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1 Introduction

Unlike conventional A/B testing where users are randomly assigned to receive a treatment [4, 11], inter-
net companies are increasingly using machine learning models for personalized experimentation to create
personalized policies [2]. Such policies assign, for each user, the best predicted treatment for that user.

A popular approach for personalized experimentation is to train heterogeneous treatment effect (HTE)
models [7, 9], and then assign the treatment group that led to the highest predicted treatment effect for
that user. However, there are several challenges with this approach. Firstly, when there are multiple (not
just binary) outcomes, the creation of a policy is no longer as trivial as assigning the treatment group that
maximizes a single treatment effect. Secondly, as dataset size and the number of features used for HTE
modeling increases, the cost of maintaining such models in a production environment increases. Finally, the
black-box nature of popular HTE models, that may consist of uninterpretable base learners such as gradient
boosted decision trees, but are also combined in different ways to generate the treatment effect prediction,
may deter uptake of such models, especially for critical applications.

Here we focus on learning interpretable policies based on if-else rules of the user features. Figure 1
provides an example of an interpretable policy with three treatment groups, using only two features – age
and gender. Such a policy is easy to implement in a production environment and avoids the need to maintain
a HTE model.

Figure 1: Rule-based policy

There are different ways to generate interpretable poli-
cies. We briefly summarize some of these approaches and
highlight how the methods we propose present a contribu-
tion. Existing works [1, 3] construct tree policies based on
counterfactual estimation. However they both focus on con-
structing exactly optimal trees, which is prohibitively slow
in a large scale. We consider methods that involve distilling
black-box heterogeneous treatment effect models [5, 6, 8] and
methods that modify interpretable models such as decision
trees to find segments with elevated treatment effects [1, 3].
We also propose two new approaches to ensemble multiple
interpretable policies while still remaining interpretable. In-
line with all the approaches, we propose work on the general
setting of more than two treatment groups and more than a
single outcome, which is needed for real-world settings.

2 Methodology

We introduce two types of methods to generate interpretable policies. The first type is what we will call non-
model based methods that do not require training a treatment effect model. The second type is distillation
methods, based on distilling treatment effect models. We also consider two heuristic methods for ensembling
the individual policies.
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2.1 Non-Model Based Methods

With non-model based methods, the goal is to find a segment that has large sample average treatment effects.
Suppose we have the treatment indicator Wi ∈ {0, 1, . . . ,K} where Wi = 0 indicates control group and we
denote the number of users in each group as Nj , j = 0, 1, . . . ,K. We define the metric of a sample D as:

M(D) = max
j=0,1,...,K

 1

Nj

∑
Wi=j

Yi −
1

N0

∑
Wi=0

Yi


Our method builds a tree and considers binary splits that improve this metric. In our greedy implemen-
tation, we only consider a split if both the left and right child have an improvement over the parent node.
The resulting segments will be given the treatment that achieves the maximum in the metric definition. In
our iterative implementation, we run several iterations of tree splitting. For each iteration we keep the
best segment and exclude it in the next run. We consider a split if one of the children improves the value of
metric compared to the parent node.

2.2 Distillation Methods

Our distillation methods build on predictions from treatment effect model. Suppose we have a train-
ing dataset of the form (Xi, Ŷi(0), ...., Ŷi(K)) where Ŷi(0), ...., Ŷi(K) are the predictions of potential out-
comes/treatment effects for each treatment condition. To obtain an interpretable policy we consider two
approaches.
Distilling the predictions: In this approach, we directly solve the following optimization problem in the
space of trees with pre-determined maximum depth

Π∗ = argmaxΠ

1

n

n∑
i=1

Ŷi(Π(Xi)).

To achieve a scalable implementation, we solve the optimization problem greedily instead of resorting to
exact tree search over the whole space of possible trees.
Distilling the policy: In this approach we first use the predictions to get a policy on the training dataset,
i.e. Π(Xi) = argmaxW Ŷi(W ). Then we train a tree classifier to solve the classification problem on the
dataset (Xi,Π(Xi))

n
i=1.

2.3 Ensemble Heuristics

We could use the above methods to generate several interpretable policies. However, different policies may
have different strengths in different regions, and simply training the above methods with deeper depth does
not necessarily improve the resulting policy in our experiments. We leveraged ensemble learning to identify
such regions, with the hope of generating a better policy. In other words, suppose we have access to M
policies Π1,Π2, . . . ,ΠM , we want to train a policy Π̃ : X → {1, 2, . . . ,M} and the final policy to deploy
would be Π

Π̃(Xi)
(Xi). We introduce two ways of doing so.

Ensemble based on Uniform Exploration: This method is inspired by the explore-then-exploit paradigm
in the contextual bandit literature [10]. However, since this method is performed offline, we use predictions
from treatment effect model when the observed outcome is not revealed in the dataset. Specifically, we
uniformly assign one of the M candidate policies to the users in the validation dataset. The selected
candidate policy would tell us an action a ∈ {0, 1, . . . ,K}. In the online setting, we would observe an
outcome Y = Y (a). In this offline setting, our data is of the form (Xi,Wi, Yi = Yi(Wi)). If Wi = a we use
Yi as the observed outcome Oi; if Wi 6= a, we use the prediction Ŷi(a) as the observed outcome Oi. We then
have access to a new dataset (Xi, Ai ∈ {1, 2, . . . ,M}, Oi) and could train a tree policy of any depth using
IPS to impute the partial feedback and a cost sensitive classification oracle (e.g. the one we implemented in
2.2).
Ensemble using Offline Evaluation: Due to the computational burden of this method, particularly when
there are many policies to ensemble, we only create one additional split. For each feature and splitting point,
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we consider all possible assignments of the candidate policies to the left and right child. We then evaluate
the resulting policy offline on the validation dataset using inverse propensity scoring (IPS). The resulting
ensemble is defined by the best split.

3 Results

Our preliminary results are that interpretable policies are comparable to black-box policies in some cases.
The ensemble methods tend to improve over candidate policies used in ensembling. Interestingly, when no
heterogeneity is present, interpretable policies are able to pick the best individual policy if no heterogeneity.
Despite their simplicity, non-model based methods are able to achieve the same level of performance as other
methods that require training treatment effect models.

None of the interpretable policies used more than three features, which makes them easy to maintain.
Planned future work is to evaluate the approaches on more datasets.
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