4.1 Architecture
To validate the effectiveness of our proposed MLP net-
work in a diffusion model setup, we replace our MLP net-
work with other types of networks and compare their re-

5

Figure 4. Qualitative comparison between AGRoL (lower) and AvatarPoser (upper) on test sequences from AMASS dataset. We visualize
the predicted skeleton and human body meshes in the figures. The skeletons in green denote the motion predicted using our method. The
skeletons in red denote the motion predicted using AvatarPoser [24]. The skeletons in blue denote the ground truth motion. As shown in
the figure, our predicted motion is more accurate compared to the predicted motion of AvatarPoser.

Method #Params MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter

AvatarPoser 2.89M 4.31 6.71 27.65 1.47 2.56 12.69 6.69 21.36 9.57
AvatarPoser-Large 7.63M 2.86 4.04 21.90 1.29 1.62 7.53 3.64 19.75 9.94
Transformer [52] 7.03M 3.01 4.41 20.33 2.97 2.13 7.71 3.88 19.70 6.45
AGRoL (Ours) - pred noise 7.51M 5.41 8.88 28.67 4.38 3.91 16.06 8.76 22.78 9.80
AGRoL (Ours) 7.51M 2.66 3.71 18.59 1.31 1.55 6.84 3.36 19.62 7.26

Table 3. Ablation study of network architectures in our diffusion model. We replace our MLP network with other networks and train them
in the diffusion model fashion with the same hyperparameters. Our MLP network outperforms all other networks on most of the metrics.
The AvatarPoser-Large denotes the network with the same architecture as AvatarPoser [24] but with more transformer layers. The best
results are in bold, and the second-best results are underlined.

sults. We mainly consider two architectures, the network
from AvatarPoser [24] and the transformer network [55]. In
the case of transformer networks, instead of repetitively in-
jecting the time positional embedding to every block, we
concatenate the time positional embedding with the input
features x̄1:N and p̄1:N before being fed to the transformer
layers. We apply the same strategy to the network of Avatar-
Poser as this model also uses transformer blocks in the early
stage. To establish a fair comparison to the AvatarPoser ar-
chitecture, we train two versions of this model, one uses
the same setting as in the original paper, and the other with
more transformer layers to obtain a comparable size to our
proposed model. We also perform the same experiment for
the transformer network. As shown in Table 3, our pro-
posed MLP network achieves superior results compared to
these networks when trained in the diffusion fashion.

4.4.2 Diffusion Time Step Embedding

In this section, we study the importance of time step em-
bedding. Time step embedding is often used in diffusion-
based models [9, 60] to indicate the noising step t during
the diffusion process. We use the sinusoidal position em-
bedding [55] as the time step embedding. We first show the

results of AGRoL without time step embedding in Table 4,
the network can still achieve decent performance on metrics
related to position errors and rotation errors, while the per-
formance on metrics related to velocity errors (MPJVE and
Jitter) are severely degraded, which is reasonable, as the
time step embedding is missing, the model does not know
which step it locates thus can not denoise properly.

We then ablate three strategies for applying the time step
embedding in our network: Add, Concat, and RepIn. In
contrast to the RepIn(Repetitive Injection), which repeti-
tively passes the time step embedding through a linear layer
and injects them into every block of the MLP network, in
Add and Concat, the time step embedding is only used once
at the beginning of the network. Here, the time step em-
bedding is first passed through a fully connected layer and
a SiLU activation layer to obtain a latent feature u ∈ R1×K

before being fed to the network. In particular, Add sums up
the u and the input features x̄1:N and p̄1:N , the output of
the network is therefore x̂i

t = fθ(Concat(x̄i, p̄i) + u), i ∈
[1, .., N]. Concat concatenates the u with the input fea-
tures x̄1:N and p̄1:N , thus, the output of the network is
x̂1:N
t = fθ(Concat(x̄1:N , p̄1:N , u)). RepIn represents our

strategy for adding the time step embedding. Specifically,

6

Figure 5. Motion trajectory visualization. We visualize the trajectories of the predicted motion in the figures. The images on the left show
the ground truth motion with blue skeletons. The images in the middle show the predicted motion of AGRoL with green skeletons. The
images on the right show the predicted motion of AvatarPoser with red skeletons. The light purple vectors in the figures denote the velocity
vector of each joint. By visualizing the trajectories of the motion, the jittering issues and foot sliding issues can be better viewed from the
figures. Smooth motion tends to have regular pose trajectories with the velocity vector of each joint changing steadily. The density of the
pose trajectories will change along with the walking speed, the trajectories will become denser when the person slows down. Thus, if there
is no foot sliding, we should occasionally see the change of density in pose trajectories.

Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter

w/o Time 2.68 3.63 22.80 1.36 1.54 6.67 3.25 19.38 15.23
Add 2.80 4.01 23.60 1.40 1.64 7.44 3.59 19.61 15.02
Concat 2.72 3.79 21.99 1.31 1.57 7.00 3.43 19.66 13.30
RepIn (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 3.36 19.62 7.26

Table 4. Ablation of the time step embedding. w/o Time denotes the results of AGRoL without time step embedding. Add sums up the
features from time step embedding with the input features. Concat concatenates the features from time step embedding with the input
features. In Add and Concat, the time step embedding is only fed once at the top of the network. RepIn (Repetitive Injection) denotes our
strategy to inject the time step embedding into every block of the network. As shown in the table, the time step embedding mainly affects
the MPJVE and Jitter metrics. Without time step embedding or adding the time step embedding improperly will result in high errors for
velocity-related metrics, causing severe jittering issues.

for each block of the MLP network, we project the time
step embedding separately through a fully connected layer
and a SiLU activation layer, then we add the obtained fea-
ture uj , j ∈ [0, ..M] to the input features of its correspon-
dent block. As shown in Table 4, our proposed strategy
can largely improve the velocity-related metrics and allevi-
ate the jittering issues and generate smooth motion.

4.4.3 Additional Losses
In addition to Ldm, we explore three other geometric losses
during the training like previous works [42, 47]:

Lpos =
1

N

N∑
i=1

∥ FK(yi0)− FK(x̂i
0) ∥22 (8)

Lvel =
1

N−1

∑N−1
i=1 ∥ (FK(yi+1

0)− FK(yi0))−
(FK(x̂i+1

0)− FK(x̂i
0)) ∥22

(9)

Lfoot =
1

N − 1

N−1∑
i=1

∥ (FK(yi0)− FK(x̂i
0)) ·mi ∥22, (10)

where FK(·) is the forward kinematics function which takes
local human joint rotations as input and outputs these joint
positions in the global coordinate space. Lpos represents
the position loss the of joints, Lvel represents the velocity
loss of the joints in 3D space and Lfoot represents the foot
contact loss, which enforces static feet when there is no feet
movement. mi ∈ {0, 1} denotes the binary mask and equals
to 0 when the feet joints have zero velocity.

We train our model with different combinations of ex-
tra losses, setting their weights equal to 1. As shown in
Table 5, in contrast to previous works [24], the extra ge-
ometric losses do not bring additional performance to our
diffusion model. Our model can achieve good results when

7

Lpos Lvel Lfoot MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter

2.66 3.71 18.59 1.31 1.55 6.84 3.36 19.62 7.26
✓ 2.83 4.07 20.66 1.58 1.70 7.49 3.66 19.74 9.20

✓ 2.81 4.06 21.85 1.75 1.73 7.43 3.72 19.77 12.16
✓ ✓ 2.73 3.92 20.55 1.72 1.68 7.15 3.52 19.59 10.16
✓ ✓ ✓ 2.89 4.16 20.58 1.73 1.76 7.63 3.81 19.85 8.98

Table 5. Ablation of the additional losses used during training.

Sampling Steps MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter

2 3.17 4.93 20.03 2.19 2.12 8.98 4.61 20.29 6.90
5 2.66 3.71 18.59 1.31 1.55 6.84 3.36 19.62 7.26

10 2.68 3.69 19.55 1.39 1.55 6.77 3.31 19.61 7.51
100 2.84 3.93 23.50 1.62 1.67 7.19 3.51 19.84 9.64

1000 2.97 4.14 27.25 1.82 1.78 7.55 3.66 20.10 12.79

Table 6. Ablation of the # sampling steps during inference. The input and output length is fixed to N = 196.

Methods MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter

AvatarPoser 5.69 10.34 572.58 8.98 5.49 17.34 8.83 27.27 762.79
MLP 5.37 10.76 107.82 12.43 6.48 16.94 8.74 25.38 92.51
Transformer 4.44 8.62 135.99 7.29 5.28 13.44 10.32 21.37 147.09
AGRoL(Ours) 4.20 6.38 96.85 5.27 3.86 10.03 6.67 20.90 33.35

Table 7. Robustness of the models to joints tracking loss. We evaluate the methods by randomly masking a portion(10%) of input frames
during the inference on AMASS dataset. We test each method 5 times and take the average results. AGRoL achieves the best performance
among all the methods, which shows the robustness of our method against joint tracking loss.

trained solely with the denoising objective function Eq.(4).
We believe the reason that extra losses do not improve the
performance of AGRoL is due to the inner working of the
reverse diffusion process, which does not interplay with ex-
tra geometrical losses without proper tuning.

4.4.4 Number of Sampling Steps during Inference

In Table 6 we ablate the number of sampling steps that we
used during the inference. We use the same model trained
with 1000 sampling steps and test with a subset of steps in
the diffusion process. We use 5 DDIM sampling steps, al-
lowing our model to achieve superior performance on most
of the metrics while being fast.

4.5. Robustness to Tracking Loss

In this section, we study the robustness of our model
against tracking loss of the input joints. In practice, it is a
common problem in VR applications that the joint tracking
signal is lost on some frames, due to hands or controllers
going out of the field of view, creating temporal discon-
tinuity in the inputs. We evaluate the performance of all
available methods on tracking loss by randomly masking
10% of input frames during the inference. The results are
shown in Table 7. The performance of all current methods
is largely degraded, which indicates that they are not ro-
bust against the tracking loss problem. In comparison, our
network accuracy is less degraded which tends to indicate
that our network can accurately model motion given highly
sparse tracking inputs.

4.6. Inference Speed

Our AGRoL model achieves real-time inference speed
due to a lightweight architecture combined with DDIM
sampling. A single AGRoL generation, that runs 5 DDIM
sampling steps, produces 196 output frames in 35ms on
a single NVIDIA V100 GPU. Our predictive MLP model
takes 196 frames as input and predicts a final result of 196
frames in a single forward pass. It is even faster and requires
only 6ms on a single NVIDIA V100 GPU.

5. Conclusion and Limitations

In this paper, we introduced a simple yet efficient MLP-
based architecture with carefully designed building blocks
which achieves competitive performance on the full-body
motion synthesis task. Then we proposed AGRoL, a condi-
tional diffusion model for full-body motion synthesis based
on sparse tracking signal. AGRoL leverages a simple yet
efficient conditioning scheme for structured human mo-
tion data. We show that our lightweight diffusion-based
model generates realistic and smooth human motions while
achieving real-time inference speed, making it suitable for
online AR/VR applications. A notable limitation of our
and related approaches is sometimes occurring floor pen-
etration artefacts. The future work would be investigating
this problem and incorporating extra physical constraints in
the model.

8

References
[1] Osu accad. https://accad.osu.edu/research/

motion-lab/system-data. 4
[2] Sfu motion capture database. https://mocap.cs.

sfu.ca/. 4
[3] Ijaz Akhter and Michael J Black. Pose-conditioned joint an-

gle limits for 3d human pose reconstruction. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 1446–1455, 2015. 4

[4] Sadegh Aliakbarian, Pashmina Cameron, Federica Bogo,
Andrew Fitzgibbon, and Thomas J Cashman. Flag: Flow-
based 3d avatar generation from sparse observations. In
CVPR, pages 13253–13262, 2022. 2, 4, 5

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 3

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 3

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 3

[8] Carnegie Mellon University. CMU MoCap Dataset. 4
[9] Prafulla Dhariwal and Alexander Nichol. Diffusion mod-

els beat gans on image synthesis. NeurIPS, 34:8780–8794,
2021. 3, 6

[10] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real nvp. ICLR, 2016. 2

[11] Andrea Dittadi, Sebastian Dziadzio, Darren Cosker, Ben
Lundell, Thomas J Cashman, and Jamie Shotton. Full-body
motion from a single head-mounted device: Generating smpl
poses from partial observations. In ICCV, pages 11687–
11697, 2021. 1, 2, 3, 4, 5

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 4

[13] Eyes, JAPAN Co. Ltd. Eyes, Jappan. 4
[14] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-

tendra Malik. Recurrent network models for human dynam-
ics. In ICCV, pages 4346–4354, 2015. 3

[15] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad
Kording, Douglas James Cook, Gunnar Blohm, and Niko-
laus F Troje. Movi: A large multipurpose motion and video
dataset. arXiv preprint arXiv:2003.01888, 2020. 4

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 3

[17] Liang-Yan Gui, Yu-Xiong Wang, Xiaodan Liang, and
José MF Moura. Adversarial geometry-aware human motion
prediction. In ECCV, pages 786–803, 2018. 3

[18] Wen Guo, Yuming Du, Xi Shen, Vincent Lepetit, Alameda-
Pineda Xavier, and Moreno-Noguer Francesc. Back to mlp:

A simple baseline for human motion prediction. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2023. 2

[19] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe
Yearsley, and Taku Komura. A recurrent variational autoen-
coder for human motion synthesis. In British Machine Vision
Conference, 2017. 3

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 33:6840–6851, 2020. 1,
2, 3, 4, 11

[22] Yinghao Huang, Manuel Kaufmann, Emre Aksan, Michael J
Black, Otmar Hilliges, and Gerard Pons-Moll. Deep iner-
tial poser: Learning to reconstruct human pose from sparse
inertial measurements in real time. ACM TOG, 37(6):1–15,
2018. 1, 2

[23] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh
Saxena. Structural-rnn: Deep learning on spatio-temporal
graphs. In CVPR, June 2016. 3

[24] Jiaxi Jiang, Paul Streli, Huajian Qiu, Andreas Fender, Larissa
Laich, Patrick Snape, and Christian Holz. Avatarposer: Ar-
ticulated full-body pose tracking from sparse motion sens-
ing. ECCV, 2022. 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14

[25] Yifeng Jiang, Yuting Ye, Deepak Gopinath, Jungdam Won,
Alexander W Winkler, and C Karen Liu. Transformer inertial
poser: Attention-based real-time human motion reconstruc-
tion from sparse imus. arXiv preprint arXiv:2203.15720,
2022. 1

[26] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, pages 4401–4410, 2019. 3

[27] Manuel Kaufmann, Yi Zhao, Chengcheng Tang, Lingling
Tao, Christopher Twigg, Jie Song, Robert Wang, and Ot-
mar Hilliges. Em-pose: 3d human pose estimation from
sparse electromagnetic trackers. In ICCV, pages 11510–
11520, 2021. 1

[28] Jihoon Kim, Jiseob Kim, and Sungjoon Choi. Flame: Free-
form language-based motion synthesis & editing. arXiv
preprint arXiv:2209.00349, 2022. 3

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[30] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541–551,
1989. 3

[31] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Con-
volutional sequence to sequence model for human dynamics.
In CVPR, pages 5226–5234, 2018. 3

[32] Ruilong Li, Shan Yang, David A Ross, and Angjoo
Kanazawa. Ai choreographer: Music conditioned 3d dance
generation with aist++. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 13401–
13412, 2021. 12

9

https://accad.osu.edu/research/motion-lab/system-data
https://accad.osu.edu/research/motion-lab/system-data
https://mocap.cs.sfu.ca/
https://mocap.cs.sfu.ca/

[33] Matthew Loper, Naureen Mahmood, and Michael J Black.
Mosh: Motion and shape capture from sparse markers. ACM
Transactions on Graphics (ToG), 33(6):1–13, 2014. 4

[34] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM TOG, 34(6):1–16, 2015. 3, 4,
12

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[36] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of
motion capture as surface shapes. In ICCV, pages 5442–
5451, Oct. 2019. 2, 4, 11, 12, 14

[37] Christian Mandery, Ömer Terlemez, Martin Do, Nikolaus
Vahrenkamp, and Tamim Asfour. The kit whole-body hu-
man motion database. In 2015 International Conference on
Advanced Robotics (ICAR), pages 329–336. IEEE, 2015. 4

[38] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger,
and A. Weber. Documentation mocap database HDM05.
Technical Report CG-2007-2, Universität Bonn, June 2007.
4

[39] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 2, 3

[40] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 1, 2, 5

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
5

[42] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In CVPR, pages 10985–10995, 2021. 7

[43] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Swish: a self-gated activation function. arXiv preprint
arXiv:1710.05941, 7(1):5, 2017. 3, 4

[44] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 4, 11

[45] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J Guibas. Humor: 3d human
motion model for robust pose estimation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 11488–11499, 2021. 4, 5

[46] Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In International conference on ma-
chine learning, pages 1530–1538. PMLR, 2015. 1

[47] Mingyi Shi, Kfir Aberman, Andreas Aristidou, Taku Ko-
mura, Dani Lischinski, Daniel Cohen-Or, and Baoquan
Chen. Motionet: 3d human motion reconstruction from

monocular video with skeleton consistency. ACM TOG,
40(1):1–15, 2020. 7

[48] Leonid Sigal, Alexandru O Balan, and Michael J Black. Hu-
maneva: Synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated human mo-
tion. International journal of computer vision, 87(1):4–27,
2010. 4

[49] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
1, 2, 3

[50] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 5

[51] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Za-
man. Local motion phases for learning multi-contact charac-
ter movements. ACM TOG, 39(4):54–1, 2020. 3

[52] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Amit H Bermano, and Daniel Cohen-Or. Human motion dif-
fusion model. arXiv preprint arXiv:2209.14916, 2022. 3,
6

[53] Nikolaus F. Troje. Decomposing biological motion: A
framework for analysis and synthesis of human gait patterns.
Journal of Vision, 2(5):2–2, Sept. 2002. 4

[54] Matthew Trumble, Andrew Gilbert, Charles Malleson,
Adrian Hilton, and John Collomosse. Total capture: 3d
human pose estimation fusing video and inertial sensors.
In Proceedings of 28th British Machine Vision Conference,
pages 1–13, 2017. 4

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 4, 6

[56] Zhiyong Wang, Jinxiang Chai, and Shihong Xia. Combining
recurrent neural networks and adversarial training for human
motion synthesis and control. IEEE transactions on visual-
ization and computer graphics, 27(1):14–28, 2019. 3

[57] Alexander Winkler, Jungdam Won, and Yuting Ye. Quest-
sim: Human motion tracking from sparse sensors with sim-
ulated avatars. ACM TOG, 2022. 2

[58] Dongseok Yang, Doyeon Kim, and Sung-Hee Lee. Lobstr:
Real-time lower-body pose prediction from sparse upper-
body tracking signals. In Comput. Graph. Forum, volume 40,
pages 265–275. Wiley Online Library, 2021. 1, 2

[59] Xinyu Yi, Yuxiao Zhou, Marc Habermann, Soshi Shimada,
Vladislav Golyanik, Christian Theobalt, and Feng Xu. Phys-
ical inertial poser (pip): Physics-aware real-time human mo-
tion tracking from sparse inertial sensors. In CVPR, pages
13167–13178, 2022. 5

[60] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. arXiv preprint arXiv:2208.15001, 2022. 3, 6

[61] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In CVPR, pages 5745–5753, 2019. 4

10

We first show extra ablation experiments of our method on AMASS [36] dataset following the protocol proposed in [24].
Then we show extra qualitative comparison between our method and the state-of-the-art method [24].

A. Extra Ablation Experiments
Sampling Steps In Table I we ablate the number of sampling steps T during training. Surprisingly, even when training
with merely 10 sampling steps, the model can achieve decent performance. Although we notice that the model converges to
a worse local minimum when only a few sampling steps is used. To achieve the best results, more sampling steps is required.

Input/Output length The proposed AGRoL model takes a sequence of sparse tracking signals as input and predicts the
full body motion of the same length. In Table II we ablate the input & output length N of the AGRoL model. Our model
benefits from longer input sequences, especially decreasing the mean per joint velocity error and jitter. But the performance
saturates after the length of N = 196. In Table III we further compare our method with AvatarPoser [24] by varying its input
length. Note that with longer input sequences our model can achieve significantly lower errors on velocity-related metrics
like MPJVE and jitter, while AvatarPoser still has large MPJVE and jitter even with longer input length, thus failing to fully
leverage the temporal information to generate smooth motions.

Sampling Steps MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Jitter

10 2.69 3.70 19.41 1.47 1.55 6.80 7.63
100 2.65 3.62 18.74 1.33 1.52 6.66 6.71
1000 (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 7.26

Table I. Ablation of the number of sampling steps during training the AGRoL model. The results become worse when the number of
sampling steps is too small. More sampling steps is beneficial during training the network.

Input & Output Length MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Jitter

41 2.59 3.64 23.24 1.28 1.50 6.73 13.67
98 2.61 3.70 20.71 1.58 1.57 6.76 10.59
196 (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 7.26
256 2.81 3.81 19.05 1.27 1.57 7.03 7.76

Table II. Ablation of the input & output length of the AGRoL model. Our model can benefit from larger input length.

Methods Input Length MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Jitter

AvatarPoser [24] 41 3.08 4.18 27.70 2.12 1.81 7.59 14.49
AGRoL 41 2.59 3.64 23.24 1.28 1.50 6.73 13.67

AvatarPoser [24] 196 3.05 4.20 28.71 1.61 1.70 7.82 16.96
AGRoL (Ours) 196 2.66 3.71 18.59 1.31 1.55 6.84 7.26

Table III. Comparison between AGRoL and AvatarPoser [24] while varying the number of input frames. Our method can benefit from
longer inputs and generate smoother motion. In contrast, AvatarPoser fails to gain consistent improvement from longer input sequences
and even degrades in some metrics, including MPJVE, Lower PE, and Jitter.

Predicting noise Our diffusion model AGRoL follows [44] and directly predicts the clean signal x̂1:N
0 in contrast to the

original Denoising Diffusion Probabilistic Model (DDPM) formulation [21], where the model predicts residual noise ϵθ(xt, t)
at every step. In this subsection, we further discuss the experiment presented in Table 3 of the main paper, where we
implemented a version of AGRoL model (“AGRoL - pred noise”) that predicts the residual noise ϵθ(xt, t). Similar to [44],
we also find it better to predict the unnoised x̂1:N

0 directly, which is demonstrated by the results in Table IV. Since our simple
MLP network (see Sect. 3.2 of the main paper) can already produce reasonable estimations of the full body motion using
only one forward pass (see Table 1 in the main paper), we hypothesize that the DDPM formulation of Ramesh et al. [44]
allows to exploit the full capacity of the network at every sampling step, in contrast to the original formulation of [21].

11

Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter

AGRoL - pred noise ϵθ 5.41 8.88 28.67 4.38 3.91 16.06 8.76 22.78 9.80
AGRoL (Ours) 2.66 3.71 18.59 1.31 1.55 6.84 3.36 19.62 7.26

Table IV. Ablating different formulations of the diffusion model: Predicting clean signal directly (Ours) vs predicting noise ϵθ(xt, t). The
AGRoL model that learns to predict clean body motion at every diffusion step is substantially better in every metric.

Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Root RE Jitter

AvatarPoser 4.37 9.11 97.24 4.31 3.32 17.47 8.11 8.03 65.18
MLP (Ours) 3.63 7.33 74.90 3.86 2.69 14.03 5.48 6.85 47.16
AGRoL (Ours) 3.56 6.83 65.58 2.17 2.04 13.74 4.91 6.82 41.95

GT 0 0 0 0 0 0 0 0 30.48

Table V. Comparison of our approach with others on AIST++ [32] dataset.

B. Extra Datasets
In addition to the AMASS [36] dataset, we also evaluate the performance of our approach on AIST++ [32] dataset.

AIST++ dataset contains in total 5.1 hours of dancing movements performed by professional dancers. The dataset has
10 genres of dances, including some dances containing complicated movements like breakdancing, jazz etc. We follow
the train/test splits proposed in [32]. The global rotation and translation of the hands and head are calculated using the
SMPL human model [34] with the provided model parameters. Compared to the AMASS dataset, which contains mostly
everyday life motions, the motions in the AIST++ dataset are much more diverse and challenging. As shown in Table V, the
AGRoL achieves superior performance in all the metrics and produces smoother motions compared to the AvatarPoser and
the predictive MLP model. While there is still room for improvement on such a challenging dataset, the proposed AGRoL
method significantly reduces the MPJVE, Jitter and lower body positional error (Lower PE) compared to the AvatarPoser.

C. Extra Qualitative Results
In Figure I we show extra qualitative comparisons between our method and AvatarPoser [24]. Please refer to our video in

the supplementary material for more qualitative results. As shown in the video, our method reconstructs the full body poseses
more accurately, it can generate smoother motions and alleviate the jittering issue compared to AvatarPoser.

We also demonstrate failure cases for the proposed AGRoL model in Figure II. We can see that our method fails when we
test it on irregular poses, that were not well covered in the training set, or when the lower body pose does not have strong
correlation with the upper body. For example, during the break dance motion (Fig. II, bottom row) the upper body may stay
static, while legs move which makes it very challenging to predict legs accurately. Increasing the size and diversity of the
training set plus incorporating extra physical or geometrical priors to prevent floor penetration could be a potential solution
for the failure cases. We plan to further investigate it in future work.

12

Figure I. Qualitative comparison on test sequences from AMASS dataset: (left) GT, (middle) AvatarPoser, (right) AGRoL. We visualize
the predicted skeleton and human body meshes in the figures. We visualize the predicted skeletons and human body meshes in the figures.
The skeletons in blue denote the ground truth, in red – predicted by AvatarPoser [24], and in green – predicted by our method.As shown in
the figure, our predicted motion is more accurate compared to the predicted motion of AvatarPoser. RGB axes illustrate the location and
orientation of the head and hands provided as input to the models. Please refer to our video for more qualitative results.

13

Figure II. Failure test cases: (left) GT, (middle) AvatarPoser, (right) AGRoL. We visualize the predicted skeletons and human body
meshes in the figures. The models were trained on the subset of AMASS [36] following the protocol of [24]. The skeletons in blue denote
the ground truth, in red – predicted by AvatarPoser [24], and in green – predicted by our method. RGB axes illustrate the location and
orientation of the head and hands provided as input to the models. We can see that our method fails (inaccurate poses, floor penetration)
when we test it (a) on irregular poses, that were not very common in the training set, or (b) when the lower body pose does not have strong
correlation with the upper body as we see in the break dance motion in the bottom row. Increasing the diversity of training motions and
incorporating extra physical constraints may help to address such failure cases.

14

	. Introduction
	. Related Work
	. Motion Tracking from Sparse Tracking Inputs
	. Diffusion Models and Motion Synthesis
	. Human Motion Synthesis

	. Method
	. Problem Formulation
	. MLP-based Network
	. Diffusion Model

	. Experiments
	. Implementation details
	. Evaluation Metrics
	. Evaluation Results
	. Ablation Studies
	Architecture
	Diffusion Time Step Embedding
	Additional Losses
	Number of Sampling Steps during Inference

	. Robustness to Tracking Loss
	. Inference Speed

	. Conclusion and Limitations
	. Extra Ablation Experiments
	. Extra Datasets
	. Extra Qualitative Results

