
Moving Fast with Software Verification

Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim

Purbrick, and Dulma Rodriguez

Facebook Inc.

Abstract. For organisations like Facebook, high quality software is im-
portant. However, the pace of change and increasing complexity of mod-
ern code makes it difficult to produce error-free software. Available tools
are often lacking in helping programmers develop more reliable and se-
cure applications.

Formal verification is a technique able to detect software errors statically,
before a product is actually shipped. Although this aspect makes this
technology very appealing in principle, in practice there have been many
difficulties that have hindered the application of software verification in
industrial environments. In particular, in an organisation like Facebook
where the release cycle is fast compared to more traditional industries,
the deployment of formal techniques is highly challenging.

This paper describes our experience in integrating a verification tool
based on static analysis into the software development cycle at Facebook.

1 Introduction

This is a story of transporting ideas from recent theoretical research in reason-
ing about programs into the fast-moving engineering culture of Facebook. The
context is that most of the authors landed at Facebook in September of 2013,
when we brought the INFER static analyser with us from the verification startup
Monoidics [4, 6]. INFER itself is based on recent academic research in program
analysis [5], which applied a relatively recent development in logics of programs,
separation logic [10]. As of this writing INFER is deployed and running continu-
ously to verify select properties of every code modification in Facebook’s mobile
apps; these include the main Facebook apps for Android and iOS, Facebook
Messenger, Instagram, and other apps which are used by over a billion people
in total.

In the process of trying to deploy the static analyser the most important issue
we faced was integration with Facebook’s software development process. The
software process at Facebook, and an increasing number of Internet companies,
is based on fast iteration, where features are proposed and implemented and
changed based on feedback from users, rather than wholly designed at the outset.
The perpetual, fast, iterative development employed at Facebook might seem
to be the worst possible case for formal verification technology, proponents of
which sometimes even used to argue that programs should be developed only



after a prior specifications had been written down. But we found that verification
technology can be effective if deployed in a fashion which takes into account when
and why programmers expect feedback. INFER runs on every “diff”, which is a
code change submitted by a developer for code review. Each day a number of
bugs are reported on diffs and fixed by developers, before the diff is committed
and eventually deployed to phones. Technically, the important point is that
INFER is a compositional1program analysis, which allows feedback to be given
to developers in tune with their flow of incremental development.

2 Facebook’s Software Development Model

Perpetual development. As many internet companies Facebook adopts a contin-
uous development model [9]. In this model, software will never be considered
a finished product. Instead features are continuously added and adapted and
shipped to users. Fast iteration is considered to support rapid innovation. For
its web version, Facebook pushes new changes in the code twice a day.

This perpetual development model fits well with the product and its use-
case. It would be impossible to foresee a-priori how a new feature would be used
by the hundreds of million of people using Facebook services every day. The
different uses influence the way a new feature is shaped and further developed.
In other words, Facebook prioritises people using the product rather than an
initial design proposed in some fixed specification by architects at the company.

Perpetual development on mobile versus web. In the last couple of years, Face-
book has gone through a shift. From being a web-based company Facebook tran-
sitioned to embrace mobile. Use of its mobile applications on the Android and
iOS platforms has increased substantially, reflecting a global trend for consumers
of Internet content.

For mobile applications, Facebook applies a continuous development model
as well. However there are some fundamental differences w.r.t. web development.
Although the development cycle is the same, the deployment is fundamentally
different. In web development the software runs on Facebook servers in our
datacenters, and in the client on code downloaded from our servers by a browser.
New code can, therefore, be deployed directly to the servers, which then serves
the users (including by serving them Javascript); new versions of the software
are deployed without the users getting involved.

On the contrary, mobile applications run on users’ phones. Therefore, it is
up to the user to update to a new version of the app implementing new features
or fixing existing bugs. Facebook can only distribute a new version to the Apple

1 A compositional analysis is one in which the analysis result of a composite program
is computed from the results of its parts. As a consequence, compositional analyses
can run on incomplete programs (they are not whole-program analyses), are by
their nature incremental, scale well, and tolerate imprecision on parts of code that
are difficult to analyse [5].



App Store or Google Play, but Facebook is not anymore in control of which
version a user is running on her mobile device.

This difference has dramatic impact on bug fixes. On web when a bug is
discovered a fix can be shipped to the servers as part of a periodic release or in
exceptional cases immediately via a “hotfix”. And on the web mechanisms exist
to automatically update the JavaScript client software running in the browser,
allowing fixes to quickly and automatically be deployed as soon as they have
been developed. On current mobile platforms updates must typically be explic-
itly authorised by the device owner, so there is no guarantee that a fix will be
deployed in a timely manner, if ever, once it is developed.

The sandboxes provided by modern web browsers also make it easier to
isolate the effects of a bug in one part of the interface from another, allowing the
experience to gracefully degrade in the face of runtime errors. Current mobile
platforms typically provide a model closer to processes running on a traditional
operating system and will often terminate the entire app when a runtime error
is detected in any part of it. This lower fault tolerance increases the potential
severity of bugs which would have a minor impact on the web.

Thus mobile development at Facebook presents a strong dichotomy: on one
hand it employs continuous development; on the other hand it could benefit from
techniques like formal verification to prevent bugs before apps are shipped.

When the INFER team landed at Facebook there was a well developed ver-
sion of INFER for C programs, and a rudimentary version for Java. Facebook
has considerable amounts of C++, Javascript, php, objective-C and Java code,
but less development is being done in pure C. This, together with the above
discussion determined our first targets, Android and iPhone apps.

3 Software Verification in the Perpetual Development
Era

As we have seen, Facebook employs a perpetual development model both for
web and mobile software. While in such an environment it is difficult to envisage
requiring specs to always be written before programming starts, a common ap-
proach in static analysis has been to work towards the implicit specification that
(certain) runtime errors cannot occur. Of course, when an assertion is placed
into code it can help the analysis along. In INFER’s case at the beginning the
implicit safety properties were null pointer exceptions and resource leaks for
Android code, and additionally memory leaks for iOS.

Unlike many other software companies, Facebook does not have a separate
quality assurance (QA) team or professional testers. Instead, engineers write
(unit) tests for their newly developed code. But as a part of the commit and
push process there is a set of regression tests that are automatically run and
the code must pass them before it can be pushed. This juncture, when diffs
are reviewed by humans and by tests, is a key point where formal verification
techniques based on static analysis can have impact.



There are several features that the verification technique should offer to be
adopted in such different environment:

– Full automation and integration. The technique should be push-button and
integrated into the development environment used by programmers.

– Scalability. The technique scales to millions of lines of code.
– Precision. Developers’ time is an important resource. An imprecise tool pro-

viding poor results would be seen as a waste of that resource.
– Fast Reporting. The analysis should not get in the way of the development

cycle; therefore it has to report to developers in minutes, before programmers
commit or make further changes. As we will see in Section 5, fast reporting is
not only about analysing code fast, but it also involves good integration with
the existing infrastructure where many other tasks need to be performed.

These requirements are challenging. In our context we are talking about
analysis of large Android and iPhone apps (millions of lines of code are involved
in the codebases). The analysis must be able to run on thousands of code diffs
in a day, and it should report in under 10 minutes on average to fit in with the
developer workflow. There are intra-procedural analyses and linters which fit
these scaling requirements, and which are routinely deployed at Facebook and
other companies with similar scale codebases and workflows. But if an analysis
is to detect or exclude bugs involving chains of procedure calls, as one minimally
expects of verification techniques, then an inter-procedural analysis is needed,
and making inter-procedural analyses scale to this degree while maintaining any
degree of accuracy has long been a challenge.

4 Background: the INFER Static Analyser

INFER [4] is a program analyser aimed at verifying memory safety and developed
initially by Monoidics Ltd. It was first aimed at C code and later extended to
Java. After the acquisition of Monoidics by Facebook, INFER’s development
now continues inside Facebook.

INFER combines several recent advances in automatic verification. It’s un-
derlying formalism is separation logic [10]. It implements a compositional, bottom-
up variant of the classic RHS inter-procedural analysis algorithm based on pro-
cedure summaries [11]. There are two main novelties. First, it uses compact
summaries, based on the ideas of footprints and frame inference [2] from sepa-
ration logic, to avoid the need for huge summaries that explicitly tabulate most
of the input-output possibilities. Second, it uses a variation on the notion of
abductive inference to discover those summaries [5].

Bi-abduction. INFER computes a compositional shape analysis by synthesising
specification for a piece of code in isolation. Specifications in this case are Hoare’s
triples where pre/post-conditions are separation logic formulae. More specifically,
for a given piece of code C, INFER synthesises pre/post specifications of the form

{P} C {Q}



by inferring suitable P and Q. A crucial point is that such specifications do
not express functional correctness but rather memory safety. The consequence
is that they relates to a basic general property that every code should satisfy.

The theoretical notion allowing INFER to synthesise pre and post-conditions
in specifications is bi-abductive inference [5]. Formally, it consists in solving the
following extension of the entailment problem:

H ∗A ` H ′ ∗ F

where H, H ′ are given formulae in separation logic describing a heap config-
uration whereas F (frame) and A (anti-frame) are unknown and need to be
inferred. Bi-abductive inference is applied during an attempted proof of a pro-
gram to discover a collection of anti-frames describing the memory needed to
execute a program fragment safely (its footprint).

Triples of procedures in a program are composed together in a bottom-up
fashion according to the call graph to obtain triples of larger pieces of code.

Soundness. The soundness property for the algorithm underlying INFER is that
if INFER finds a Hoare triple {P} C {Q} for a program component C then that
triple is true in a particular mathematical model according to the fault-avoiding
interpretation of triples used in separation logic [10]: any execution starting from
a state satisfying P will not cause a prescribed collection of runtime errors (in the
current implementation these are leaks and null dereferences) and, if execution
terminates, Q will be true of the final state. Soundness can also be stated using
the terminology of abstract interpretation (see [5], section 4.4).

Soundness can never be absolute, but is always stated with respect to the
idealization (assumptions) represented by a mathematical model. In INFER’s
case limitations to the model ([5]) include that it doesn’t account for the con-
currency or dynamic dispatch found in Android or iPhone apps. So interpreting
the results in the real world must be done with care; e.g., when an execution
admits a race condition, INFER’s results might not over-approximate. Note that
these caveats are given even prior to the question of whether INFER correctly
implements the abstract algorithm. Thus, soundness does not translate to “no
bugs are missed.” The role of soundness w.r.t. the mathematical model is to serve
as an aid to pinpoint what an analysis is doing and to understand where its lim-
itations are; in addition to providing guarantees for executions under which the
model’s assumptions are met.

Context In this short paper we do not give a comprehensive discussion of re-
lated work, but for context briefly compare INFER to several other prominent
industrial static bug catching and verification tools.

– Microsoft’s Static Driver Verifier [1] was one of the first automatic program
verification tools to apply to real-world systems code. It checks temporal
safety properties of C code. It assumes memory safety and ignores concur-
rency, so is sound with respect to an idealized model that doesn’t account
for some of the programming features used in device drivers. Driver Verifier



uses a whole-program analysis which would be challenging to apply incre-
mentally, with rapid turnaround on diffs for large codebases, as INFER is
at Facebook. In INFER we are only checking memory properties at present.
We could check temporal properties but have not surfaced this capability to
Facebook code as of yet.

– Astrée has famously proven the absence of runtime errors in Airbus code
[8]. Strong soundness properties are rightfully claimed of it, for the kinds
of program it targets. It also does not cover programs with dynamic alloca-
tion or concurrency, which are areas that Driver Verifier makes assumptions
about. Astrée has a very accurate treatment of arithmetic, while INFER is
very weak there; conversely, INFER treats dynamic allocation while Astrée
does not. Astrée is a whole-program analysis which would be challenging to
apply incrementally as INFER is at Facebook.

– Microsoft’s Code Contracts static checker, Clousot, implements a composi-
tional analysis by inferring preconditions in a way related to that of INFER
[7]; consequently, it can operate incrementally and could likely be deployed
in a similar way to INFER. Beyond this similarity, its strong points are
almost the opposite of those of INFER. Clousot has a precise treatment
of arithmetic and array bounds, but its soundness property is relative to
strong assumptions about anti-aliasing of heap objects, where INFER con-
tains an accurate heap analysis but is at present weak on arithmetic and
array bounds. And, INFER focusses on preconditions that are sufficient to
avoid errors, where Clousot aims for preconditions that are necessary rather
than sufficient; necessary preconditions do not guarantee safety, but rather
provide a novel means of falsification.

– Coverity Prevent has been used to find bugs in many open source and in-
dustrial programs. We are not aware of how Prevent works technically, but
it has certainly processed an impressive amount of code. Coverty do not
claim a soundness property, and a paper from Coverity questions whether
soundness is even worthwhile [3].

5 Integration with the Development Infrastructure

Part of deploying formal verification in this environment of continuous devel-
opment was the integration of INFER into the Facebook development infras-
tructure used by programmers. In this environment it was desirable that the
programmer does not have to do anything else than his/her normal job, they
should see analysis results as part of their normal workflow rather than requiring
them to switch to a different tool.

At a high-level, Facebook’s development process has the following phases:

1. The programmer develops a new feature or makes some change on the code-
base (a.k.a. diff).

2. Via the source-control system, this diff goes to a phase of peer-reviews per-
formed by other engineers. In this phase the author of the diff gets sugges-
tions on improvement or requests for further changes from the peer reviewers.



Thus, the author and the peer reviewers start a loop of interactions aimed at
making the code change robust and efficient as well as being understandable,
readable and maintainable by others.

3. When the reviewers are satisfied, they “accept” the code change and the diff
can be then pushed via the source-control system to the main code-base.

4. Every two weeks a version of the code base is frozen into the release candi-
date. The release candidate goes into testing period by making it available
to Facebook employees for internal use. During this period, feedback from
employees helps fixing bugs manifesting at runtime.

5. After two weeks of internal use, the release candidate is deployed to Facebook
users. First to a small fraction of users and, if it doesn’t raise any alert, it is
finally deployed to all users.

During phase 2, regression tests are automatically run and before accepting any
code change a reviewer requires that all the tests pass. Tests run asynchronously
and the results are automatically available in the collaboration tool phabricator
(http://phabricator.org) used for peer review.

INFER is run at phase 2. The process is completely automatic. Once the
code is submitted for peer review, an analysis is run asynchronously in one
of Facebook’s datacenters and results are reported on phabricator in the form
of comments. INFER inserts comments on the lines of code where it detects
a possible bug. Moreover, we have developed tools to navigate the error trace
and make it easier for the developer to inspect the bug report. To provide useful
commenting on bugs we had developed a bug hashing system to detect in different
diffs, whether two different bugs are actually the same bugs or not.

Going forward a goal is to reduce the 2 week period in step 4. There will
however still remain a period here with scope for analyses and are longer-running
than a per-diff analysis should be.

Incremental Analysis. On average INFER needs to comment on a diff within ten
minutes, and for this the incremental analysis aspect of INFER is important. We
have implemented a caching system for analysis results. The latest Android/iOS
code base is fully analysed nightly. A full analysis can take over 4 hours. This
analysis produces a database of pre/post-condition specifications (a cache). Us-
ing the mechanism of bi-abduction (see Section 4) this cache is then used when
analysing diffs. Only functions modified by a diff and functions depending on
them need to be analysed.

The Social challenge Ultimately, one of the biggest challenges we faced was a
social challenge: to get programmers to react to bugs reported by the tool and
fix genuine errors. Programmers need to accumulate trust in the analyser and
they should see it as something helping them to build better software rather than
something slowing them down. All the features listed in Section 3 (scalability
and precision of the analysis, full automation and integration, fast reporting)
are important for the social challenge.

This challenge suggested to us that we should start small to build trust
gradually, and this determined our attitude on what to report. Facebook has



databases of crashes and other bugs, and many on Android were out-of-memory
errors and null pointer exceptions. We concentrated on these initially, target-
ing false positives and negatives for resource leaks and null dereferences, and
we wired INFER up to the internal build process. We trained INFER first on
Facebook’s Android apps to improve our reports.

Having a dedicated static analysis team within Facebook helps tremendously
with the social challenge.

6 Conclusions

INFER is in production at Facebook where it delivers comments on code changes
submitted by developers. INFER’s compositional, incremental, nature is impor-
tant for this means of deployment. This stands in contrast to a model based
on whole-program analysis/verification, where long runs produce bug lists that
developers might fix outside of their normal workflow. We have run INFER in
a whole-program mode to produce lists of issues but found this to be less effec-
tive, because of the inefficiency of the context switch that it causes when taking
developers out of their flow (amongst other reasons).

Just as the apps are, INFER itself is undergoing iterative development and
changing in response to developer feedback; the number of bugs reported is
changing, as is the proportion of code where specs are successfully inferred.
And, in addition to null dereference and leak errors, we will be extending the
kinds of issues INFER reports as time goes on.

Finally, although there have been some successes, we should say that from an
industrial perspective advanced program analysis techniques are generally under-
developed. Simplistic techniques based on context insensitive pattern matching
(“linters”) are deployed often and do provide value, and it is highly nontrivial
to determine when or where many of the ingenious ideas being proposed in the
scientific literature can be deployed practically. Part of the problem, we suggest,
is that academic research has focused too much on whole-program analysis, or
on specify-first, both of which severely limit the number of use cases. There are
of course many other relevant problem areas – error reporting, fix suggestion,
precision of abstract domains, to name a few – but we believe that automatic
formal verification techniques have the potential for much greater impact if com-
positional analyses can become better developed and understood.

References

1. Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner.
Thorough static analysis of device drivers. In Proceedings of the 2006 EuroSys
Conference, Leuven, Belgium, April 18-21, 2006, pages 73–85, 2006.

2. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Formal Methods for Com-
ponents and Objects, 4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures, pages 115–137, 2005.



3. Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. A few
billion lines of code later: using static analysis to find bugs in the real world.
Commun. ACM, 53(2):66–75, 2010.

4. Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier
for memory safety of C programs. In NASA Formal Methods - Third Interna-
tional Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceed-
ings, pages 459–465, 2011.

5. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-
positional shape analysis by means of bi-abduction. J. ACM, 58(6):26, 2011.

6. Josh Constine. Facebook acquires assets of UK mobile bug-checking software de-
veloper Monoidics. http://techcrunch.com/2013/07/18/facebook-monoidics.

7. Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. Au-
tomatic inference of necessary preconditions. In Verification, Model Checking, and
Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy,
January 20-22, 2013. Proceedings, pages 128–148, 2013.

8. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. The Astreé analyzer. In Programming Lan-
guages and Systems, 14th European Symposium on Programming,ESOP 2005, Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, pages 21–30, 2005.

9. D.G. Feitelson, E. Frachtenberg, and K.L. Beck. Development and deployment at
Facebook. Internet Computing, IEEE, 17(4):8–17, July 2013.

10. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Computer Science Logic, 15th Interna-
tional Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France,
September 10-13, 2001, Proceedings, pages 1–19, 2001.

11. Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Conference Record of POPL’95: 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco, California, USA, January 23-25, 1995, pages 49–61, 1995.


