Supplementary Material: Variational Training for Large-Scale Noisy-OR Bayesian Networks

Geng Ji^{1,2}Dehua Cheng²Huazhong Ning^{2,3}Changhe Yuan^{2,4}Hanning Zhou²Liang Xiong²Erik B. Sudderth¹

¹UC Irvine ²Facebook AI Applied Research ³WeRide.ai ⁴CUNY Queens College

A VARIATIONAL BOUND IS CONCAVE IN r

For each node $i \in \{\mathcal{H} \cup \mathcal{O}^+\}$ of some document d, the subset of terms in the variational bound of Eq. (9) that depend on auxiliary variables r_i can be written as:

$$\mathcal{L}_{di}(r_i) = \sum_{k \in \mathcal{P}(i)} r_{k \to i} q_k \big[f\left(u_{k \to i}\right) - f(w_{0 \to i}) \big].$$

The first partial derivative of this variational bound is

$$\frac{\partial \mathcal{L}_{di}}{\partial r_{k \to i}} = q_k \left(f\left(u_{k \to i}\right) - f(w_{0 \to i}) - \frac{w_{k \to i}}{r_{k \to i}} f'(u_{k \to i}) \right)$$

and its second partial derivatives equal

$$\frac{\partial^2 \mathcal{L}_{di}}{\partial r_{k \to i} \partial r_{\ell \to i}} = 0, \quad \frac{\partial^2 \mathcal{L}_{di}}{\partial r_{k \to i}^2} = q_k \frac{w_{k \to i}^2}{r_{k \to i}^3} f''(u_{k \to i})$$

Here, the function

$$f''(a) = \frac{-\exp(a)}{\left(\exp(a) - 1\right)^2} < 0$$

is the second derivative of f(a). Thus on the convex set of auxiliary parameters defined by Eq. (7), the (diagonal) Hessian matrix of \mathcal{L}_{di} is negative definite, and $\mathcal{L}_{di}(r_i)$ is a strictly concave function of r_i .

B INITIALIZATION OF *r*

We show that setting $r_{k\to i} \propto w_{k\to i}$ globally optimizes our variational objective whenever the activation probabilities q_k for all parent nodes $k \in \mathcal{P}(i)$ are equal. To prove this, note that optimizing Eq. (9) with respect to $r_{k\to i}$ is equivalent to maximizing

$$\sum_{k \in \mathcal{P}(i)} r_{k \to i} \left[f\left(w_{0 \to i} + \frac{w_{k \to i}}{r_{k \to i}}\right) - f(w_{0 \to i}) \right]. \quad (B.1)$$

Given the non-negativity and normalization constraints in Eq. (7), we can apply Jensen's inequality in the opposite direction of typical variational derivations:

$$\sum_{k \in \mathcal{P}(i)} r_{k \to i} \left[f\left(w_{0 \to i} + \frac{w_{k \to i}}{r_{k \to i}}\right) - f(w_{0 \to i}) \right]$$

$$\leq f\left(\sum_{k \in \mathcal{P}(i)} r_{k \to i} \left(w_{0 \to i} + \frac{w_{k \to i}}{r_{k \to i}}\right)\right) - f(w_{0 \to i})$$

$$= f\left(w_{0 \to i} + \sum_{k \in \mathcal{P}(i)} w_{k \to i}\right) - f(w_{0 \to i}).$$
(B.2)

The bound in the second line of Eq. (B.2) is achieved with equality if and only if $w_{0\to i} + \frac{w_{k\to i}}{r_{k\to i}}$ is constant for all parent nodes, which occurs when $r_{k\to i} \propto w_{k\to i}$.