Supplementary Material: Variational Training for
Large-Scale Noisy-OR Bayesian Networks
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A VARIATIONAL BOUND IS
CONCAVE IN r

For each node ¢ € {H U O"} of some document d, the
subset of terms in the variational bound of Eq. (9) that
depend on auxiliary variables r; can be written as:
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The first partial derivative of this variational bound is
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Here, the function
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is the second derivative of f(a). Thus on the convex set
of auxiliary parameters defined by Eq. (7), the (diagonal)
Hessian matrix of L; is negative definite, and Lg;(r;) is
a strictly concave function of r;.

B INITIALIZATION OF r

We show that setting r;—,; < wg—; globally optimizes
our variational objective whenever the activation proba-
bilities g, for all parent nodes k& € P(i) are equal. To
prove this, note that optimizing Eq. (9) with respect to
r,—; 1S equivalent to maximizing
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Given the non-negativity and normalization constraints
in Eq. (7), we can apply Jensen’s inequality in the oppo-
site direction of typical variational derivations:
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The bound in the second line of Eq. (B.2) is achieved
with equality if and only if wg_,; + “&=£ is constant for

Tk—1i

all parent nodes, which occurs when 75 _; X Wg—y;.
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